函数的奇偶性教案(1)[1]
- 格式:doc
- 大小:261.50 KB
- 文档页数:5
函数的奇偶性教案一、教学目标1. 知识与技能:(1)理解函数奇偶性的概念;(2)学会判断函数的奇偶性;(3)能够运用函数的奇偶性解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳,探索函数的奇偶性;(2)利用函数的奇偶性进行函数图像的变换。
3. 情感态度与价值观:(1)培养学生的逻辑思维能力;(2)激发学生对数学的兴趣,提高学习积极性。
二、教学重点与难点1. 教学重点:(1)函数奇偶性的概念及其判断方法;(2)函数奇偶性在实际问题中的应用。
2. 教学难点:(1)函数奇偶性的判断方法;(2)函数奇偶性在实际问题中的应用。
三、教学过程1. 导入新课:(1)复习已学过的函数性质,如单调性、周期性等;(2)提问:同学们,你们知道函数还有其他的性质吗?2. 探究新知:(1)介绍函数奇偶性的概念;(2)通过示例,让学生观察、分析、归纳函数的奇偶性;(3)引导学生掌握判断函数奇偶性的方法。
3. 典例分析:(1)分析函数f(x)=x^3的奇偶性;(2)分析函数f(x)=|x|的奇偶性;(3)分析函数f(x)=sinx的奇偶性。
4. 练习巩固:(2)运用函数的奇偶性解决实际问题。
四、课堂小结本节课,我们学习了函数的奇偶性,掌握了判断函数奇偶性的方法,并能够在实际问题中运用。
希望大家能够继续努力学习,不断提高自己的数学能力。
五、课后作业2. 运用函数的奇偶性解决实际问题:已知函数f(x)=x^2+1的图像关于y轴对称,求函数f(x)在x=-1时的值;3. 探究函数的奇偶性与单调性的关系。
六、教学活动设计1. 小组讨论:让学生分组讨论函数奇偶性的性质,以及如何判断一个函数的奇偶性。
2. 案例分析:通过具体的函数例子,让学生理解并掌握函数奇偶性的判断方法。
3. 互动提问:教师提出问题,引导学生思考并回答,以检查学生对函数奇偶性的理解和掌握程度。
七、教学评价1. 课堂问答:通过提问学生,检查他们对函数奇偶性的概念和判断方法的理解。
函数奇偶性教案教案标题:函数的奇偶性教案教学目标:1. 知道函数奇偶性的定义和判断方法。
2. 能够根据函数的公式,判断函数的奇偶性。
教学重点:1. 函数奇偶性的定义和判断方法。
2. 函数奇偶性的应用。
教学难点:1. 理解函数的奇偶性与图像的关系。
2. 掌握函数奇偶性的判断方法。
教学准备:1. 教师准备:黑板、粉笔、投影仪、电脑。
2. 学生准备:教科书、笔记本电脑。
教学过程:步骤一:导入新知识1. 教师通过提问或展示一幅函数图像,引发学生对函数奇偶性的思考。
2. 教师解释函数的奇偶性是指当自变量变为相反数时,函数值的变化情况。
步骤二:函数奇偶性的定义和判断方法1. 教师通过示例,介绍函数奇偶性的定义和判断方法:- 定义:若对于定义域内的任意实数x,有f(-x) = f(x),则函数f(x)为偶函数;若对于定义域内的任意实数x,有f(-x) = -f(x),则函数f(x)为奇函数。
- 判断方法:通过替换变量,检查函数值是否满足奇偶性定义。
2. 教师通过多个函数的例子,引导学生进行奇偶性的判断练习。
步骤三:函数奇偶性的图像特征1. 教师展示奇函数和偶函数的特点:- 奇函数的图像关于原点对称,如y = x^3。
- 偶函数的图像关于y轴对称,如y = x^2。
2. 教师通过样例展示函数奇偶性与图像关系,帮助学生理解函数奇偶性的图像特征。
步骤四:函数奇偶性的应用1. 教师引导学生思考函数奇偶性的应用场景,如解方程、求曲线的对称点等。
2. 教师与学生一起讨论并解决奇偶性在实际问题中的应用示例。
步骤五:小结与作业布置1. 教师对本节课内容进行小结,强调函数奇偶性的基本概念和判断方法。
2. 教师布置课后作业:要求学生判断一些函数的奇偶性,并解释判断依据。
拓展活动:1. 让学生自行查找函数奇偶性相关的问题,进行小组讨论和展示。
2. 分组进行奇偶性判断竞赛,增加趣味性和互动性。
教学反思:本节课通过引入函数奇偶性的概念,并结合示例和图像,帮助学生理解函数奇偶性的定义和判断方法。
函数的奇偶性教案第一篇:函数的奇偶性教案目标:1. 了解函数的奇偶性的定义和性质。
2. 判断函数的奇偶性。
3. 通过练习题加深对函数的奇偶性的理解。
预计完成时间:1课时教学步骤:步骤一:引入话题(10分钟)教师可以用一个简单的问题引入话题,例如:你知道什么是函数的奇偶性吗?为什么需要关注函数的奇偶性?学生可以自由发言,激发学生们的兴趣。
步骤二:讲解奇偶性的概念(10分钟)教师简要讲解函数的奇偶性的概念,可以借助一些例子来说明。
奇函数和偶函数是对称的关系,奇函数关于y轴对称,而偶函数关于原点对称。
步骤三:奇偶性的判断方法(15分钟)教师讲解奇偶性的判断方法。
一般来说,对于一元函数,可以通过以下两种方法判断函数的奇偶性。
方法1:使用函数的定义式。
对于奇函数,f(-x)=-f(x)成立;对于偶函数,f(-x)=f(x)成立。
方法2:使用函数的图象。
对于奇函数,其图象关于原点对称;对于偶函数,其图象关于y轴对称。
步骤四:练习题(15分钟)教师提供一些练习题,让学生在纸上完成,然后进行讲解和讨论。
例如:1. 判断函数f(x)=x^3+3x^2-5x是否为奇函数。
2. 判断函数g(x)=2x^2-4是否为偶函数。
3. 利用函数的奇偶性,简化函数h(x)=5x^3-x^2+2x-1的图象。
步骤五:总结(10分钟)教师对本节课内容进行总结,并强调函数的奇偶性的重要性和应用。
第二篇:函数的奇偶性教案(续)目标:1. 掌握奇函数和偶函数的一些常见函数的性质。
2. 进一步加深对函数的奇偶性的理解。
3. 练习函数的奇偶性的判断和应用。
预计完成时间:1课时教学步骤:步骤一:引入话题(10分钟)教师可以复习上节课的内容,然后提问学生,你还记得什么是奇函数和偶函数吗?奇函数和偶函数有哪些性质?步骤二:常见函数的性质(15分钟)教师讲解一些常见函数的性质,例如:1. 幂函数:对于非负整数n,当n为奇数时,函数f(x)=x^n是奇函数;当n为偶数时,函数f(x)=x^n是偶函数。
函数的奇偶性教案函数的奇偶性教案函数是数学中一个非常重要的概念,它描述了变量之间的关系。
而函数的奇偶性则是函数的一个性质,它能够帮助我们更好地理解和分析函数的特点。
在本篇文章中,我们将介绍函数的奇偶性,并提供一份教案,帮助学生更好地掌握这一概念。
一、函数的奇偶性是什么?函数的奇偶性是指函数在定义域内的某个点上,函数值的正负关系。
如果函数在某个点上的函数值与该点关于原点对称,那么这个函数就是偶函数;如果函数在某个点上的函数值与该点关于原点对称并且函数值的符号相反,那么这个函数就是奇函数。
二、奇偶函数的性质1. 偶函数的性质:- 偶函数的定义域关于原点对称。
- 偶函数的图像关于y轴对称。
- 偶函数的奇数次幂项系数为0。
2. 奇函数的性质:- 奇函数的定义域关于原点对称。
- 奇函数的图像关于原点对称。
- 奇函数的偶数次幂项系数为0。
三、奇偶函数的判断方法1. 函数图像法:通过绘制函数的图像,观察图像的对称性来判断函数的奇偶性。
如果图像关于y轴对称,则函数为偶函数;如果图像关于原点对称,则函数为奇函数。
2. 代数法:通过代数运算来判断函数的奇偶性。
对于一个函数f(x),如果满足f(-x) = f(x),则函数为偶函数;如果满足f(-x) = -f(x),则函数为奇函数。
四、教案设计1. 教学目标:- 了解函数的奇偶性的概念和性质。
- 学会通过函数的图像和代数运算来判断函数的奇偶性。
- 能够应用奇偶性来解决实际问题。
2. 教学步骤:(1)引入:通过一个生活中的例子,如对称的花朵、对称的蝴蝶等,引导学生思考对称性的概念,并与函数的奇偶性进行关联。
(2)概念讲解:讲解函数的奇偶性的定义和性质,并通过一些简单的例子来说明。
(3)图像判断:给学生一些函数的图像,让他们观察图像的对称性,并判断函数的奇偶性。
(4)代数判断:给学生一些函数的表达式,让他们通过代数运算来判断函数的奇偶性。
(5)练习:让学生做一些奇偶性的练习题,加深对奇偶性的理解。
《函数的奇偶性》教案江阴高中张久鹏一.教材分析1.教材的地位与作用函数奇偶性是研究函数的一个重要策略,因此成为函数的重要性质之一,它的研究也为今后幂函数、三角函数的性质等后续内容的深入起着铺垫的作用;奇偶性的教学无论是在知识还是在能力方面对学生的教育起着非常重要的作用,因此本节课充满着数学方法论的渗透教育,同时又是数学美的集中体现。
2 . 学情分析已经学习了函数的单调性,对于研究函数的性质的方法已经有了一定的了解。
尽管他们尚不知函数奇偶性,但学生在初中已经学习过图形的轴对称与中心对称,对图象的特殊对称性早已有一定的感性认识;在研究函数的单调性方面,学生懂得了由形象到具体,然后再由具体到一般的科学处理方法,具备一定数学研究方法的感性认识;高一学生具备一定的观察能力,但观察的深刻性及稳定性也都还有待于提高;高一学生的学习心理具备一定的稳定性,有明确的学习动机,能自觉配合教师完成教学内容。
二.目的分析教学目标知识与技能目标:理解函数奇偶性的概念能利用定义判断函数的奇偶性过程与方法目标:培养学生的类比,观察,归纳能力渗透数形结合的思想方法,感悟由形象到具体,再从具体到一般的研究方法情感态度与价值观目标:对数学研究的科学方法有进一步的感受体验数学研究严谨性,感受数学对称美重点与难点重点:函数奇偶性概念的形成和函数奇偶性的判断难点:函数奇偶性概念的探究与理解三.教法、学法教法借助多媒体和几何画板软件以引导发现法为主,直观演示法、设疑诱导法为辅的教学模式遵循研究函数性质的三步曲学法根据自主性和差异性原则以促进学生发展为出发点着眼于知识的形成和发展着眼于学生的学习体验四.过程分析(一)情境导航、引入新课问题提出:源于生活,那么我们现在正在学习的函数图象,是否也会具有对称的特性呢?是否也体现了图象对称的美感呢?(二)构建概念、突破难点问题1:函数()2xf=在()x,0上的单调性是怎么样的?+∞问题2:函数()2xf=的图象在()x,0有怎么样的变化趋势?+∞问题3:如何用坐标刻画这种关系。
高中数学教案《函数的奇偶性》一、教学目标:1. 知识与技能:理解函数奇偶性的概念,能够判断函数的奇偶性;学会运用函数的奇偶性解决一些简单问题。
2. 过程与方法:通过观察、分析、归纳等方法,探索函数奇偶性的性质及其判断方法。
3. 情感态度价值观:培养学生的逻辑思维能力,提高学生对数学的兴趣。
二、教学内容:1. 函数奇偶性的定义2. 函数奇偶性的判断方法3. 函数奇偶性的性质三、教学重点与难点:1. 教学重点:函数奇偶性的定义及其判断方法。
2. 教学难点:函数奇偶性的性质及其应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探究函数奇偶性的性质;2. 通过实例分析,让学生掌握函数奇偶性的判断方法;3. 利用小组讨论,培养学生的合作能力。
五、教学过程:1. 导入:回顾上一节课的内容,引导学生思考函数的奇偶性与什么有关。
2. 新课讲解:(1)介绍函数奇偶性的定义;(2)讲解函数奇偶性的判断方法;(3)分析函数奇偶性的性质。
3. 例题解析:选取典型例题,分析解题思路,引导学生运用函数奇偶性解决问题。
4. 课堂练习:布置练习题,让学生巩固所学内容。
5. 总结与拓展:总结本节课的主要内容,提出拓展问题,激发学生的学习兴趣。
6. 课后作业:布置适量作业,巩固所学知识。
注意:在教学过程中,要关注学生的学习反馈,及时调整教学方法和节奏,确保学生能够掌握函数奇偶性的相关知识。
六、教学评估:1. 课堂提问:通过提问了解学生对函数奇偶性的理解程度,及时发现并解决学生学习中存在的问题。
2. 练习题解答:检查学生完成练习题的情况,评估学生对函数奇偶性知识的掌握情况。
3. 课后作业:批改课后作业,了解学生对课堂所学知识的巩固程度。
七、教学反思:1. 反思教学内容:检查教学内容是否全面、深入,是否适合学生的认知水平。
2. 反思教学方法:根据学生的反馈,调整教学方法,提高教学效果。
3. 反思教学效果:总结本节课的教学成果,找出不足之处,为下一节课的教学做好准备。
高中数学教案《函数的奇偶性》一、教学目标:1. 理解函数奇偶性的概念,掌握判断函数奇偶性的方法。
2. 能够运用函数奇偶性的性质解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容:1. 函数奇偶性的定义与判断方法2. 函数奇偶性的性质及应用3. 常见函数的奇偶性分析三、教学重点与难点:1. 函数奇偶性的定义与判断方法2. 函数奇偶性与图像的关系四、教学方法与手段:1. 采用问题驱动法,引导学生主动探索函数奇偶性的性质。
2. 利用多媒体课件,展示函数奇偶性的图像,增强直观感受。
3. 开展小组讨论,促进学生之间的交流与合作。
五、教学过程:1. 导入新课:通过回顾初中阶段学习的函数图像,引导学生发现函数的奇偶性现象。
2. 讲解函数奇偶性的定义与判断方法:讲解函数奇偶性的定义,举例说明判断方法。
3. 探究函数奇偶性的性质:引导学生通过小组讨论,发现函数奇偶性与图像的4. 应用实例:分析生活中遇到的函数奇偶性问题,运用函数奇偶性解决问题。
教案示例:一、教学目标:1. 理解函数奇偶性的概念,掌握判断函数奇偶性的方法。
2. 能够运用函数奇偶性的性质解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容:1. 函数奇偶性的定义与判断方法2. 函数奇偶性的性质及应用3. 常见函数的奇偶性分析三、教学重点与难点:1. 函数奇偶性的定义与判断方法2. 函数奇偶性与图像的关系四、教学方法与手段:1. 采用问题驱动法,引导学生主动探索函数奇偶性的性质。
2. 利用多媒体课件,展示函数奇偶性的图像,增强直观感受。
3. 开展小组讨论,促进学生之间的交流与合作。
五、教学过程:1. 导入新课:通过回顾初中阶段学习的函数图像,引导学生发现函数的奇偶性现象。
2. 讲解函数奇偶性的定义与判断方法:讲解函数奇偶性的定义,举例说明判断3. 探究函数奇偶性的性质:引导学生通过小组讨论,发现函数奇偶性与图像的关系。
函数的奇偶性教案【教案】一、教学目标:1. 理解函数的奇偶性的概念及其性质;2. 能够判断一个函数的奇偶性;3. 掌握判断奇偶性的常见方法和技巧;4. 运用奇偶性的性质解决实际问题。
二、教学内容:1. 函数的奇偶性的概念;2. 奇函数和偶函数的定义;3. 判断奇偶性的常见方法;4. 奇偶函数的性质与图像特点;5. 应用题。
三、教学过程:步骤一:概念解释和引入(15分钟)1. 教师解释函数的奇偶性的概念:函数的奇偶性是指函数的性质,即定义域内的数值对应的函数值关于y轴对称时称为偶函数,关于原点对称时称为奇函数。
2. 通过讲解实例引入奇函数和偶函数的定义:- 如果对于函数中的任意实数x,都有f(-x) = -f(x),则称该函数为奇函数;- 如果对于函数中的任意实数x,都有f(-x) = f(x),则称该函数为偶函数。
3. 通过图示例子,引导学生观察奇函数和偶函数的图像特点。
步骤二:判断奇偶性的方法(20分钟)1. 简单函数的奇偶性判断:- 偶函数的性质:如果函数的所有偶次幂(如x^2, x^4等)项的系数都是偶数,那么这个函数就是偶函数;- 奇函数的性质:如果函数的所有奇次幂(如x^1, x^3等)项的系数都是奇数,那么这个函数就是奇函数。
2. 通过实例练习,让学生理解并熟练运用判断奇偶性的方法。
步骤三:性质与图像特点(25分钟)1. 奇函数的性质和图像特点:- 奇函数的图像关于原点对称;- 在原点处,奇函数的导数为0;- 奇函数在关于原点对称的两个点上的导数相等。
2. 偶函数的性质和图像特点:- 偶函数的图像关于y轴对称;- 在关于y轴对称的两个点上,偶函数的导数相等。
步骤四:应用题解析(20分钟)1. 练习题选取与实际生活相关的问题,如温度变化规律、物体运动轨迹等;2. 通过奇偶性的性质,解答相关问题。
步骤五:小结和拓展(10分钟)1. 对本节课的内容进行小结和总结;2. 拓展:进一步学习函数的周期性和对称性的概念。
函数奇偶性的教案第一章:函数奇偶性的概念引入教学目标:1. 理解函数奇偶性的基本概念;2. 学会判断函数的奇偶性;3. 理解奇偶性在数学中的应用。
教学内容:1. 引入函数的概念;2. 介绍奇偶性的定义;3. 举例说明奇偶性的判断方法。
教学活动:1. 引导学生回顾函数的定义,强调函数的输入输出关系;2. 引入奇偶性的概念,解释奇偶性的含义;3. 通过具体例子,让学生学会判断函数的奇偶性;4. 练习判断一些简单函数的奇偶性;5. 引导学生思考奇偶性在数学中的应用,如物理中的对称性等。
教学评价:1. 检查学生对函数奇偶性概念的理解;2. 评估学生判断函数奇偶性的能力;3. 考察学生对奇偶性应用的理解。
第二章:偶函数的性质教学目标:1. 理解偶函数的定义及其性质;2. 学会运用偶函数的性质解决问题;3. 掌握偶函数图像的特点。
教学内容:1. 偶函数的定义及其性质;2. 偶函数图像的特点;3. 偶函数在实际问题中的应用。
教学活动:1. 引导学生回顾上一章所学的内容,强调奇偶性的概念;2. 引入偶函数的定义,解释偶函数的含义;3. 通过具体例子,让学生学会运用偶函数的性质解决问题;4. 练习运用偶函数性质解决一些实际问题;5. 引导学生思考偶函数图像的特点,分析偶函数在实际问题中的应用。
教学评价:1. 检查学生对偶函数定义及其性质的理解;2. 评估学生运用偶函数性质解决问题的能力;3. 考察学生对偶函数图像特点的认识。
第三章:奇函数的性质教学目标:1. 理解奇函数的定义及其性质;2. 学会运用奇函数的性质解决问题;3. 掌握奇函数图像的特点。
教学内容:1. 奇函数的定义及其性质;2. 奇函数图像的特点;3. 奇函数在实际问题中的应用。
教学活动:1. 引导学生回顾前两章所学的内容,强调奇偶性的概念;2. 引入奇函数的定义,解释奇函数的含义;3. 通过具体例子,让学生学会运用奇函数的性质解决问题;4. 练习运用奇函数性质解决一些实际问题;5. 引导学生思考奇函数图像的特点,分析奇函数在实际问题中的应用。
函数的奇偶性教案一、知识背景在学习数学函数的性质时,我们需要了解函数的奇偶性。
函数的奇偶性是指函数在定义域上是否具有对称性质。
在函数的图像中,如果图像关于原点对称,则称该函数为奇函数;如果图像关于y轴对称,则称该函数为偶函数。
具体来说,对于函数y=y(y): - 如果对于定义域中的任意实数y,都有y(−y)=−y(y),即函数关于原点对称,则称该函数为奇函数。
- 如果对于定义域中的任意实数y,都有y(−y)=y(y),即函数关于y轴对称,则称该函数为偶函数。
函数的奇偶性质能够帮助我们更好地理解函数的性质,以及进行函数的运算和图像变换。
二、教学目标通过本教案的学习,学生应能够: 1. 理解函数的奇偶性的概念和定义; 2. 判断给定函数是否为奇函数、偶函数或既不是奇函数也不是偶函数;3. 进行函数的奇偶性的推导和证明;4. 在函数图像上观察和判断函数的奇偶性。
三、教学重点与难点本教案的重点在于: - 函数奇偶性的定义和特征; - 判断函数奇偶性的方法和技巧。
本教案的难点在于: - 奇函数和偶函数的概念的理解和运用; - 函数奇偶性的证明过程。
四、教学内容与步骤1. 导入新知识通过提问和简单的例子引入函数的奇偶性。
问题1:对于函数y=y2,你能否给出一个关于函数奇偶性的判断?答案1:这是一个偶函数,因为对于定义域中的任意实数y,都有(y)2=(−y)2。
问题2:对于函数y=y3,你能否给出一个关于函数奇偶性的判断?答案2:这是一个奇函数,因为对于定义域中的任意实数y,都有(y)3=(−y)3。
2. 概念解释与讲解讲解函数的奇偶性的定义和特征。
•奇函数的定义和特征;•偶函数的定义和特征;•既不是奇函数也不是偶函数的函数的例子。
3. 判断函数的奇偶性讲解如何判断函数的奇偶性。
•对于幂函数,根据指数的奇偶性判断函数的奇偶性;•对于三角函数,利用函数的周期性判断函数的奇偶性。
4. 函数奇偶性的推导和证明通过具体的例子讲解函数奇偶性的推导和证明过程。
1.3.2 函数的奇偶性(1)函数的奇偶性实质就是函数图象的对称性,它是研究函数性质的主要方面.判断函数奇偶性有两种方法,一是根据定义来判断,二是根据一个函数的图象关于原点或y轴对称的特征来判断.如果我们已知一个函数的奇偶性,就可以推断它在整个定义域内的图象和性质.可见,在“函数的奇偶性”这一节中,“数”与“形”有着密切的联系.因此,本节课没有一开始就给出定义,而是先让学生观察一组图形,从中寻找它们的共性,目的是让学生先有个直观上的认识.为了引导学生由图形的直观认识上升到数量关系的精确描述,先提示学生图形是由点组成的,找出其间的关系后,建立奇(偶)函数的概念,引导学生表述定义,目的是为了培养学生从特殊到一般的概括能力.最后,通过例题和练习进一步加深学生对定义的理解.学习函数的奇偶性目的是让学生掌握奇、偶函数的图象特征,会用定义判断函数的奇偶性,能利用函数的奇偶性解决一些与现实生活有关的综合问题.三维目标一、知识与技能1.从形与数两个方面进行引导,使学生理解函数奇偶性的慨念.2.通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想.3.培养学生从特殊到一般的概括能力.二、过程与方法师生共同探讨、研究.从代数的角度来严格推证.三、情感态度与价值观从生活中的对称想到数学中的对称,再通过严密的代数形式去表达、去推理.教学重点函数奇偶性概念及函数奇偶性的判定.教学难点函数奇偶性概念的理解和证明.教具准备多媒体课件.教学过程一、创设情景,引入新课师:在现实生活中,许多事物给我们以“对称”的感觉,人的轮廓、天安门城楼、射箭用的弓……它们关于某条中轴线对称,道家的太极八卦图等给我们以“中心对称”的感觉.对称是一种美,这种“对称美”在数学中也有大量的反映.让我们观察下列函数的图象,想想各函数之间有什么共同特征.(如下图)生:这三个函数的图象都关于y轴对称.师:那么如何利用函数解析式描述函数图象的这个特征呢?这就是我们本节课要研究的函数的奇偶性.(板书课题:函数的奇偶性) 二、讲解新课师:(演示课件)将f (x )=x 2在y 轴右侧的图象,沿y 轴折过来,我们发现它与左侧的图象重合了,这说明我们刚才的观察结果是正确的.既然图形是由点组成的,那么,让我们在直角坐标系中,观察一对关于y 轴对称的点的坐标有什么关系.我们先计算几个特殊的函数值:f (-3),f (3),f (-2),f (2),f (-1),f (1),它们有何特点?生:f (-3)=f (3),f (-2)=f (2),f (-1)=f (1).师:对,在函数f (x )=x 2位于y 轴右侧的图象上任取一点(x ,f (x )),通过沿y 轴对折找到其关于y 轴的对称点(x ′,f (x ′)).我们由图象观察一下,这两个点的坐标有什么关系?生:x =-x ′,f (x )=f (x ′).当自变量任取定义域中的两个相反数时,对应的函数值相等.师:看来具备此种特征的函数还有很多,我们能不能用定义的形式对这类函数作出刻画呢?生:如果对于函数定义域内的任意一个x ,都有f (-x )=f (x ),那么函数f (x )就叫做偶函数.(当学生的表述不完整、不准确时,教师可作适当的提示和补充)(看课件) 1.偶函数一般地,对于函数f (x )的定义域内的任意一个x ,都有f (-x )=f (x ),那么f (x )就叫做偶函数.师:下面我们来分析一下这个定义,定义中“任意一个x ∈D ,都有f (-x )=f (x )成立”说明了什么?生:这说明f (-x )与f (x )都有意义,即-x 、x 必须同时属于定义域,因此偶函数的定义域是关于原点对称的.师:定义域关于原点对称是函数为偶函数的前提条件.那么定义的实质是什么呢?能用自己的语言来表述一下偶函数的定义吗?生:当自变量任取两个互为相反数的值时,对应的函数值相等.师:我们判断下面两个函数是否是偶函数?并说明理由. (1)f (x )=5x 2+3,x ∈[-3,2]; (2)f (x )=353523--x xx.生:函数f (x )=5x 2+3,x ∈[-3,2]不是偶函数,因为它的定义域关于原点不对称. 函数f (x )=353523--x xx 也不是偶函数,因为它的定义域{x |x ∈R ,且x ≠53}并不关于原点对称.师:对于f (x )=353523--x xx,我们很容易提取分子中的公因式x 2,化简为f (x )=x 2,从而得出该函数是偶函数的错误结论.通过这两个小题可以看出要判断函数是偶函数,必须先判断其定义域是否关于原点对称,不能光看解析式.接下来,让我们再来观察一组函数的图象,看看它们之间有什么共性.(学生活动:仿照偶函数的定义给出奇函数的定义)(1)f (x )=x ;(2)f (x )=x1.生:这两个函数的图象关于原点对称.师:那么关于原点对称的点的坐标之间有什么关系呢?生:关于原点对称的点,它们的横坐标互为相反数,纵坐标也互为相反数.师:对,当自变量任取定义域中的两个相反数时,对应的函数值也互为相反数.我们能不能用定义的形式对这类函数作出刻画呢?生:如果对于函数定义域内的任意一个x ,都有f (-x )=-f (x ),那么函数f (x )就叫做奇函数.师:定义中“任意一个x ∈D ,都有f (-x )=-f (x )成立”说明了什么?生:这说明f (-x )与f (x )都有意义,即-x 、x 同时属于定义域,因此奇函数的定义域是关于原点对称的.师:由此可见,定义域关于原点对称是函数具有奇偶性的前提条件.那么这个定义的实质是什么呢?生:当自变量任取定义域内两个互为相反数的值时,对应的函数值也互为相反数. 师:看课件,奇函数的定义及注意点. 2.奇函数一般地,对于函数f (x )的定义域内的任意一个x ,都有f (-x )=-f (x ),那么f (x )就叫做奇函数.注意:①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质. ②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称).③具有奇偶性的函数的图象的特征:偶函数的图象关于y 轴对称;奇函数的图象关于原点对称.师:我们现在已接触过偶函数、奇函数、既不是奇函数也不是偶函数,那么有没有既是奇函数又是偶函数的函数呢?生:有.函数f (x )=0,x ∈R 就是一个. 师:那么这样的函数有多少个呢?生:只有函数f (x )=0,x ∈R 一个.师:再想一想,函数的三要素是什么呢? 生:函数的三要素是对应法则、定义域和值域. 师:对,可见三要素不同的函数就是不同的函数.生:既是奇函数又是偶函数的函数有无数多个.虽然解析式都为f (x )=0,但取关于原点对称的不同的定义域,就可得到不同的函数,例如:f (x )=0,x ∈[-3,-1]∪[1,3];f (x )=0,x ∈[-5,-2]∪[2,5]等等.师:所以函数按奇偶性可分为四类:奇函数、偶函数、既奇且偶函数和非奇非偶函数.2.例题讲解【例1】 判定下列函数是否为偶函数或奇函数: (1)f (x )=x 4;(2)f (x )=x 5; (3)f (x )=x +x1;(4)f (x )=21x.方法引导:(1)函数f (x )=x 4的定义域是R .因为对于任意的x ∈R ,都有f (-x )=(-x )4=x 4=f (x ),所以函数f (x )=x 4是偶函数.(2)函数f (x )=x 5的定义域是R .因为对于任意的x ∈R ,都有f (-x )=(-x )5=-x 5=-f (x ),所以函数f (x )=x 5是奇函数.(3)函数f (x )=x +x1的定义域是{x |x ≠0}.因为对于任意的x ∈R ,都有f (-x )=-x +x-1=-(x +x1)=-f (x ),所以函数f (x )=x +x1是奇函数.(4)函数f (x )=21x的定义域是{x |x ≠0}.因为对于任意的x ∈R ,都有f (-x )=2)(1x -=21x=f (x ),所以函数f (x )=21x是偶函数.【例2】 (1)判断下列图象是否是偶函数的图象.(1) (2)方法引导:图(1)是偶函数的图象,因为它关于y 轴对称.而图(2)当自变量取±2时,我们观察到f (2)与f (-2)并不相等,这就违背了偶函数定义中,自变量取值的任意性,即不能使函数定义域内的任意一个x ,都有f (-x )=f (x ),所以该图象不是偶函数的图象.(2)判断函数f (x )=⎪⎩⎪⎨⎧>-<+.0,,0,22x x x x x x 的奇偶性.方法引导:函数的定义域关于原点对称.当x >0时,-x <0,f (-x )=x 2-x =-(x -x 2);当x <0时,-x >0,f (-x )=-x -x 2=-(x 2+x ),即f (-x )=⎪⎩⎪⎨⎧>--<+-.0),(,0),(22x x x x x x =-f (x ).∴此函数为奇函数.【例3】 设F (x )是定义在R 上的奇函数,且当x >0时,F (x )的解析式是2x 2-x ,求F (x )在R 上的表达式.方法引导:任取x <0,设P (x ,y )是函数F (x )图象上的一个点.由于F (x )是奇函数,所以,其图象关于原点对称.因此P ′(-x ,-y )必然也是F (x )图象上的一个点.由于-x >0,此时P ′(-x ,-y )必满足解析式y =2x 2-x ,即-y =2(-x )2-(-x )⇒y =-2x 2-x .上式就是点P (x ,y )的坐标满足的关系式,即x <0时F (x )的解析式. 当x =0时,F (-0)=-F (0),即F (0)=0.所以奇函数F (x )=⎪⎩⎪⎨⎧<--=>-.0,2,0,0,0,222x x x x x x x (今后遇到函数奇偶性这类的问题时,要善于选择恰当的方法,定义法是基本方法) 三、课堂练习判定下列函数的奇偶性: (1)f (x )=(x -1)xx -+11;(2)f (x )=12-x +21x -; (3)f (x )=3|x |,x ∈[-3,3); (4)f (x )=(x -1)2. 答案:(1)函数f (x )=(x -1)xx -+11既不是奇函数也不是偶函数.(2)函数f (x )=12-x +21x -既是奇函数又是偶函数.(3)函数f (x )=3|x |既不是奇函数也不是偶函数.(4)函数f (x )=(x -1)2的定义域是R .因为f (1)=0,f (-1)=4,所以f (1)≠ f (-1),f (1)≠-f (-1).因此,根据函数奇偶性定义,可以知道函数f (x )=(x -1)2既不是奇函数也不是偶函数.四、课堂小结函数按奇偶性可分为四类:奇函数、偶函数、既奇且偶函数和非奇非偶函数.而判断函数是奇函数、偶函数首先是看其定义域,若不关于原点对称即可断定函数是非奇非偶函数;再看f (-x )与f (x )的关系,注意它们之间是恒成立的关系,也可以通过图形来判断其奇偶性.五、布置作业课本P 46习题1.3 A 组第9,10题;B 组第1,2题. 教学心得:。