【配套K12】创新设计(浙江专用)2017届高考数学二轮复习 专题一 函数与导数、不等式 第5讲 导数与不等式的
- 格式:doc
- 大小:72.50 KB
- 文档页数:7
技巧——巧解客观题的10大妙招(一)选择题的解法选择题是高考试题的三大题型之一,全国卷12个小题.该题型的基本特点:绝大部分选择题属于低中档题目,且一般按由易到难的顺序排列,注重多个知识点的小型综合,渗透各种数学思想和方法,能充分考查灵活应用基础知识解决数学问题的能力.解数学选择题的常用方法,主要分直接法和间接法两大类.直接法是解答选择题最基本、最常用的方法,但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答,因此,我们还要研究解答选择题的一些技巧,总的来说,选择题属小题,解题的原则是:小题巧解,小题不能大做.方法一 直接法直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则,通过准确的运算、严谨的推理、合理的验证得出正确的结论,然后对照题目所给出的选项“对号入座”作出相应的选择,从而确定正确选项的方法.涉及概念、性质的辨析或运算较简单的题目常用直接法. 【例1】 数列{a n }的前n 项和为S n ,已知a 1=13,且对任意正整数m ,n ,都有a m +n =a m ·a n ,若S n <a 恒成立,则实数a 的最小值为( ) A.12B.23C.32D.2解析 对任意正整数m 、n ,都有a m +n =a m ·a n ,取m =1, 则有a n +1=a n ·a 1⇒a n +1a n =a 1=13. 故数列{a n }是以13为首项,以13为公比的等比数列,则S n =13⎝ ⎛⎭⎪⎫1-13n 1-13=12⎝⎛⎭⎪⎫1-13n <12,由于S n <a 对任意n ∈N *恒成立, 故a ≥12,即实数a 的最小值为12.答案 A探究提高 直接法适用的范围很广,只要运算正确必能得出正确的答案.平时练习中应不断提高用直接法解选择题的能力,准确把握题目的特点.用简便的方法巧解选择题是建立在扎实掌握“三基”的基础上的,否则一味求快则会快中出错.【训练1】 (2015·湖南卷)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|PA →+PB →+PC →|的最大值为( ) A.6B.7C.8D.9解析 由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,∴AC 为圆直径,故PA →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),所以PA →+PB →+PC →=(x -6,y ).故|PA →+PB →+PC →|=-12x +37,∴x =-1时有最大值49=7,故选B.答案 B 方法二 特例法从题干(或选项)出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或图形位置进行判断.特殊化法是“小题小做”的重要策略,要注意在怎样的情况下才可使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊数列等.适用于题目中含有字母或具有一般性结论的选择题.【例2】 (1)如图,在棱柱的侧棱A 1A 和B 1B 上各有一动点P ,Q 满足A 1P =BQ ,过P ,Q ,C 三点的截面把棱柱分成两部分,则其体积之比为( ) A.3∶1 B.2∶1 C.4∶1D.3∶1(2)已知定义在实数集R 上的函数y =f (x )恒不为零,同时满足f (x +y )=f (x )·f (y ),且当x >0时,f (x )>1,那么当x <0时,一定有( )A.f (x )<-1B.-1<f (x )<0C.f (x )>1D.0<f (x )<1解析 (1)将P 、Q 置于特殊位置:P →A 1,Q →B ,此时仍满足条件A 1P =BQ (=0),则有V C -AA 1B =V A 1-ABC =V ABC -A 1B 1C 13.(2)取特殊函数.设f (x )=2x,显然满足f (x +y )=f (x )·f (y )(即2x +y=2x ·2y),且满足x >0时,f (x )>1,根据指数函数的性质,当x <0时,0<2x<1,即0<f (x )<1. 答案 (1)B (2)D探究提高 特例法解选择题时,要注意以下两点: 第一,取特例尽可能简单,有利于计算和推理;第二,若在不同的特殊情况下有两个或两个以上的结论相符,则应选另一特例情况再检验,或改用其他方法求解.【训练2】 等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( ) A.130B.170C.210D.260解析 取m =1,依题意a 1=30,a 1+a 2=100,则a 2=70,又{a n }是等差数列,进而a 3=110,故S 3=210. 答案 C 方法三 排除法数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的选项,找到符合题意的正确结论.筛选法(又叫排除法)就是通过观察分析或推理运算各项提供的信息或通过特例,对于错误的选项,逐一剔除,从而获得正确的结论.【例3】 函数f (x )=(1-cos x )sin x 在[-π,π]上的图象大致为( )解析 由函数f (x )为奇函数,排除B ;当0≤x ≤π时,f (x )≥0,排除A ;又f ′(x )=-2cos 2x +cos x +1,f ′(x )=0,则cos x =1或cos x =-12,结合x ∈[-π,π],求得f (x )在(0,π]上的极大值点为2π3,靠近π,排除D.答案 C探究提高 (1)对于干扰项易于淘汰的选择题,可采用筛选法,能剔除几个就先剔除几个. (2)允许使用题干中的部分条件淘汰选项.(3)如果选项中存在等效命题,那么根据规定——答案唯一,等效命题应该同时排除. (4)如果选项中存在两个相反的或互不相容的判断,那么其中至少有一个是假的. (5)如果选项之间存在包含关系,要根据题意才能判断.【训练3】 (1)方程ax 2+2x +1=0至少有一个负根的充要条件是( ) A.0<a ≤1 B.a <1C.a ≤1D.0<a ≤1或a <0(2)已知f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x ,则f ′(x )的图象是( )解析 (1)当a =0时,x =-12,故排除A 、D.当a =1时,x =-1,排除B.(2)f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x =14x 2+cos x ,故f ′(x )=⎝ ⎛⎭⎪⎫14x 2+cos x ′=12x -sin x ,记g (x )=f ′(x ),其定义域为R ,且g (-x )=12(-x )-sin(-x )=-⎝ ⎛⎭⎪⎫12x -sin x =-g (x ),所以g (x )为奇函数,所以排除B ,D 两项,g ′(x )=12-cos x ,显然当x ∈⎝⎛⎭⎪⎫0,π3时,g ′(x )<0,g (x )在⎝⎛⎭⎪⎫0,π3上单调递减,故排除C.选A.答案 (1)C (2)A 方法四 数形结合法根据题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确的判断,这种方法叫数形结合法.有的选择题可通过命题条件的函数关系或几何意义,作出函数的图象或几何图形,借助于图象或图形的作法、形状、位置、性质,得出结论,图形化策略是以数形结合的数学思想为指导的一种解题策略.【例4】 函数f (x )=|x -2|-ln x 在定义域内的零点的个数为( ) A.0B.1C. 2D.3解析 由题意可知f (x )的定义域为(0,+∞).在同一直角坐标系中画出函数y 1=|x -2|(x >0),y 2=ln x (x >0)的图象,如图所示:由图可知函数f (x )在定义域内的零点个数为2. 答案 C探究提高 图形化策略是依靠图形的直观性进行研究的,用这种策略解题比直接计算求解更能简捷地得到结果.运用图解法解题一定要对有关函数图象、方程曲线、几何图形较熟悉,否则,错误的图象反而会导致错误的选择.【训练4】 过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( )A.33B.-33C.±33D.- 3解析 由y =1-x 2,得x 2+y 2=1(y ≥0),其所表示的图形是以原点O 为圆心,1为半径的上半圆(如图所示).由题意及图形,知直线l 的斜率必为负值,故排除A ,C 选项.当其斜率为-3时,直线l 的方程为3x +y -6=0,点O 到其距离为|-6|3+1=62>1,不符合题意,故排除D 选项.选B. 答案 B 方法五 估算法由于选择题提供了唯一正确的选择支,解答又无需过程.因此,有些题目不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量,但是加强了思维的层次. 【例5】 已知sin θ=m -3m +5,cos θ=4-2m m +5⎝ ⎛⎭⎪⎫π2<θ<π,则tan θ2等于( ) A.m -39-mB.m -3|9-m |C.-15D.5解析 由于受条件sin 2θ+cos 2θ=1的制约,m 一定为确定的值进而推知tan θ2也是一确定的值,又π2<θ<π,所以π4<θ2<π2,故tan θ2>1.所以D 正确.答案 D探究提高 估算法的应用技巧:估算法是根据变量变化的趋势或极值的取值情况进行求解的方法.当题目从正面解析比较麻烦,特值法又无法确定正确的选项时(如难度稍大的函数的最值或取值范围、函数图象的变化等问题)常用此种方法确定选项.【训练5】 已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于( ) A.1B. 2C.2-12D.2+12解析 由俯视图知正方体的底面水平放置,其正视图为矩形,以正方体的高为一边长,另一边长最小为1,最大为2,面积范围应为[1,2],不可能等于2-12. 答案 C1.解选择题的基本方法有直接法、排除法、特例法、估算法、验证法和数形结合法.但大部分选择题的解法是直接法,在解选择题时要根据题干和选择支两方面的特点灵活运用上述一种或几种方法“巧解”,在“小题小做”、“小题巧做”上做文章,切忌盲目地采用直接法. 2.由于选择题供选答案多、信息量大、正误混杂、迷惑性强,稍不留心就会误入“陷阱”,应该从正反两个方向筛选、验证,既谨慎选择,又大胆跳跃.3.作为平时训练,解完一道题后,还应考虑一下能不能用其他方法进行“巧算”,并注意及时总结,这样才能有效地提高解选择题的能力.(二)填空题的解法填空题是高考试题的第二题型.从历年的高考成绩以及平时的模拟考试可以看出,填空题得分率一直不是很高.因为填空题的结果必须是数值准确、形式规范、表达式最简,稍有毛病,便是零分.因此,解填空题要求在“快速、准确”上下功夫,由于填空题不需要写出具体的推理、计算过程,因此要想“快速”解答填空题,则千万不可“小题大做”,而要达到“准确”,则必须合理灵活地运用恰当的方法,在“巧”字上下功夫.填空题的基本特点是:(1)具有考查目标集中、跨度大、知识覆盖面广、形式灵活、答案简短、明确、具体,不需要写出求解过程而只需要写出结论等特点;(2)填空题与选择题有质的区别:①填空题没有备选项,因此,解答时不受诱误干扰,但同时也缺乏提示;②填空题的结构往往是在正确的命题或断言中,抽出其中的一些内容留下空位,让考生独立填上,考查方法比较灵活;(3)从填写内容看,主要有两类:一类是定量填写型,要求考生填写数值、数集或数量关系.由于填空题缺少选项的信息,所以高考题中多数是以定量型问题出现;另一类是定性填写型,要求填写的是具有某种性质的对象或填写给定的数学对象的某种性质,如命题真假的判断等.方法一 直接法对于计算型的试题,多通过直接计算求得结果,这是解决填空题的基本方法.它是直接从题设出发,利用有关性质或结论,通过巧妙地变形,直接得到结果的方法.要善于透过现象抓本质,有意识地采取灵活、简捷的解法解决问题.【例1】 设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为30°,则C 的离心率为________. 解析 设P 点在双曲线右支上,由题意得⎩⎪⎨⎪⎧|PF 1|+|PF 2|=6a ,|PF 1|-|PF 2|=2a , 故|PF 1|=4a ,|PF 2|=2a ,则|PF 2|<|F 1F 2|,得∠PF 1F 2=30°,由2a sin 30°=4asin ∠PF 2F 1,得sin ∠PF 2F 1=1,∴∠PF 2F 1=90°,在Rt△PF 2F 1中,2c =(4a )2-(2a )2=23a , ∴e =c a= 3. 答案3探究提高 直接法是解决计算型填空题最常用的方法,在计算过程中,我们要根据题目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活应用,将计算过程简化从而得到结果,这是快速准确地求解填空题的关键.【训练1】 (1)设θ为第二象限角,若tan ⎝ ⎛⎭⎪⎫θ+π4=12,则sin θ+cos θ=________. (2)(2015·全国Ⅱ卷)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关 解析 (1)∵tan ⎝⎛⎭⎪⎫θ+π4=12,∴tan θ=-13,即⎩⎪⎨⎪⎧3sin θ=-cos θ,sin 2θ+cos 2θ=1,又θ为第二象限角, 解得sin θ=1010,cos θ=-31010. ∴si n θ+cos θ=-105. (2)从2006年起,将每年的二氧化硫排放量与前一年作差比较,得到2008年二氧化硫排放量与2007年排放量的差最大,A 选项正确;2007年二氧化硫排放量较2006年降低了很多,B 选项正确;虽然2011年二氧化硫排放量较2010年多一些,但自2006年以来,整体呈递减趋势,即C 选项正确;自2006年以来我国二氧化硫年排放量与年份负相关,D 选项错误.故选D.答案 (1)-105(2)D 方法二 特殊值法当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以从题中变化的不定量中选取符合条件的恰当特殊值(特殊函数、特殊角、特殊数列、特殊位置、特殊点、特殊方程、特殊模型等)进行处理,从而得出探求的结论.【例2】 (1)若f (x )=12 015x-1+a 是奇函数,则a =________. (2)如图所示,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,且AP =3,则AP →·AC →=________. 解析 (1)因为函数f (x )是奇函数,且1,-1是其定域内的值,所以f (-1)=-f (1),而f (1)=12 014+a ,f (-1)=12 015-1-1+a =a -2 0152 014.故a -2 0152 014=-⎝ ⎛⎭⎪⎫a +12 014,解得a =12. (2)把平行四边形ABCD 看成正方形,则点P 为对角线的交点,AC =6,则AP →·AC →=18. 答案 (1)12(2)18探究提高 求值或比较大小等问题的求解均可利用特殊值代入法,但要注意此种方法仅限于求解结论只有一种的填空题,对于开放性的问题或者有多种答案的填空题,则不能使用该种方法求解.【训练2】 如图,在△ABC 中,点M 是BC 的中点,过点M 的直线与直线AB 、AC 分别交于不同的两点P 、Q ,若AP →=λAB →,AQ →=μAC →,则1λ+1μ=________.解析 由题意可知,1λ+1μ的值与点P 、Q 的位置无关,而当直线PQ 与直线BC 重合时,则有λ=μ=1,所以1λ+1μ=2.答案 2方法三 图象分析法对于一些含有几何背景的填空题,若能数中思形,以形助数,通过数形结合,往往能迅速作出判断,简捷地解决问题,得出正确的结果.韦恩图、三角函数线、函数的图象及方程的曲线等,都是常用的图形.【例3】 (1)已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=|x 2-2x +12|.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是(2)已知函数f (x )=⎩⎪⎨⎪⎧|lg x |(0<x ≤10),-12x +6(x >10),若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是________.解析 (1)函数y =f (x )-a 在区间[-3,4]上有互不相同的10个零点,即函数y =f (x ),x ∈[-3,4]与y =a 的图象有10个不同交点.在坐标系中作出函数y =f (x )在[-3,4]上的图象,f (-3)=f (-2)=f (-1)=f (0)=f (1)=f (2)=f (3)=f (4)=12,观察图象可得0<a <12.(2)a ,b ,c 互不相等,不妨设a <b <c , ∵f (a )=f (b )=f (c ),如图所示,由图象可知,0<a <1, 1<b <10,10<c <12. ∵f (a )=f (b ), ∴|lg a |=|lg b |. 即lg a =lg 1b ,a =1b.则ab =1.所以abc =c ∈(10,12).答案 (1)⎝ ⎛⎭⎪⎫0,12 (2)(10,12) 探究提高 图解法实质上就是数形结合的思想方法在解决填空题中的应用,利用图形的直观性并结合所学知识便可直接得到相应的结论,这也是高考命题的热点.准确运用此类方法的关键是正确把握各种式子与几何图形中的变量之间的对应关系,利用几何图形中的相关结论求出结果.【训练3】 设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c ,x ≤0,2,x >0.若f (-4)=f (0),f (-2)=-2,则函数y =g (x )=f (x )-x 的零点个数为________.解析 由f (-4)=f (0),得16-4b +c =c . 由f (-2)=-2,得4-2b +c =-2. 联立两方程解得b =4,c =2.于是,f (x )=⎩⎪⎨⎪⎧x 2+4x +2,x ≤0,2,x >0.在同一直角坐标系中,作出函数y =f (x )与函数y =x 的图象,知它们有3个交点,即函数g (x )有3个零点.方法四 构造法构造型填空题的求解,需要利用已知条件和结论的特殊性构造出新的数学模型,从而简化推理与计算过程,使较复杂的数学问题得到简捷的解决,它来源于对基础知识和基本方法的积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到过的类似问题中寻找灵感,构造出相应的函数、概率、几何等具体的数学模型,使问题快速解决.【例4】 如图,已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.解析 如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以|CD |=(2)2+(2)2+(2)2=2R ,所以R =62,故球O 的体积V =4πR 33=6π.答案6π探究提高 构造法实质上是化归与转化思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等新的模型,从而转化为自己熟悉的问题.本题巧妙地构造出正方体,而球的直径恰好为正方体的体对角线,问题很容易得到解决.【训练4】 已知a =ln 12 013-12 013,b =ln 12 014-12 014,c =ln 12 015-12 015,则a ,b ,c 的大小关系为________.解析 令f (x )=ln x -x ,则f ′(x )=1x -1=1-xx.当0<x <1时,f ′(x )>0,即函数f (x )在(0,1)上是增函数.∵1>12 013>12 014>12 015>0,∴a >b >c . 答案 a >b >c 方法五 综合分析法对于开放性的填空题,应根据题设条件的特征综合运用所学知识进行观察、分析,从而得出正确的结论.【例5】 已知f (x )为定义在R 上的偶函数,当x ≥0时,有f (x +1)=-f (x ),且当x ∈[0,1)时,f (x )=log 2(x +1),给出下列命题:①f (2 013)+f (-2 014)的值为0;②函数f (x )在定义域上为周期是2的周期函数;③直线y =x 与函数f (x )的图象有1个交点;④函数f (x )的值域为(-1,1).其中正确的命题序号有________.解析 根据题意,可在同一坐标系中画出直线y =x 和函数f (x )的图象如下:根据图象可知①f (2 013)+f (-2 014)=0正确,②函数f (x )在定义域上不是周期函数,所以②不正确,③根据图象确实只有一个交点,所以正确,④根据图象,函数f (x )的值域是(-1,1),正确. 答案 ①③④探究提高 对于规律总结类与综合型的填空题,应从题设条件出发,通过逐步计算、分析总结探究其规律,对于多选型的问题更要注重分析推导的过程,以防多选或漏选.做好此类题目要深刻理解题意,捕捉题目中的隐含信息,通过联想、归纳、概括、抽象等多种手段获得结论.【训练5】 给出以下命题:①双曲线y 22-x 2=1的渐近线方程为y =±2x ;②命题p :“∀x ∈R +,sin x +1sin x≥2”是真命题; ③已知线性回归方程为y ^=3+2x ,当变量x 增加2个单位,其预报值平均增加4个单位; ④已知22-4+66-4=2,55-4+33-4=2,77-4+11-4=2,1010-4+-2-2-4=2,依照以上各式的规律,得到一般性的等式为nn -4+8-n(8-n )-4=2(n ≠4). 则正确命题的序号为________(写出所有正确命题的序号). 解析 ①由y 22-x 2=0可以解得双曲线的渐近线方程为y =±2x ,正确.②命题不能保证sin x ,1sin x为正,故错误; ③根据线性回归方程的含义正确;④根据验证可知得到一般性的等式是正确的. 答案 ①③④1.解填空题的一般方法是直接法,除此以外,对于带有一般性命题的填空题可采用特例法,和图形、曲线等有关的命题可考虑数形结合法.解题时,常常需要几种方法综合使用,才能迅速得到正确的结果.2.解填空题不要求求解过程,从而结论是判断是否正确的唯一标准,因此解填空题时要注意如下几个方面:(1)要认真审题,明确要求,思维严谨、周密,计算有据、准确;(2)要尽量利用已知的定理、性质及已有的结论;(3)要重视对所求结果的检验.规范——解答题的7个解题模板及得分说明1.阅卷速度以秒计,规范答题少丢分高考阅卷评分标准非常细,按步骤、得分点给分,评阅分步骤、采“点”给分.关键步骤,有则给分,无则没分.所以考场答题应尽量按得分点、步骤规范书写.2.不求巧妙用通法,通性通法要强化高考评分细则只对主要解题方法,也是最基本的方法,给出详细得分标准,所以用常规方法往往与参考答案一致,比较容易抓住得分点.3.干净整洁保得分,简明扼要是关键若书写整洁,表达清楚,一定会得到合理或偏高的分数,若不规范可能就会吃亏.若写错需改正,只需划去,不要乱涂乱划,否则易丢分.4.狠抓基础保成绩,分步解决克难题(1)基础题争取得满分.涉及的定理、公式要准确,数学语言要规范,仔细计算,争取前3个解答题及选考不丢分.(2)压轴题争取多得分.第(Ⅰ)问一般难度不大,要保证得分,第(Ⅱ)问若不会,也要根据条件或第(Ⅰ)问的结论推出一些结论,可能就是得分点.模板1 三角变换与三角函数图象性质类考题(1)求f (x )的最小正周期;(2)求f (x )在闭区间⎣⎢⎡⎦⎥⎤-π4,π4上的最大值与最小值.解 (1)f (x )=cos x sin ⎝⎛⎭⎪⎫x +π3-3cos 2x +34=cos x ⎝ ⎛⎭⎪⎫12sin x +32cos x -3cos 2x +34=12sin x cos x -32cos 2x +34=14sin 2x -34(1+cos2x )+34=14sin 2x -34cos 2x =12sin ⎝ ⎛⎭⎪⎫2x -π3.所以f (x )的最小正周期T =2π2=π. (2)因为f (x )在区间⎣⎢⎡⎦⎥⎤-π4,-π12上是减函数,在区间⎣⎢⎡⎦⎥⎤-π12,π4上是增函数,f ⎝ ⎛⎭⎪⎫-π4=-14,f ⎝ ⎛⎭⎪⎫-π12=-12,f ⎝ ⎛⎭⎪⎫π4=14,所以函数f (x )在闭区间⎣⎢⎡⎦⎥⎤-π4,π4上的最大值为14,最小值为-12.模板2 三角变换与解三角形类考题且a +b =3c ,2sin 2C =3sin A sin B . (1)求角C ;(2)若S △ABC =3,求边c .解 (1)∵2sin 2C =3sin A sin B ,∴sin 2C =32sin A sin B ,由正弦定理得c 2=32ab ,∵a +b =3c ,∴a 2+b 2+2ab =3c 2,由余弦定理得cos C =a 2+b 2-c 22ab =2c 2-2ab 2ab =3ab -2ab 2ab =12.∵C ∈(0,π),∴C =π3.(2)∵S △ABC =3,∴S △ABC =12ab sin C ,∵C =π3,∴ab =4,又c 2=32ab ,∴c = 6.模板3 数列的通项、求和类考题n 23510100.(1)求数列{a n }的通项公式; (2)求数列{a n ·2an }的前n 项和.解 (1)设等差数列{a n }的公差为d ,由已知得⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100, 解得⎩⎪⎨⎪⎧a 1=1,d =2.所以数列{a n }的通项公式为a n =1+2(n -1)=2n -1.(2)由(1)可知a n ·2a n =(2n -1)·22n -1,所以S n =1×21+3×23+5×25+…+(2n -3)×22n -3+(2n -1)×22n -1,①4S n =1×23+3×25+5×27+…+(2n -3)×22n -1+(2n -1)×22n +1,②①-②得:-3S n =2+2×(23+25+…+22n -1)-(2n -1)×22n +1.∴S n =2+2×(23+25+…+22n -1)-(2n -1)×22n +1-3=2+2×8(1-4n -1)1-4-(2n -1)×22n +1-3=-6+2×8(1-4n -1)+(6n -3)×22n +19=109+(6n -5)·22n +19.模板4 概率与统计类考题注:年份代码1-7分别对应年份2008-2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01)附注:满分解答得分说明 解题模板 ①根据公式求:第一步 确机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表.A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频数分布表分的平均值及分散程度(不要求计算出具体值,给出结论即可);B 地区用户满意度评分的频率分布直方图(2)根据用户满意度评分,将用户的满意度分为三个等级:解(1)如图所示.通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(2)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意”;C B表示事件:“B地区用户的满意度等级为不满意”.由直方图得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,P(C B)的估计值为(0.005+0.02)×10=0.25.所以A地区用户的满意度等级为不满意的概率大.模板5 立体几何类考题BC =2.(2分)AMNT 为平行四边形,【训练5】 (2015·北京卷)如图,在三棱锥V -ABC 中,平面VAB ⊥平面ABC ,△VAB 为等边三角形,AC ⊥BC ,且AC =BC =2,O ,M 分别为AB ,VA 的中点.(1)求证:VB ∥平面MOC ; (2)求证:平面MOC ⊥平面VAB ; (3)求三棱锥V -ABC 的体积.(1)证明 因为O ,M 分别为AB ,VA 的中点,所以OM ∥VB , 又因为VB ⊄平面MOC ,OM ⊂平面MOC , 所以VB ∥平面MOC .(2)证明 因为AC =BC ,O 为AB 的中点,所以OC ⊥AB .又因为平面VAB ⊥平面ABC ,且OC ⊂平面ABC ,平面VAB ∩平面ABC =AB ,所以OC ⊥平面VAB .又OC ⊂平面MOC ,所以平面MOC ⊥平面VAB . (3)解 在等腰直角三角形ACB 中,AC =BC =2,所以AB =2,OC =1,所以等边三角形VAB 的面积S △VAB = 3. 又因为OC ⊥平面VAB .所以三棱锥C -VAB 的体积等于13·OC ·S △VAB =33,又因为三棱锥V -ABC 的体积与三棱锥C -VAB 的体积相等, 所以三棱锥V -ABC 的体积为33. 模板6 解析几何中的探索性考题【训练6】 如图,O 为坐标原点,双曲线C 1:a 21-b 21=1(a 1>0,b 1>0)和椭圆C 2:y 2a 22+x 2b 22=1(a 2>b 2>0)均过点P ⎝ ⎛⎭⎪⎫233,1,且以C 1的两个顶点和C 2的两个焦点为顶点的四边形是面积为2的正方形.(1)求C 1,C 2的方程;(2)是否存在直线l ,使得l 与C 1交于A ,B 两点,与C 2只有一个公共点,且|OA →+OB →|=|AB →|?证明你的结论.解 (1)设C 2的焦距为2c 2,由题意知,2c 2=2,2a 1=2,从而a 1=1,c 2=1.因为点P ⎝⎛⎭⎪⎫233,1在双曲线x 2-y 2b 21=1上,所以⎝ ⎛⎭⎪⎫2332-1b 21=1.故b 21=3.由椭圆的定义知 2a 2=⎝ ⎛⎭⎪⎫2332+(1-1)2+⎝ ⎛⎭⎪⎫2332+(1+1)2 =2 3.于是a 2=3,b 22=a 22-c 22=2,故C 1,C 2的方程分别为x 2-y 23=1,y 23+x 22=1.(2)不存在符合题设条件的直线.①若直线l 垂直于x 轴,因为l 与C 2只有一个公共点,所以直线l 的方程为x =2或x =- 2. 当x =2时,易知A (2,3),B (2,-3),所以 |OA →+OB →|=22,|AB →|=2 3. 此时,|OA →+OB →|≠|AB →|.当x =-2时,同理可知,|OA →+OB →|≠|AB →|. ②若直线l 不垂直于x 轴,设l 的方程为y =kx +m .由⎩⎪⎨⎪⎧y =kx +m ,x 2-y 23=1,得(3-k 2)x 2-2kmx -m 2-3=0.当l 与C 1相交于A ,B 两点时,设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根,从而x 1+x 2=2km 3-k 2,x 1x 2=m 2+3k 2-3. 于是y 1y 2=k 2x 1x 2+km (x 1+x 2)+m 2=3k 2-3m2k 2-3.由⎩⎪⎨⎪⎧y =kx +m ,y 23+x 22=1,得(2k 2+3)x 2+4kmx +2m 2-6=0.因为直线l 与C 2只有一个公共点,所以上述方程的判别式 Δ=16k 2m 2-8(2k 2+3)(m 2-3)=0. 化简,得2k 2=m 2-3,因此OA →·OB →=x 1x 2+y 1y 2=m 2+3k 2-3+3k 2-3m 2k 2-3=-k 2-3k 2-3≠0, 于是OA →2+OB →2+2OA →·OB →≠OA →2+OB →2-2OA →·OB →, 即|OA →+OB →|2≠|OA →-OB →|2,故|OA →+OB →|≠|AB →|. 综合①,②可知,不存在符合题设条件的直线.模板7 导数与函数类考题【训练7】 (2016·成都二诊)设函数f (x )=ln x +m x,m ∈R . (1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数;(3)若对任意b >a >0,f (b )-f (a )b -a<1恒成立,求m 的取值范围.解 (1)由题设,当m =e 时,f (x )=ln x +e x,则f ′(x )=x -ex2,∴当x ∈(0,e),f ′(x )<0,f (x )在(0,e)上单调递减,当x ∈(e,+∞),f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x-1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点. ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.(3)对任意的b >a >0,f (b )-f (a )b -a<1恒成立,等价于f (b )-b <f (a )-a 恒成立.(*) 设h (x )=f (x )-x =ln x +m x-x (x >0), ∴(*)等价于h (x )在(0,+∞)上单调递减. 由h ′(x )=1x -mx2-1≤0在(0,+∞)上恒成立,得m ≥-x 2+x =-⎝ ⎛⎭⎪⎫x -122+14(x >0)恒成立,∴m ≥14(对m =14,h ′(x )=0仅在x =12时成立),∴m 的取值范围是⎣⎢⎡⎭⎪⎫14,+∞.回扣——回扣教材,查缺补漏,清除得分障碍1.集合与常用逻辑用语1.集合的元素具有确定性、无序性和互异性,在解决有关集合的问题时,尤其要注意元素的互异性.[回扣问题1] 集合A ={a ,b ,c }中的三个元素分别表示某一个三角形的三边长度,那么这个三角形一定不是( ) A.等腰三角形 B.锐角三角形 C.直角三角形D.钝角三角形答案 A2.描述法表示集合时,一定要理解好集合的含义——抓住集合的代表元素.如:{x |y =lgx }——函数的定义域;{y |y =lg x }——函数的值域;{(x ,y )|y =lg x }——函数图象上的点集.[回扣问题2] 若集合A ={x ∈R |y =lg(2-x )},B ={y ∈R |y =2x -1,x ∈A },则∁R (A ∩B )=( ) A.R B.(-∞,0]∪[2,+∞) C.[2,+∞)D.(-∞,0]答案 B3.遇到A ∩B =∅时,你是否注意到“极端”情况:A =∅或B =∅;同样在应用条件A ∪B =B ⇔A ∩B =A ⇔A ⊆B 时,不要忽略A =∅的情况.[回扣问题3] 集合A ={x |ax -1=0},B ={x |x 2-3x +2=0},且A ∪B =B ,则实数a =________. 答案 0,1,124.对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数依次为2n,2n-1,2n-1,2n-2.[回扣问题4] 集合A ={1,2,3}的非空子集个数为( ) A.5 B.6 C.7D.8答案 C5.“否命题”是对原命题“若p ,则q ”既否定其条件,又否定其结论;而“命题p 的否定”。
星期三 (解析几何) 2017年____月____日解析几何知识(命题意图:考查直线与椭圆的位置关系及三角形面积的最值问题)(本小题满分15分)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 1、F 2分别为椭圆的左、右焦点,D 、E 分别是椭圆的上顶点与右顶点,且S △DEF 2=1-32.(1)求椭圆C 1的方程;(2)在椭圆C 1落在第一象限的图象上任取一点作C 1的切线l ,求l 与坐标轴围成的三角形的面积的最小值.解 (1)由题意知e =c a =32,故c =32a ,b =12a .因为S △DEF 2=12(a -c )×b =12⎝⎛⎭⎪⎫a -32a ×a 2= 14⎝ ⎛⎭⎪⎫1-32a 2=1-32, 故a 2=4,即a =2,b =12a =1,c =3,所以椭圆C 1的方程为x 24+y 2=1.(2)∵l 与椭圆C 1相切于第一象限内的一点,∴直线l 的斜率必存在且为负.设直线l 的方程为y =kx +m (k <0),联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,消去y 整理可得 ⎝ ⎛⎭⎪⎫k 2+14x 2+2kmx +m 2-1=0,① 根据题意可得方程①有两相等实根,∴Δ=(2km )2-4⎝ ⎛⎭⎪⎫k 2+14(m 2-1)=0,整理可得m 2=4k 2+1.② ∵直线l 与两坐标轴的交点分别为⎝ ⎛⎭⎪⎫-m k ,0,(0,m )且k <0, ∴l 与坐标轴围成的三角形的面积S =12·m 2-k,③ ②代入③可得S =(-2k )+1-2k≥2(当且仅当k =-12时取等号), ∴l 与坐标轴围成的三角形面积的最小值为2.。
星期一 (三角与数列)2017年____月____日1.三角知识(命题意图:在三角形中,考查三角恒等变换、正余弦定理及面积公式的应用) (本小题满分14分)在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,已知sin C 2=104.(1)求cos C 的值;(2)若△ABC 的面积为3154,且sin 2A +sin 2B =1316sin 2C ,求a ,b 及c 的值.解 (1)因为sin C 2=104,所以cos C =1-2sin 2C 2=-14.(2)因为sin 2A +sin 2B =1316sin 2C ,由正弦定理得a 2+b 2=1316c 2,①由余弦定理得a 2+b 2=c 2+2ab cos C ,将cos C =-14代入,得ab =38c 2,②由S △ABC =3154及sin C =1-cos 2C =154,得ab =6,③由①②③得⎩⎪⎨⎪⎧a =2,b =3,c =4,或⎩⎪⎨⎪⎧a =3,b =2,c =4.经检验,满足题意.所以a =2,b =3,c =4或a =3,b =2,c =4.2.数列(命题意图:考查数列基本量的求取,数列前n 项和的求取,以及利用放缩法解决数列不等式问题等)(本小题满分15分)已知数列{a n }中,a 1=1,其前n 项的和为S n ,且满足a n =2S 2n2S n -1(n ≥2).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)证明:当n ≥2时,S 1+12S 2+13S 3+…+1n S n <32.证明 (1)当n ≥2时,S n -S n -1=2S 2n2S n -1,S n -1-S n =2S n S n -1,1S n -1S n -1=2,从而⎩⎨⎧⎭⎬⎫1S n 构成以1为首项,2为公差的等差数列.(2)由(1)可知,1S n =1S 1+(n -1)×2=2n -1,∴S n =12n -1, ∴当n ≥2时,1nS n =1n (2n -1)<1n (2n -2)=12·1n (n -1)=12⎝ ⎛⎭⎪⎫1n -1-1n从而S 1+12S 2+13S 3+…+1nS n<1+12⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1-1n =32-12n <32. 星期二 (概率与立体几何) 2017年____月____日1.概率(命题意图:考查相互独立事件概率的求解及数学期望的求法)(本小题满分15分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立. (1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.解 记A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2,B 表示事件:甲需使用设备,C 表示事件:丁需使用设备,D 表示事件:同一工作日至少3人需使用设备.(1)D =A 1·B ·C +A 2·B +A 2·B ·C ,P (B )=0.6,P (C )=0.4,P (A i )=C i 2×0.52,i =0,1,2,所以P (D )=P (A 1·B ·C +A 2·B +A 2·B ·C ) =P (A 1·B ·C )+P (A 2·B )+P (A 2·B ·C ) =P (A 1)P (B )P (C )+P (A 2)P (B )+P (A 2)P (B )P (C )=0.31.(2)X的可能取值为0,1,2,3,4,其分布列为P(X=0)=P(B·A0·C)=P(B)P(A0)P(C)=(1-0.6)×0.52×(1-0.4)=0.06,P(X=1)=P(B·A0·C+B·A0·C+B·A1·C)=P(B)P(A0)P(C)+P(B)P(A0)P(C)+P(B)P(A1)P(C)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P(X=4)=P(A2·B·C)=P(A2)P(B)P(C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)-P(X=4)=0.25,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1-0.06-0.25-0.25-0.06=0.38,数学期望E(X)=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X=3)+4×P(X=4)=0.25+2×0.38+3×0.25+4×0.06=2.2.立体几何(命题意图:考查线线垂直及面面角的求解)(本小题满分15分)在如图所示的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中点.(1)求证:BD⊥EG;(2)求平面DEG与平面DEF所成锐二面角的余弦值.(1)证明∵EF⊥平面AEB,AE⊂平面AEB,BE⊂平面AEB,∴EF⊥AE,EF⊥BE,又AE⊥BE,∴BE,EF,AE两两垂直,以点E为坐标原点,EB,EF,EA分别为x,y,z轴.建立如图所示的空间直角坐标系,由已知得,A(0,0,2),B(2,0,0),C(2,4,0),F(0,3,0),D(0,2,2),G(2,2,0),∴EG→=(2,2,0),BD→=(-2,2,2),∴BD →·EG →=-2×2+2×2+0×2=0,∴BD →⊥EG →,即BD ⊥EG . (2)解 由已知得EB →=(2,0,0)是平面DEF 的法向量, 设平面DEG 的法向量为n =(x ,y ,z ) , ∵ED →=(0,2,2),EG →=(2,2,0),∴⎩⎪⎨⎪⎧EG →·n =0,ED →·n =0,即⎩⎪⎨⎪⎧y +z =0,x +y =0,令x =1,得n =(1,-1,1),设平面DEG 与平面DEF 所成锐二面角的大小为θ,则|cos 〈n ,EB →〉|=n ·EB →|n |·|EB →|=223=33,则cos θ=33.∴平面DEG 与平面DEF 所成锐二面角的余弦值为33.星期三 (解析几何) 2017年____月____日解析几何(命题意图:考查椭圆方程的求解及直线与椭圆相交情况下的范围问题)(本小题满分15分)如图,已知F 1、F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,以BF 2为直径的圆D 经过椭圆的上顶点A ,且|BF 1→|=|AF 1→|,F 1A →·BA →=6.(1)求椭圆C 的方程及圆D 的方程;(2)斜率为k 的直线l 过右焦点F 2,且与椭圆C 交于M 、N 两点,若在x 轴上存在点P (m ,0),使得以PM 、PN 为邻边的平行四边形为菱形,求实数m 的取值范围. 解 (1)因为以BF 2为直径的圆经过椭圆的上顶点A ,且|BF 1→|=|AF 1→|, 所以∠BAF 2=π2,∠BAF 1=∠ABF 1,所以∠F 1AF 2+∠BAF 1=∠AF 2B +∠ABF 1, 所以∠F 1AF 2=∠AF 2F 1, 所以△F 1AF 2是等边三角形. 所以|AF 1→|=|F 1F 2→|=|BF 1→|=2c ,又|AF 1→|2=|OF 1→|2+|OA →|2,即4c 2=c 2+b 2=a 2, 则B (-3c ,0),F 1(-c ,0),F 2(c ,0),A (0,b ), 所以F 1A →·BA →=(c ,b )·(3c ,b )=3c 2+b 2=6, 所以a 2=4,b 2=3,c 2=1, 所以椭圆C 的方程为x 24+y 23=1.由F 1(-1,0),|AF 1→|=2,得 圆D 的方程为(x +1)2+y 2=4.(2)由(1)知F 2(1,0),则l :y =k (x -1),联立⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1,消去y 整理得(3+4k 2)x 2-8k 2x +4k 2-12=0,设M (x 1,y 1)、N (x 2,y 2),则Δ=(-8k 2)2-4(3+4k 2)(4k 2-12)=16×9(k 2+1)>0,x 1+x 2=8k23+4k2,y 1+y 2=k (x 1+x 2-2), 所以PM →+PN →=(x 1-m ,y 1)+(x 2-m ,y 2)=(x 1+x 2-2m ,y 1+y 2). 由于菱形的对角线互相垂直,则(PM →+PN →)·MN →=0,因为MN →的一个方向向量是(1,k ),故x 1+x 2-2m +k (y 1+y 2)=0,所以x 1+x 2-2m +k 2(x 1+x 2-2)=0,所以k 2⎝ ⎛⎭⎪⎫8k 23+4k 2-2+8k 23+4k 2-2m =0, 由已知条件知k ≠0, 所以m =k 23+4k 2=13k 2+4,所以0<m <14,故实数m 的取值范围是⎝ ⎛⎭⎪⎫0,14. 星期四 (函数与导数) 2017年____月____日函数与导数(命题意图:考查曲线的切线、最值及数列不等式的证明等) (本小题满分15分)已知函数f (x )=ax 2+1,g (x )=ln(x +1).(1)当实数a 为何值时,函数g (x )在x =0处的切线与函数f (x )的图象相切; (2)当x ∈[0,+∞)时,不等式f (x )+g (x )≤x +1恒成立,求a 的取值范围; (3)已知n ∈N *,试判断g (n )与g ′(0)+g ′(1)+…+g ′(n -1)的大小,并证明之. 解 (1)∵g (x )=ln(x +1),∴g ′(x )=1x +1,g ′(0)=1, 故g (x )在x =0处的切线方程为y =x .由⎩⎪⎨⎪⎧y =x ,y =ax 2+1,得ax 2-x +1=0, ∴Δ=1-4a =0, ∴a =14.(2)当x ∈[0,+∞)时,不等式f (x )+g (x )≤x +1恒成立, 即ax 2+ln(x +1)-x ≤0恒成立. 设h (x )=ax 2+ln(x +1)-x (x ≥0), 只需h (x )max ≤0即可.h ′(x )=2ax +1x +1-1=x [2ax +(2a -1)]x +1.①当a =0时,h ′(x )=-xx +1,当x >0时,h ′(x )<0, 函数h (x )在[0,+∞)上单调递减, 故h (x )≤h (0)=0成立.②当a >0时,由h ′(x )=0,得x =12a-1或x =0.1°12a -1<0,即a >12时,在区间(0,+∞)上,h ′(x )>0,则函数h (x )在(0, +∞)上单调递增,h (x )在(0,+∞)上无最大值,此时不满足条件.2° 若12a -1≥0,即0<a ≤12时,函数h (x )在⎝ ⎛⎭⎪⎫0,12a -1上单调递减,在区间⎝ ⎛⎭⎪⎫12a -1,+∞上单调递增,同样h (x )在[0,+∞)上无最大值,不满足条件.③当a <0时,h ′(x )<0,函数h (x )在[0,+∞)上单调递减,故h (x )≤h (0)=0成立, 综上所述,实数a 的取值范围是(-∞,0].(3)结论:g (n )<g ′(0)+g ′(1)+g ′(2)+…+g ′(n -1).证明:当a =0时,ln(x +1)≤x (当且仅当x =0时取等号),令x =1n,∴ln ⎝⎛⎭⎪⎫1n+1<1n,∴ln(n +1)-ln n <1n.故有ln(n +1)-ln n <1n,ln n -ln(n -1)<1n -1, ln(n -1)-ln(n -2)<1n -2, ……ln 3-ln 2<12,ln 2-ln 1<1,所以ln(n +1)<1+12+13+…+1n,即g (n )<g ′(0)+g ′(1)+g ′(2)+…+g ′(n -1).星期五 (综合限时练) 2017年____月____日解答题综合练(设计意图:训练考生在规定时间内得高分,限时:80分钟) 1.(本小题满分14分)已知数列{a n }与{b n }满足a n +1-a n =2(b n +1-b n )(n ∈N *). (1)若a 1=1,b n =3n +5,求数列{a n }的通项公式;(2)若a 1=6,b n =2n(n ∈N *),且λa n >2n +n +2λ对一切n ∈N *恒成立,求实数λ的取值范围.解 (1)因为a n +1-a n =2(b n +1-b n ),b n =3n +5. 所以a n +1-a n =2(b n +1-b n )=2(3n +8-3n -5)=6,所以{a n }是等差数列,首项为a 1=1,公差为6,即a n =6n -5. (2)因为b n =2n,所以a n +1-a n =2(2n +1-2n )=2n +1,当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2n+2n -1+…+22+6=2n +1+2,当n =1时,a 1=6,符合上式,所以a n =2n +1+2,由λa n >2n+n +2λ得λ>2n+n 2n +1=12+n2n +1,n +12n +2-n2n +1=1-n2n +2≤0, 所以,当n =1,2时, 2n+n 2n +1取最大值34,故λ的取值范围为⎝ ⎛⎭⎪⎫34,+∞.2.(本小题满分15分)如图,四棱锥P -ABCD 中,∠ABC =∠BAD =90°,BC =2AD ,△PAB 与△PAD 都是等边三角形. (1)证明:PB ⊥CD ;(2)求二面角A -PD -B 的余弦值.(1)证明 取BC 的中点E ,连接DE ,则四边形ADEB 为正方形,过P 作PO ⊥平面ABCD ,垂足为O ,连接OA ,OB ,OE ,OD ,由△PAB 和△PAD 都是等边三角形可知PA =PB =PD ,所以OA =OB =OD , 即点O 为正方形ADEB 对角线的交点, 故OE ⊥BD ,又PO ⊥OE ,且PO ∩OB =O , 从而OE ⊥平面PBD ,又PB ⊂平面PBD ,所以OE ⊥PB , 因为O 是BD 的中点,E 是BC 的中点, 所以OE ∥CD ,因此PB ⊥CD .(2)解 由(1)可知,OE ,OB ,OP 两两垂直,以O 为原点,OE 方向为x 轴正方向,OB 方向为y 轴正方向,OP 方向为z 轴正方向,建立如图所示的直角坐标系O -xyz .设|AB |=2,则A (-2,0,0),D (0,-2,0),P (0,0,2) AD →=(2,-2,0),AP →=(2,0,2),设平面PAD 的法向量n =(x ,y ,z ), ∴⎩⎪⎨⎪⎧n ·AD →=2x -2y =0,n ·AP →=2x +2z =0,取x =1,得y =1,z =-1,即n =(1,1,-1), 因为OE ⊥平面PBD ,设平面PBD 的法向量为m , 取m =(1,0,0), 则cos 〈m ,n 〉=13·1=33, 由图象可知二面角A -PD -B 的大小为锐角. 所以,二面角A -PD -B 的余弦值为33. 3.(本小题满分15分)盒中共有9个球,其中有4个红球、3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球的颜色相同的概率P ;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x 1,x 2,x 3,随机变量X 表示x 1,x 2,x 3中的最大数,求X 的概率分布和数学期望E (X ).解 (1)取到的2个颜色相同的球可能是2个红球、2个黄球或2个绿球,所以P =C 24+C 23+C 22C 29=6+3+136=518. (2)随机变量X 所有可能的取值为2,3,4.{X =4}表示的随机事件是“取到的4个球是4个红球”,故P (X =4)=C 44C 49=1126;{X =3}表示的随机事件是“取到的4个球是3个红球和1个其他颜色的球,或3个黄球和1个其他颜色的球”,故P (X =3)=C 34C 15+C 33C 16C 49=20+6126=1363; 于是P (X =2)=1-P (X =3)-P (X =4)=1-1363-1126=1114.所以随机变量X 的概率分布如下表:因此随机变量X E (X )=2×1114+3×1363+4×1126=209. 4.(本小题满分15分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点⎝⎛⎭⎪⎫1,32,一个焦点为(3,0).(1)求椭圆C 的方程;(2)若直线y =k (x -1)(k ≠0)与x 轴交于点P ,与椭圆C 交于A ,B 两点,线段AB 的垂直平分线与x 轴交于点Q .求|AB ||PQ |的取值范围.解 (1)由题意得⎩⎪⎨⎪⎧a 2-b 2=3,1a 2+34b2=1,解得a =2,b =1. 所以椭圆C 的方程为x 24+y 2=1. (2)由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 2=1,得(1+4k 2)x 2-8k 2x +4k 2-4=0. 设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=8k 21+4k 2,x 1x 2=4k 2-41+4k2,y 1+y 2=k (x 1+x 2-2)=-2k1+4k2.所以线段AB 的中点坐标为⎝ ⎛⎭⎪⎫4k 21+4k 2,-k 1+4k 2,所以线段AB 的垂直平分线方程为 y --k 1+4k 2=-1k ⎝ ⎛⎭⎪⎫x -4k 21+4k 2. 于是,线段AB 的垂直平分线与x 轴的交点Q ⎝ ⎛⎭⎪⎫3k 21+4k 2,0,又点P (1,0), 所以|PQ |=⎪⎪⎪⎪⎪⎪1-3k 21+4k 2=1+k 21+4k 2. 又|AB |=(1+k 2)[(8k 21+4k 2)2-4·4k 2-41+4k2]=4(1+k 2)(1+3k 2)1+4k 2. 于是,|AB ||PQ |=4(1+k 2)(1+3k 2)1+4k 21+k21+4k 2=41+3k21+k2=43-21+k2. 因为k ≠0,所以1<3-21+k2<3.所以|AB ||PQ |的取值范围为(4,43).5.(本小题满分15分)已知函数f (x )=(2ax 2+bx +1)e -x(e 为自然对数的底数). (1)若a =12,求函数f (x )的单调区间;(2)若f (1)=1,且方程f (x )=1在(0,1)内有解,求实数a 的取值范围. 解 (1)当a =12,f (x )=(x 2+bx +1)e -x,f ′(x )=-[x 2+(b -2)x +1-b ]e -x ,令f ′(x )=0,得x 1=1,x 2=1-b .当b =0,f ′(x )≤0;当b >0时,当1-b <x <1时,f ′(x )>0,当x <1-b 或x >1时,f ′(x )<0; 当b <0时,当1<x <1-b 时,f ′(x )>0,当x >1-b 或x <1时,f ′(x )<0.综上所述,b =0时,f (x )的单调递减区间为(-∞,+∞);b >0时,f (x )的单调递增区间为(1-b ,1),递减区间为(-∞,1-b ),(1,+∞);b <0时,f (x )的单调递增区间为(1,1-b ),递减区间为(-∞,1),(1-b ,+∞).(2)由f (1)=1得2a +b +1=e ,b =e -1-2a .由f (x )=1得e x=2ax 2+bx +1,设g (x )=e x -2ax 2-bx -1,则g (x )在(0,1)内有零点. 设x 0为g (x )在(0,1)内的一个零点,则由g (0)=0、g (1)=0知g (x )在区间(0,x 0)和(x 0,1)上不可能单调递增,也不可能单调递减,设h (x )=g ′(x ),则h (x )在区间(0,x 0)和(x 0,1)上均存在零点,即h (x )在(0,1)上至少有两个零点.g ′(x )=e x-4ax -b ,h ′(x )=e x-4a . 当a ≤14时,h ′(x )>0,h (x )在区间(0,1)上递增,h (x )不可能有两个及以上零点;当a ≥e4时,h ′(x )<0,h (x )在区间(0,1)上递减,h (x )不可能有两个及以上零点;当14<a <e4时,令h ′(x )=0得x =ln(4a )∈(0,1), 所以h (x )在区间(0,ln(4a ))上递减,在(ln(4a ),1)上递增,h (x )在区间(0,1)上存在最小值h (ln(4a )).若h (x )有两个零点,则有h (ln(4a ))<0,h (0)>0,h (1)>0. h (ln(4a ))=4a -4a ln(4a )-b =6a -4a ln(4a )+1-e ⎝ ⎛⎭⎪⎫14<a <e 4.设φ(x )=32x -x ln x +1-e(1<x <e),则φ′(x )=12-ln x ,令φ′(x )=0,得x =e ,当1<x <e 时φ′(x )>0,φ(x )递增,当e <x <e 时φ′(x )<0,φ(x )递减, φ(x )max =φ(e)=e +1-e <0,所以h (ln(4a ))<0恒成立. 由h (0)=1-b =2a -e +2>0,h (1)=e -4a -b >0,得e -22<a <12.当e -22<a <12时,设h (x )的两个零点为x 1,x 2,则g (x )在(0,x 1)递增,在(x 1,x 2)递减,在(x 2,1)递增,所以g (x 1)>g (0)=0,g (x 2)<g (1)=0,则g (x )在(x 1,x 2)内有零点.综上,实数a 的取值范围是⎝ ⎛⎭⎪⎫e -22,12.星期一 (三角与数列) 2017年____月____日1. 三角(命题意图:考查正、余弦定理、面积公式及三角恒等变换)(本小题满分14分)已知△ABC 的三个内角A 、B 、C 所对应的边分别为a 、b 、c ,且满足acos A =c2-cos C.(1)若b =4,求a ;(2)若c =3,△ABC 的面积为3,求证:3sin C +4cos C =5.(1)解 由a cos A =c 2-cos C 得sin A cos A =sin C2-cos C.∴2sin A =sin A cos C +sin C cos A =sin B ,即2a =b , ∵b =4,∴a =2.(2)证明 ∵△ABC 的面积为3, ∴12ab sin C =a 2sin C =3,① ∵c =3,∴a 2+4a 2-4a 2cos C =9,② 由①②消去a 2得3sin C =5-4cos C , 即3sin C +4cos C =5.2.数列(命题意图:考查等差、等比数列的基本运算及求和)(本小题满分15分)已知数列{a n }是首项a 1=1的等差数列,其前n 项和为S n ,数列{b n }是首项b 1=2的等比数列,且b 2S 2=16,b 1b 3=b 4. (1)求a n 和b n ;(2)令c 1=1,c 2k =a 2k -1,c 2k +1=a 2k +kb k (k =1,2,3…),求数列{c n }的前2n +1项和T 2n +1. 解 (1)设数列{a n }的公差为d ,数列{b n }的公比为q , 则a n =1+(n -1)d ,b n =2qn -1.由b 1b 3=b 4,得q =b 4b 3=b 1=2. 由b 2S 2=2q (2+d )=16, 解得d =2,∴a n =2n -1,b n =2n.(2)∵T 2n +1=c 1+a 1+(a 2+b 1)+a 3+(a 4+2·b 2)+…+a 2n -1+(a 2n +nb n ) =1+S 2n +(b 1+2b 2+…+nb n ).令A =b 1+2b 2+…+nb n , 则A =2+2·22+…+n ·2n, ∴2A =22+2·23+…+n ·2n +1,两式相减,得-A =2+22+ (2)-n ·2n +1,∴A =n ·2n +1-2n +1+2.又S 2n =2n (1+a 2n )2=4n 2,∴T 2n +1=1+4n 2+n ·2n +1-2n +1+2=3+4n 2+(n -1)·2n +1.星期二 (概率与立体几何) 2017年____月____日1.概率(命题意图:考查古典概型的概率的求法以及数学期望的求解)(本小题满分15分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和均值(数学期望). 解 (1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A . P (A )=A 12A 13A 25=310.(2)X 的可能取值为200,300,400. P (X =200)=A 22A 25=110,P (X =300)=A 33+C 12C 13A 22A 35=310, P (X =400)=1-P (X =200)-P (X =300)=1-110-310=610.故X 的分布列为E (X )=200×110+300×310+400×10=350.2.立体几何(命题意图:考查线面的平行关系、线面角的求法及空间向量在立体几何中的应用)(本小题满分15分)如图,在四棱锥P -ABCD 中,底面ABCD 是菱形,∠DAB =60°,PD ⊥平面ABCD ,PD =AD =1,点E ,F 分别为AB 和PD 中点. (1)求证:直线AF ∥平面PEC ;(2)求直线PC 与平面PAB 所成角的正弦值. (1)证明 作FM ∥CD 交PC 于M ,连接EM . ∵点F 为PD 中点,∴FM =12CD .FM ∥CD .又E 是AB 中点,且AB =CD ,AB ∥CD . ∴AE =12AB =FM ,AE ∥FM ,∴AEMF 为平行四边形, ∴AF ∥EM , ∵AF ⊄平面PEC ,EM ⊂平面PEC ,∴直线AF ∥平面PEC .(2)解 连接DE , ∵∠DAB =60°,∴DE ⊥DC ,如下图所示,建立坐标系, 则P (0,0,1),C (0,1,0),E ⎝ ⎛⎭⎪⎫32,0,0,A ⎝ ⎛⎭⎪⎫32,-12,0,B ⎝⎛⎭⎪⎫32,12,0, ∴AP →=⎝ ⎛⎭⎪⎫-32,12,1,AB →=(0,1,0).设平面PAB 的一个法向量为n =(x ,y ,z ).∵n ·AB →=0,n ·AP →=0,∴⎩⎪⎨⎪⎧-32x +12y +z =0,y =0,取x =1,则z =32,∴平面PAB 的一个法向量为n =⎝ ⎛⎭⎪⎫1,0,32. ∵PC →=(0,1,-1), ∴设向量n 与PC →所成角为θ,cos θ=n ·PC→|n ||PC →|=-3274×2=-4214.∴直线PC 与平面PAB 所成角的正弦值为4214. 星期三 (解析几何) 2017年____月____日解析几何(命题意图:考查直线与椭圆相交情况下的弦长及三角形面积问题)(本小题满分15分)已知椭圆M :x 24b 2+y 2b2=1(b >0)上一点与椭圆的两个焦点构成的三角形周长为4+2 3. (1)求椭圆M 的方程;(2)设不过原点O 的直线l 与该椭圆交于P ,Q 两点,满足直线OP ,PQ ,OQ 的斜率依次成等比数列,求△OPQ 面积的取值范围.解 (1)因为椭圆M 上一点和它的两个焦点构成的三角形周长为4+23, 所以2a +2c =4+23, 又a =2b ,所以c =3b , 所以b =1,则a =2,c = 3. 所以椭圆M 的方程为x 24+y 2=1.(2)由题意可知,直线l 的斜率存在且不为0, 故可设直线l 的方程为y =kx +m (m ≠0),P (x 1,y 1),Q (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2-4=0,消去y 得(1+4k 2)x 2+8kmx +4(m 2-1)=0, 则Δ=64k 2m 2-16(1+4k 2)(m 2-1)=16(4k 2-m 2+1)>0, 且x 1+x 2=-8km 1+4k 2,x 1x 2=4(m 2-1)1+4k2, 故y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2. 因为直线OP ,PQ ,OQ 的斜率依次成等比数列,所以y 1x 1·y 2x 2=k 2x 1x 2+km (x 1+x 2)+m 2x 1x 2=k 2,又m ≠0,所以k 2=14,即k =±12,由于直线OP ,OQ 的斜率存在,且Δ>0,得0<m 2<2且m 2≠1.则S △OPQ =12|y 1-y 2|·|2m |=12|x 1-x 2|·|m |=12·(x 1+x 2)2-4x 1x 2|m |=m 2(2-m 2),所以S △OPQ 的取值范围为(0,1).星期四 (函数与导数) 2017年____月____日函数与导数(命题意图:考查函数的单调性及不等式恒成立问题,考查等价转化思想) (本小题满分15分)已知函数f (x )=(3-a )x -2+a -2ln x (a ∈R ). (1)若函数y =f (x )在区间(1,3)上单调,求a 的取值范围;(2)若函数g (x )=f (x )-x 在⎝ ⎛⎭⎪⎫0,12上无零点,求a 的最小值. 解 (1)函数f (x )的定义域为(0,+∞),f ′(x )=3-a -2x =(3-a )x -2x.当a ≥3时,有f ′(x )<0,即函数f (x )在区间(1,3)上单调递减;当a <3时,令f ′(x )=0,得x =23-a ,若函数y =f (x )在区间(1,3)上单调,则23-a ≤1或23-a ≥3,解得a ≤1或73≤a <3; 综上,a 的取值范围是(-∞,1]∪⎣⎢⎡⎭⎪⎫73,+∞.(2)因为当x →0时,g (x )→+∞,所以g (x )=(2-a )(x -1)-2ln x <0在区间⎝ ⎛⎭⎪⎫0,12上恒成立不可能,故要使函数g (x )在⎝ ⎛⎭⎪⎫0,12上无零点,只要对任意的x ∈⎝ ⎛⎭⎪⎫0,12,g (x )>0恒成立, 即对x ∈⎝ ⎛⎭⎪⎫0,12,a >2-2ln x x -1恒成立,令l (x )=2-2ln x x -1,x ∈⎝ ⎛⎭⎪⎫0,12,则l ′(x )=-2x (x -1)-2ln x (x -1)2=2ln x +2x-2(x -1)2,再令m (x )=2ln x +2x -2,x ∈⎝ ⎛⎭⎪⎫0,12, 则m ′(x )=-2x 2+2x =-2(1-x )x2<0, 故m (x )在⎝ ⎛⎭⎪⎫0,12上为减函数,于是m (x )>m ⎝ ⎛⎭⎪⎫12=2-2ln 2>0,从而l ′(x )>0,于是l (x )在⎝ ⎛⎭⎪⎫0,12上为增函数,所以l (x )<l ⎝ ⎛⎭⎪⎫12=2-4ln 2, 故要使a >2-2ln xx -1恒成立,只要a ∈[2-4ln 2,+∞),综上,若函数g (x )在⎝ ⎛⎭⎪⎫0,12上无零点,则a 的最小值为2-4ln 2. 星期五 (综合限时练) 2017年____月____日解答题综合练(设计意图:训练考生在规定时间内得高分,限时:80分钟) 1.(本小题满分14分)设数列{a n }的前n 项之积为T n ,且log 2T n =n (n -1)2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =λa n -1(n ∈N *),数列{b n }的前n 项之和为S n ,若对任意的n ∈N *,总有S n +1>S n ,求实数λ的取值范围. 解 (1)由log 2T n =n (n -1)2,n ∈N *,得T n =2n (n -1)2,所以T n -1=2(n -1)(n -2)2(n ∈N *,n ≥2),所以a n =T n T n -1=2n (n -1)22(n -1)(n -2)2=2n (n -1)2-(n -1)(n -2)2=2n -1,n ∈N *,n ≥2.又a 1=T 1=2=1,适合上式,所以a n =2n -1,n ∈N *.(2)由b n =λa n -1=λ2n -1-1,得S n =λ·1-2n1-2-n =(2n-1)λ-n .所以S n +1>S n ⇔(2n +1-1)λ-(n +1)>(2n -1)λ-n ⇔2nλ>1⇔λ>12n .因为对任意的n ∈N *,12n ≤12,故所求的λ取值范围是⎝ ⎛⎭⎪⎫12,+∞.2.(本小题满分15分)如图,已知空间四边形ABCD 在平面α上的射影是梯形FBCE ,BC ∥EF ,BC ⊥BF ,BC =2EF =2AF =4DE .又平面ABC 与平面α所成的二面角的大小为45°.(1)求异面直线AB 与CD 所成角的大小; (2)设直线BD 交平面AFC 于点O ,求比值BOOD.解 (1)如图,以点F 为原点,FB ,FE ,FA 分别为x ,y ,z 轴,建立空间直角坐标系.因为AF ⊥平面FBCE ,BC ⊥BF ,所以BC ⊥AB ,所以∠ABF 就是平面ABC 与平面α所成的二面角的平面角,所以∠ABF =45°,从而|AF |=|BF |.令|DE |=a ,则|AF |=|EF |=|BF |=2a ,|BC |=4a ,A (0,0,2a ),B (2a ,0,0),C (2a ,4a ,0),D (0,2a ,a).所以AB →=(2a ,0,-2a ),CD →=(-2a ,-2a ,a ), cos 〈AB →,CD →〉=-4a 2-2a 222a ·3a=-22.所以〈AB →,CD →〉=135°,故异面直线AB 与CD 所成角的大小为45°. (2)连接BE 、CF 交于点G ,再连接OG . 因为DE ∥AF ,DE ⊄平面AFC ,AF ⊂平面AFC , 所以DE ∥平面AFC .又平面BDE ∩平面AFC =OG ,所以OG ∥DE , 所以BO OD =BGGE.由△EFG ∽△BCG ,得EG BG =EF BC =12,所以BO OD =BGGE=2.3.(本小题满分15分)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同). (1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望. 解 (1)设“选出的3名同学是来自互不相同的学院”为事件A ,则 P (A )=C 13·C 27+C 03·C 37C 310=4960. 所以选出的3名同学是来自互不相同的学院的概率为4960. (2)随机变量X 的所有可能值为0,1,2,3. P (X =k )=C k4·C 3-k6C 310(k =0,1,2,3). 所以随机变量X 的分布列是随机变量X 的数学期望E (X )=0×6+1×2+2×10+3×30=5.4.(本小题满分15分)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的上顶点为A ,左顶点为B ,F 为右焦点,过F 作平行于AB 的直线交椭圆于C 、D 两点,作平行四边形OCED ,点E 恰在椭圆上.(1)求椭圆的离心率;(2)若平行四边形OCED 的面积为26,求椭圆的方程.解 (1)∵焦点为F (c ,0),AB 的斜率为b a ,故直线CD 的方程为y =b a(x -c ). 与椭圆方程联立后消去y 得到2x 2-2cx -b 2=0.∵CD 的中点为G ⎝ ⎛⎭⎪⎫c 2,-bc 2a ,点E ⎝⎛⎭⎪⎫c ,-bca 在椭圆上.∴将E 的坐标代入椭圆方程并整理得2c 2=a 2,∴离心率e =ca =22. (2)由(1)知c a =22,b =c ,则直线CD 的方程为y =22(x -c ),与椭圆方程联立消去y 得到2x 2-2cx -c 2=0.∵平行四边形OCED 的面积为S =c |y C -y D | =22c (x C +x D )2-4x C x D =22c c 2+2c 2=62c 2=26,所以c =2,b =2,a =2 2. 故椭圆方程为x 28+y 24=1.5.(本小题满分15分)设函数f (x )=12x 2+(2m -3)x +ln x (m ∈R ).(1)讨论函数f (x )在定义域上的单调性;(2)若对任意的x ∈(1,2),总有f (x )<-2,求m 的取值范围.解 (1)函数f (x )的定义域为(0,+∞),f ′(x )=x +2m -3+1x =x 2+(2m -3)x +1x.令x 2+(2m -3)x +1=0,则Δ=(2m -3)2-4=(2m -1)(2m -5). ①当12≤m ≤52时,Δ≤0,所以x 2+(2m -3)x +1≥0,从而f ′(x )≥0; ②当m >52时,因为x >0,所以x 2+(2m -3)x +1>x 2+⎝ ⎛⎭⎪⎫2×52-3x +1=x 2+2x +1>0,所以f ′(x )>0;③当m <12时,Δ>0,方程x 2+(2m -3)x +1=0有两个不相等的实数根x 1,x 2(不妨设x 1<x 2).因为x 1+x 2=3-2m >3-2×12=2>0,x 1x 2=1>0,所以x 1>0,x 2>0,所以当x 1<x <x 2时,x 2+(2m -3)x +1<0, 从而f ′(x )<0;当0<x <x 1或x >x 2时,x 2+(2m -3)x +1>0, 从而f ′(x )>0.综上可知,当m ≥12时,函数f (x )在定义域(0,+∞)上单调递增;当m <12时,函数f (x )在区间(0,x 1)和(x 2,+∞)上单调递增,在区间(x 1,x 2)上单调递减,其中x 1=3-2m -(2m -3)2-42,x 2=3-2m +(2m -3)2-42.(2)法一 由(1)知,当m ≥12时,函数f (x )在区间(1,2)上单调递增,所以f (x )>f (1)=12+2m -3≥12+2×12-3=-32>-2,故f (x )<-2不成立.当m <12时,函数f (x )在区间(x 1,x 2)上单调递减,在区间(0,x 1)和(x 2,+∞)上单调递增.由x 1>0,x 2>0,x 1x 2=1,知0<x 1<1<x 2,所以在区间[1,2]上,f (x )max = max{f (1),f (2)}.因为f (1)=12+2m -3=2m -52,f (2)=2+2(2m -3)+ln 2=4m -4+ln 2,所以⎩⎪⎨⎪⎧2m -52≤-2,4m -4+ln 2≤2,解得⎩⎪⎨⎪⎧m ≤14,m ≤2-ln 24.而14-2-ln 24=ln 2-14<0,所以m ≤14. 故实数m 的取值范围是⎝⎛⎦⎥⎤-∞,14.法二 f (x )<-2,即12x 2+(2m -3)x +ln x <-2.在区间(1,2)上,12x 2+(2m -3)x +ln x <-2⇔2m -3<-12x 2+ln x +2x =-12x -ln x +2x .令g (x )=-12x -ln x +2x ,x ∈(1,2),则g ′(x )=-12-1-(ln x +2)x 2=-x 2+2ln x +22x 2. 令h (x )=-x 2+2ln x +2,x ∈(1,2), 则h ′(x )=-2x +2x =2(1-x 2)x<0,所以函数h (x )在区间(1,2)上单调递减. 因为h (1)=1>0,h (2)=2ln 2-2<0,所以存在唯一的x 0∈(1,2),使得h (x 0)=0,且当x ∈(1,x 0)时,h (x )>0,即g ′(x )>0;当x ∈(x 0,2)时,h (x )<0,即g ′(x )<0.所以函数g (x )在区间(1,x 0)上单调递增,在区间(x 0,2)上单调递减,因此在[1,2]上,g (x )min =min{g (1),g (2)}. 因为g (1)=-12-2=-52,g (2)=-1-ln 2+22=-2-ln 22, 所以g (2)-g (1)=12-ln 22=1-ln 22>0,即g (2)>g (1).故当x ∈(1,2)时,g (x )>g (1). 因此2m -3≤-52,m ≤14.故实数m 的取值范围是⎝⎛⎦⎥⎤-∞,14.星期一 (三角与数列) 2017年____月____日1.三角(命题意图:考查正弦定理、三角恒等变换及三角函数的最值(值域))(本小题满分14分)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2b -c a =cos Ccos A .(1)求角A 的大小;(2)求函数y =3sin B +sin ⎝⎛⎭⎪⎫C -π6的值域.解 (1)由2b -c a =cos Ccos A ,利用正弦定理可得2sin B cos A -sin C cos A =sin A cos C , 化为2sin B cos A =sin(C +A )=sin B , ∵sin B ≠0,∴cos A =12,∵A ∈⎝⎛⎭⎪⎫0,π2,∴A =π3.(2)y =3sin B +sin ⎝ ⎛⎭⎪⎫π-π3-B -π6=3sin B +cos B=2sin ⎝⎛⎭⎪⎫B +π6.∵B +C =2π3,0<B <π2,∴π6<B <π2, ∴π3<B +π6<2π3, ∴sin ⎝ ⎛⎭⎪⎫B +π6∈⎝ ⎛⎦⎥⎤32,1,∴y ∈(3,2].2.数列(命题意图:考查等差、等比数列的基本运算及数列的最值问题.)(本小题满分15分)已知公差不为0的等差数列{a n }的前n 项和为S n ,S 7=70且a 1,a 2,a 6成等比数列.(1)求数列{a n }的通项公式;(2)设b n =2S n +48n,数列{b n }的最小项是第几项,并求出该项的值.解 (1)设公差为d ,则有⎩⎪⎨⎪⎧7a 1+21d =70,a 22=a 1a 6,即⎩⎪⎨⎪⎧a 1+3d =10,(a 1+d )2=a 1(a 1+5d )⇒⎩⎪⎨⎪⎧a 1=1,d =3或⎩⎪⎨⎪⎧a 1=10,d =0(舍), ∴a n =3n -2.(2)S n =n2[1+(3n -2)]=3n 2-n 2,∴b n =3n 2-n +48n =3n +48n-1≥23n ·48n-1=23,当且仅当3n =48n,即n =4时取“=”号,数列{b n }的最小项是第4项,b 4=23.星期二 (概率与立体几何) 2017年____月____日1.概率(命题意图:考查互斥事件概率的求法,考查分布列与数学期望的求解)(本小题满分15分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果n =3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n =4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望. 解 (1)记该批产品通过检验为事件A ,则P (A )=C 34⎝ ⎛⎭⎪⎫124·⎝ ⎛⎭⎪⎫124+⎝ ⎛⎭⎪⎫124·⎝ ⎛⎭⎪⎫12=364.(2)X 的可能取值为400,500,800;P (X =400)=1-416-116=1116,P (X =500)=116, P (X =800)=14,则X 的分布列为E (X )=506.25.2.立体几何(命题意图:考查折叠下的垂直问题及二面角的求解问题)(本小题满分15分)如图,已知长方形ABCD 中,AB =22,AD =2,M 为DC 的中点,将△ADM 沿AM 折起,使得平面ADM ⊥平面ABCM . (1)求证:AD ⊥BM ;(2)若点E 是线段DB 上的一动点,问点E 在何位置时,二面角E -AM -D 的余弦值为55.(1)证明 ∵长方形ABCD 中,AB =22,AD =2,M 为DC 的中点, ∴AM =BM =2,又AM 2+BM 2=AB 2,∴AM ⊥BM , ∵平面ADM ⊥平面ABCM ,平面ADM ∩平面ABCM =AM ,BM ⊂平面ABCM , ∴BM ⊥平面ADM ,∵AD ⊂平面ADM ,∴AD ⊥BM .(2)解 建立如图所示的直角坐标系,则平面ADM 的一个法向量n =(0,1,0),则A (1,0,0),M (-1,0,0),D (0,0,1),B (-1,2,0),则MD →=(1,0,1),DB →=(-1,2,-1).设DE →=λDB →,ME →=MD →+λDB →=(1-λ,2λ,1-λ),AM →=(-2,0,0), 设平面AME 的一个法向量m =(x ,y ,z ),⎩⎪⎨⎪⎧2x =0,2λy +(1-λ)z =0,取y =1,得x =0,y =1,z =2λλ-1,所以m =⎝ ⎛⎭⎪⎫0,1,2λλ-1,因为cos 〈m ·n 〉=m ·n |m |·|n |=55,求得λ=12,所以E 为BD 的中点.星期三 (解析几何) 2017年____月____日解析几何(命题意图:考查利用向量知识求椭圆方程及直线与椭圆相交情况下的三角形、斜率、点到直线的距离等知识的综合应用)(本小题满分15分)在平面直角坐标系xOy 中,F 1、F 2分别为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,B 为短轴的一个端点,E 是椭圆C 上的一点,满足OE →=OF 1→+22OB →,且△EF 1F 2的周长为2(2+1). (1)求椭圆C 的方程;(2)设点M 是线段OF 2上的一点,过点F 2且与x 轴不垂直的直线l 交椭圆C 于P 、Q 两点,若△MPQ 是以M 为顶点的等腰三角形,求点M 到直线l 距离的取值范围. 解 (1)由已知F 1(-c ,0),设B (0,b ),即OF 1→=(-c ,0),OB →=(0,b ), ∴OE →=⎝ ⎛⎭⎪⎫-c ,22b ,即E ⎝ ⎛⎭⎪⎫-c ,22b , ∴c 2a 2+12b 2b 2=1,得c a =22,① 又△EF 1F 2的周长为2(2+1),∴2a +2c =2+22,② 又①②得c =1,a =2,∴b =1,∴所求椭圆C 的方程为x 22+y 2=1.(2)设点M (m ,0),(0<m <1),直线l 的方程为y =k (x -1)(k ≠0),由⎩⎪⎨⎪⎧y =k (x -1),x 2+2y 2=2,消去y ,得(1+2k 2)x 2-4k 2x +2k 2-2=0, 设P (x 1,y 1),Q (x 2,y 2),PQ 中点为N (x 0,y 0), 则x 1+x 2=4k 21+2k 2,∴y 1+y 2=k (x 1+x 2-2)=-2k 1+2k 2,∴x 0=x 1+x 22=2k 21+2k 2,y 0=y 1+y 22=-k 1+2k2, 即N ⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2.法一 ∵△MPQ 是以M 为顶点的等腰三角形,∴MN ⊥PQ ,即k 2m (1+2k 2)-2k 2=-1,∴m =k 21+2k 2=12+1k2∈⎝⎛⎭⎪⎫0,12.设点M 到直线l :kx -y -k =0距离为d ,则d 2=k 2(m -1)2k 2+1=k 2(k 2+1)(1+2k 2)2<14(k 2+k 2+1)2(1+2k 2)2=14, ∴d ∈⎝ ⎛⎭⎪⎫0,12, 即点M 到直线距离的取值范围是⎝ ⎛⎭⎪⎫0,12. 法二 ∵△MPQ 是以M 为顶点的等腰三角形, ∴(MP →+MQ →)·PQ →=0,∵MP →=(x 1-m ,y 1),MQ →=(x 2-m ,y 2),PQ →=(x 2-x 1,y 2-y 1), ∴(x 1+x 2-2m )(x 2-x 1)+(y 1+y 2)(y 2-y 1)=0, 又y 2+y 1=k (x 2+x 1-2),y 2-y 1=k (x 2-x 1), ∴(x 2+x 1-2m )+k 2(x 1+x 2-2)=0,∴⎝ ⎛⎭⎪⎫4k 21+2k 2-2m +k 2⎝ ⎛⎭⎪⎫4k 21+2k 2-2=0,∴m =k 21+2k 2. 以下同解法一.星期四 (函数与导数) 2017年____月____日函数与导数知识(命题意图:考查含参数的函数单调性的求解以及不等式恒成立条件下的参数范围的求取.考查考生的分类讨论思想以及转化与化归思想的应用) (本小题满分15分)已知函数f (x )=(a +1)ln x +ax 2+1. (1)讨论函数f (x )的单调性;(2)设a <-1,如果对任意x 1,x 2∈(0,+∞), |f (x 1)-f (x 2)|≥4|x 1-x 2|,求a 的取值范围.解 (1)f (x )的定义域为(0,+∞),f ′(x )=a +1x +2ax =2ax 2+a +1x.当a ≥0时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; 当a ≤-1时,f ′(x )<0,故f (x )在(0,+∞)上单调递减; 当-1<a <0时,令f ′(x )=0,解得x =-a +12a. 即x ∈⎝⎛⎭⎪⎫0,-a +12a 时,f ′(x )>0; x ∈⎝⎛⎭⎪⎫-a +12a ,+∞时,f ′(x )<0. 故f (x )在⎝ ⎛⎭⎪⎫0,-a +12a 上单调递增,在⎝⎛⎭⎪⎫-a +12a ,+∞上单调递减. (2)法一 不妨设x 1≤x 2,而a <-1,由(1)知f (x )在 (0,+∞)上单调递减,从而对任意x 1、x 2∈(0,+∞),恒有 |f (x 1)-f (x 2)|≥4|x 1-x 2|⇔f (x 1)-f (x 2)≥ 4(x 2-x 1)⇔f (x 1)+4x 1≥f (x 2)+4x 2. 令g (x )=f (x )+4x ,则g ′(x )=a +1x+2ax +4,则f (x 1)+4x 1≥f (x 2)+4x 2等价于g (x )在(0,+∞)上单调递减, 即g ′(x )=a +1x+2ax +4≤0, 从而a ≤-4x -12x 2+1=(2x -1)2-4x 2-22x 2+1=(2x -1)22x 2+1-2, 故a 的取值范围为(-∞,-2]. 法二 a ≤⎝⎛⎭⎪⎫-4x -12x 2+1min.设φ(x )=-4x -12x 2+1,则φ′(x )=-4(2x 2+1)-(-4x -1)·4x(2x 2+1)2=8x 2+4x -4(2x 2+1)2=8x 2+4x -4(2x 2+1)2=4(2x -1)(x +1)(2x 2+1)2. 当x ∈⎝ ⎛⎭⎪⎫0,12时,φ′(x )<0,φ(x )为减函数,x ∈⎝ ⎛⎭⎪⎫12,+∞时,φ′(x )>0,φ(x )为增函数,∴φ(x )min =φ⎝ ⎛⎭⎪⎫12=-2,∴a 的取值范围为(-∞,-2].星期五 (综合限时练) 2017年____月____日解答题综合练(设计意图:训练考生在规定时间内得高分,限时:80分钟)1.(本小题满分14分)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =b cos C +33c sin B . (1)若a =2,b =7,求c ;(2)若3sin ⎝ ⎛⎭⎪⎫2A -π6-2sin 2⎝ ⎛⎭⎪⎫C -π12=0,求A . 解 (1)∵a =b cos C +33c sin B , ∴sin A =sin B cos C +33sin C sin B ,∴cos B sin C =33sin C sin B ,又sin C ≠0, ∴tan B =3,∵B ∈⎝ ⎛⎭⎪⎫0,π2,∴B =π3.∵b 2=a 2+c 2-2ac cos B ,∴c 2-2c -3=0, ∴c =3,c =-1(舍去).(2)∵3sin ⎝ ⎛⎭⎪⎫2A -π6-2sin 2⎝ ⎛⎭⎪⎫C -π12 =3sin ⎝ ⎛⎭⎪⎫2A -π6-1+cos ⎝ ⎛⎭⎪⎫2C -π6 =3sin ⎝ ⎛⎭⎪⎫2A -π6+cos ⎝ ⎛⎭⎪⎫4π3-2A -π6-1=3sin ⎝ ⎛⎭⎪⎫2A -π6-cos ⎝ ⎛⎭⎪⎫2A -π6-1=2sin ⎝⎛⎭⎪⎫2A -π3-1. ∴由2sin ⎝⎛⎭⎪⎫2A -π3-1=0,及π6<A <π2,可得A =π4. 2.(本小题满分15分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望E (X ).解 (1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”, 记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”, 记事件E :“‘星队’至少猜对3个成语”. 由题意,E =ABCD +ABCD +ABCD +ABCD +ABCD . 由事件的独立性与互斥性,P (E )=P (ABCD )+P (ABCD )+P (ABCD )+ P (ABCD )+P (ABCD )=P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+ P (A )P (B )P (C )P (D )=34×23×34×23+2×⎝ ⎛14×23×34×23+34×13⎭⎪⎫×34×23=23. 所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6.由事件的独立性与互斥性,得P (X =0)=14×13×14×13=1144,P (X =1)=2×⎝ ⎛⎭⎪⎫34×13×14×13+14×23×14×13=10144=572,P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P (X =3)=34×23×14×13+14×13×34×23=12144=112,P (X =4)=2×⎝ ⎛⎭⎪⎫34×23×34×13+34×23×14×23=60144=512.P (X =6)=34×23×34×23=36144=14.可得随机变量X 的分布列为所以数学期望E (X )=0×144+1×72+2×144+3×12+4×12+6×4=236. 3.(本小题满分15分)在四棱锥P -ABCD 中,底面ABCD 是直角梯形,∠DAB =90°,AD ∥BC ,AD ⊥侧面PAB ,△PAB 是等边三角形,DA =AB =2,BC =12AD ,E 是线段AB 的中点.(1)求四棱锥P -ABCD 的体积;(2)试问线段PB 上是否存在点F ,使二面角C -DE -F 的余弦值为14?若存在,确定点F 的位置;若不存在,说明理由.解 (1)因为AD ⊥侧面PAB ,PE ⊂平面PAB , 所以AD ⊥PE .又因为△PAB 是等边三角形,E 是线段AB 的中点,。
星期一 (三角与数列)2017年____月____日1.三角知识(命题意图:在三角形中,考查三角恒等变换、正余弦定理及面积公式的应用)(本小题满分14分)在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,已知sin C 2=104. (1)求cos C 的值;(2)若△ABC 的面积为3154,且sin 2A +sin 2B =1316sin 2C ,求a ,b 及c 的值. 解 (1)因为sin C 2=104, 所以cos C =1-2sin 2C 2=-14. (2)因为sin 2A +sin 2B =1316sin 2C ,由正弦定理得 a 2+b 2=1316c 2,①由余弦定理得a 2+b 2=c 2+2ab cos C ,将cos C =-14代入,得ab =38c 2,② 由S △ABC =3154及sin C =1-cos 2C =154,得ab =6,③ 由①②③得⎩⎪⎨⎪⎧a =2,b =3,c =4,或⎩⎪⎨⎪⎧a =3,b =2,c =4.经检验,满足题意.所以a =2,b =3,c =4或a =3,b =2,c =4.2.数列(命题意图:考查数列基本量的求取,数列前n 项和的求取,以及利用放缩法解决数列不等式问题等.)(本小题满分15分)已知数列{a n }中,a 1=1,其前n 项的和为S n ,且满足a n =2S 2n 2S n -1(n ≥2). (1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列; (2)证明:当n ≥2时,S 1+12S 2+13S 3+…+1n S n <32. 证明 (1)当n ≥2时,S n -S n -1=2S 2n 2S n -1, S n -1-S n =2S n S n -1,1S n -1S n -1=2, 从而⎩⎨⎧⎭⎬⎫1S n 构成以1为首项,2为公差的等差数列.2 (2)由(1)可知,1S n =1S 1+(n -1)×2=2n -1, ∴S n =12n -1, ∴当n ≥2时,1n S n =1n (2n -1)<1n (2n -2)=12·1n (n -1)=12⎝ ⎛⎭⎪⎫1n -1-1n 从而S 1+12S 2+13S 3+ (1)S n <1+12⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1-1n =32-12n <32.。
星期一 (三角与数列)2017年____月____日1.三角(命题意图:考查正弦定理、三角恒等变换及三角函数的最值(值域))(本小题满分14分)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2b -c a =cos C cos A. (1)求角A 的大小;(2)求函数y =3sin B +sin ⎝⎛⎭⎪⎫C -π6的值域. 解 (1)由2b -c a =cos C cos A, 利用正弦定理可得2sin B cos A -sin C cos A =sin A cos C ,化为2sin B cos A =sin(C +A )=sin B ,∵sin B ≠0,∴cos A =12, ∵A ∈⎝⎛⎭⎪⎫0,π2,∴A =π3. (2)y =3sin B +sin ⎝⎛⎭⎪⎫π-π3-B -π6 =3sin B +cos B=2sin ⎝⎛⎭⎪⎫B +π6. ∵B +C =2π3,0<B <π2, ∴π6<B <π2, ∴π3<B +π6<2π3, ∴sin ⎝ ⎛⎭⎪⎫B +π6∈⎝ ⎛⎦⎥⎤32,1,∴y ∈(3,2]. 2.数列(命题意图:考查等差、等比数列的基本运算及数列的最值问题)(本小题满分15分)已知公差不为0的等差数列{a n }的前n 项和为S n ,S 7=70且a 1,a 2,a 6成等比数列.(1)求数列{a n }的通项公式;(2)设b n =2S n +48n,数列{b n }的最小项是第几项,并求出该项的值.2 解 (1)设公差为d ,则有⎩⎪⎨⎪⎧7a 1+21d =70,a 22=a 1a 6,即⎩⎪⎨⎪⎧a 1+3d =10,(a 1+d )2=a 1(a 1+5d )⇒⎩⎪⎨⎪⎧a 1=1,d =3或⎩⎪⎨⎪⎧a 1=10,d =0(舍),∴a n =3n -2.(2)S n =n 2[1+(3n -2)]=3n 2-n 2,∴b n =3n 2-n +48n =3n +48n -1≥23n ·48n -1=23, 当且仅当3n =48n ,即n =4时取“=”号,数列{b n }的最小项是第4项,b 4=23.。
1.已知函数f (x )=|x +2|-2|x -1|.(1)解不等式f (x )≥-2.(2)对任意x ∈[a ,+∞),都有f (x )≤x -a 成立,求实数a 的取值范围. 解 (1)f (x )=⎩⎨⎧x -4,x ≤-2,3x ,-2<x <1,-x +4,x ≥1,f (x )≥-2, 当x ≤-2时,x -4≥-2,即x ≥2,所以x ∈∅;当-2<x <1时,3x ≥-2,即x ≥-23,所以-23≤x <1,当x ≥1时,-x +4≥-2,即x ≤6,所以1≤x ≤6,综上,不等式f (x )≥-2的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-23≤x ≤6. (2)f (x )=⎩⎨⎧x -4,x ≤-2,3x ,-2<x <1,-x +4,x ≥1,函数f (x )的图象如图所示:令y =x -a ,-a 表示直线的纵截距,当直线过(1,3)点时,-a =2; 所以当-a ≥2,即a ≤-2时成立;当-a <2,即a >-2时,令-x +4=x -a ,得x =2+a 2,所以a ≥2+a 2,即a ≥4时成立,综上可知a 的取值范围为(-∞,-2]∪[4,+∞).2.已知函数f (x )=m -|x -2|,m ∈R ,且f (x +2)≥0的解集为[-1,1].(1)求m 的值;(2)若a ,b ,c 大于0,且1a +12b +13c =m ,求证:a +2b +3c ≥9.(1)解 ∵f (x +2)=m -|x |,∴f (x +2)≥0等价于|x |≤m .由|x |≤m 有解,得m ≥0且其解集为{x |-m ≤x ≤m }.又f (x +2)≥0的解集为[-1,1],故m =1.(2)证明 由(1)知1a +12b +13c =1,且a ,b ,c 大于0,a +2b +3c =(a +2b +3c )⎝ ⎛⎭⎪⎫1a +12b +13c =3+⎝ ⎛⎭⎪⎫2b a +a 2b +⎝ ⎛⎭⎪⎫3c a +a 3c +⎝ ⎛⎭⎪⎫3c 2b +2b 3c ≥3+22b a ·a2b +23c a ·a3c +23c 2b ·2b3c =9.当且仅当a =2b =3c =3时,等号成立.因此a +2b +3c ≥9.3.已知函数f (x )=|2x -a |+|2x +3|,g (x )=|x -1|+2.(1)解不等式:|g (x )|<5.(2)若对任意的x 1∈R ,都有x 2∈R ,使得f (x 1)=g (x 2)成立,求实数a 的取值范围. 解 (1)由||x -1|+2|<5得-5<|x -1|+2<5,所以-7<|x -1|<3,可得不等式的解集为(-2,4).(2)因为任意x 1∈R ,都有x 2∈R ,使得f (x 1)=g (x 2)成立,所以{y |y =f (x )}⊆{y |y =g (x )},又f (x )=|2x -a |+|2x +3|≥|(2x -a )-(2x +3)|=|a +3|,g (x )=|x -1|+2≥2, 所以|a +3|≥2,解得a ≥-1或a ≤-5,所以实数a 的取值范围为(-∞,-5]∪[-1,+∞).4.设a ,b ,c >0,且ab +bc +ca =1.求证:(1)a +b +c ≥3; (2)a bc +b ac + c ab ≥3(a +b +c ).证明 (1)要证a +b +c ≥3,由于a ,b ,c >0,因此只需证明(a +b +c )2≥3.即证:a 2+b 2+c 2+2(ab +bc +ca )≥3,而ab +bc +ca =1,故需证明:a2+b2+c2+2(ab+bc+ca)≥3(ab+bc+ca). 即证:a2+b2+c2≥ab+bc+ca.而这可以由ab+bc+ca≤a2+b22+b2+c22+c2+a22=a2+b2+c2 (当且仅当a=b=c时等号成立)证得.∴原不等式成立.(2) abc+bac+cab=a+b+cabc.由于(1)中已证a+b+c≥ 3. 因此要证原不等式成立,只需证明1abc≥a+b+c.即证a bc+b ac+c ab≤1,即证a bc+b ac+c ab≤ab+bc+ca.而a bc=ab·ac≤ab+ac2,b ac≤ab+bc2,c ab≤bc+ac2.∴a bc+b ac+c ab≤ab+bc+ca(a=b=c=33时等号成立).∴原不等式成立.5.(2016·许昌、新乡、平顶山模拟)(1)解不等式:|2x-1|-|x|<1;(2)设f(x)=x2-x+1,实数a满足|x-a|<1,求证:|f(x)-f(a)|<2(|a|+1).(1)解当x<0时,原不等式可化为-2x+x<0,解得x>0,又∵x<0,∴x不存在;当0≤x<12时,原不等式可化为-2x-x<0,解得x>0,又∵0≤x<12,∴0<x<12;当x≥12时,原不等式可化为2x-1-x<1.解得x<2,又∵x≥12,∴12≤x<2,综上,原不等式的解集为{x|0<x<2}.(2)证明 |f (x )-f (a )|=|x 2-x -a 2+a |=|x -a |·|x +a -1|<|x +a -1|=|x -a +2a -1|≤|x -a |+|2a -1|<1+|2a |+1=2(|a |+1),∴|f (x )-f (a )|<2(|a |+1).6.(2016·全国Ⅱ卷)已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集.(1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.(1)解 f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1,所以-1<x ≤-12;当-12<x <12时,f (x )<2;当x ≥12时,由f (x )<2得2x <2,解得x <1,所以-12<x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明 由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0,即(a +b )2<(1+ab )2,因此|a +b |<|1+ab |.。
专题七数学思想方法第1讲函数与方程思想、数形结合思想练习一、选择题1.直线3x-y+m=0与圆x2+y2-2x-2=0相切,则实数m等于( )A.3或- 3B.-3或3 3C.-33或 3D.-33或3 3解析圆的方程(x-1)2+y2=3,圆心(1,0)到直线的距离等于半径⇒|3+m|3+1=3⇒|3+m|=23⇒m=3或m=-3 3.答案 C2.已知函数f(x)满足下面关系:①f(x+1)=f(x-1);②当x∈[-1,1]时,f(x)=x2,则方程f(x)=lg x解的个数是( )A.5B.7C.9D.10解析由题意可知,f(x)是以2为周期,值域为[0,1]的函数.又f(x)=lg x,则x∈(0,10],画出两函数图象,则交点个数即为解的个数.由图象可知共9个交点.答案 C3.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为( )A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.(-∞,+∞)解析f′(x)>2转化为f′(x)-2>0,构造函数F(x)=f(x)-2x,得F(x)在R上是增函数.又F(-1)=f(-1)-2×(-1)=4,f(x)>2x+4,即F(x)>4=F(-1),所以x>-1.答案 B4.已知a,b是平面内两个互相垂直的单位向量,若向量c满足(a-c)·(b-c)=0,则|c|的最大值是( )A. 2B.2 2C. 3D.2解析 如图,设OA →=a ,OB →=b ,OC →=c ,则CA →=a -c ,CB →=b -c .由题意知CA →⊥CB →,∴O ,A ,C ,B 四点共圆.∴当OC 为圆的直径时,|c |最大,此时,|OC →|= 2. 答案 A5.当0<x ≤12时,4x<log a x ,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,22 B.⎝⎛⎭⎪⎫22,1 C.(1,2) D.(2,2)解析 利用指数函数和对数函数的性质及图象求解. ∵0<x ≤12,∴1<4x ≤2,∴log a x >4x>1,∴0<a <1,排除答案C ,D ;取a =12,x =12,则有412=2,log 1212=1,显然4x<log a x 不成立,排除答案A ;故选B. 答案 B 二、填空题6.(2015·全国Ⅱ卷改编)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为________.解析 如图,设双曲线E 的方程为x 2a 2-y 2b2=1(a >0,b >0),则|AB |=2a ,由双曲线的对称性,可设点M (x 1,y 1)在第一象限内,过M 作MN ⊥x 轴于点N (x 1,0),∵△ABM 为等腰三角形,且∠ABM =120°, ∴|BM |=|AB |=2a ,∠MBN =60°,∴y 1=|MN |=|BM |sin∠MBN =2a sin 60°=3a ,x 1=|OB |+|BN |=a +2a cos 60°=2a .将点M (x 1,y 1)的坐标代入x 2a -y 2b =1,可得a 2=b 2,∴e =c a=a 2+b 2a 2= 2. 答案27.已知e 1,e 2是平面内两个相互垂直的单位向量,若向量b 满足|b |=2,b·e 1=1,b ·e 2=1,则对于任意x ,y ∈R ,|b -(x e 1+y e 2)|的最小值为________.解析 |b -(x e 1+y e 2)|2=b 2+x 2e 21+y 2e 22-2x b ·e 1-2y b ·e 2+2xy e 1·e 2=4+x 2+y 2-2x -2y =(x -1)2+(y -1)2+2≥2,当且仅当x =1,y =1时,|b -(x e 1+y e 2)|2取得最小值2,此时|b -(x e 1+y e 2)|取得最小值 2. 答案28.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆C :(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是________. 解析 设直线l 的方程为x =ty +m ,A (x 1,y 1),B (x 2,y 2), 把直线l 的方程代入抛物线方程y 2=4x 并整理得y 2-4ty -4m =0,则Δ=16t 2+16m >0,y 1+y 2=4t ,y 1y 2=-4m ,那么x 1+x 2=(ty 1+m )+(ty 2+m )=4t 2+2m ,则线段AB 的中点M (2t 2+m ,2t ).由题意可得直线AB 与直线MC 垂直,且C (5,0). 当t ≠0时,有k MC ·k AB =-1,即2t -02t 2+m -5·1t=-1,整理得m =3-2t 2, 把m =3-2t 2代入Δ=16t 2+16m >0, 可得3-t 2>0,即0<t 2<3.由于圆心C 到直线AB 的距离等于半径, 即d =|5-m |1+t2=2+2t21+t2=21+t 2=r ,所以2<r <4,此时满足题意且不垂直于x 轴的直线有两条. 当t =0时,这样的直线l 恰有2条,即x =5±r ,所以0<r <5. 综上,可得若这样的直线恰有4条,则2<r <4. 答案 (2,4) 三、解答题9.已知数列{a n }是一个等差数列,且a 2=1,a 5=-5. (1)求{a n }的通项a n ;(2)求{a n }前n 项和S n 的最大值.解 (1)设{a n }的公差为d ,由已知条件,⎩⎪⎨⎪⎧a 1+d =1,a 1+4d =-5,解得a 1=3,d =-2. 所以a n =a 1+(n -1)d =-2n +5. (2)S n =na 1+n (n -1)2d =-n 2+4n =4-(n -2)2.所以n =2时,S n 取到最大值4.10.椭圆C 的中心为坐标原点O ,焦点在y 轴上,短轴长为2,离心率为22,直线l 与y 轴交于点P (0,m ),与椭圆C 交于相异两点A ,B ,且AP →=3PB →. (1)求椭圆C 的方程; (2)求m 的取值范围.解 (1)设椭圆C 的方程为y 2a 2+x 2b 2=1(a >b >0),设c >0,c 2=a 2-b 2,由题意,知2b =2,c a =22, 所以a =1,b =c =22. 故椭圆C 的方程为y 2+x 212=1.即y 2+2x 2=1.(2)当直线l 的斜率不存在时,由题意求得m =±12;当直线l 的斜率存在时,设直线l 的方程为y =kx +m (k ≠0),l 与椭圆C 的交点坐标为A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,2x 2+y 2=1,得(k 2+2)x 2+2kmx +m 2-1=0, Δ=(2km )2-4(k 2+2)(m 2-1) =4(k 2-2m 2+2)>0,(*) x 1+x 2=-2km k 2+2,x 1x 2=m 2-1k 2+2.因为AP →=3 PB →,所以-x 1=3x 2. 所以⎩⎪⎨⎪⎧x 1+x 2=-2x 2,x 1x 2=-3x 22.所以3(x 1+x 2)2+4x 1x 2=0.所以3·⎝ ⎛⎭⎪⎫-2km k 2+22+4·m 2-1k 2+2=0.整理得4k 2m 2+2m 2-k 2-2=0,即k 2(4m 2-1)+(2m 2-2)=0.当m 2=14时,上式不成立;当m 2≠14时,k 2=2-2m 24m -1,由(*)式,得k 2>2m 2-2, 又k ≠0,所以k 2=2-2m24m 2-1>0.解得-1<m <-12或12<m <1.综上,所求m 的取值范围为⎝⎛⎦⎥⎤-1,-12∪⎣⎢⎡⎭⎪⎫12,1. 11.设函数f (x )=ax 3-3ax ,g (x )=bx 2-ln x (a ,b ∈R ),已知它们在x =1处的切线互相平行.(1)求b 的值;(2)若函数F (x )=⎩⎪⎨⎪⎧f (x ),x ≤0,g (x ),x >0,且方程F (x )=a 2有且仅有四个解,求实数a 的取值范围.解 函数g (x )=bx 2-ln x 的定义域为(0,+∞), (1)f ′(x )=3ax 2-3a ⇒f ′(1)=0,g ′(x )=2bx -1x⇒g ′(1)=2b -1, 依题意得2b -1=0,所以b =12.(2)x ∈(0,1)时,g ′(x )=x -1x<0,即g (x )在(0,1)上单调递减,x ∈(1,+∞)时,g ′(x )=x -1x>0,即g (x )在(1,+∞)上单调递增,所以当x =1时,g (x )取得极小值g (1)=12;当a =0时,方程F (x )=a 2不可能有四个解;当a <0,x ∈(-∞,-1)时,f ′(x )<0,即f (x )在(-∞,-1)上单调递减,x ∈(-1,0)时,f ′(x )>0,即f (x )在(-1,0)上单调递增,所以当x =-1时,f (x )取得极小值f (-1)=2a , 又f (0)=0,所以F (x )的图象如图(1)所示, 从图象可以看出F (x )=a 2不可能有四个解. 当a >0,x ∈(-∞,-1)时,f ′(x )>0,即f (x )在(-∞,-1)上单调递增,x ∈(-1,0)时,f ′(x )<0,即f (x )在(-1,0)上单调递减,所以当x =-1时,f (x )取得极大值f (-1)=2a . 又f (0)=0,所以F (x )的图象如图(2)所求,从图(2)看出,若方程F (x )=a 2有四个解,则12<a 2<2a ,得22<a <2, 所以,实数a 的取值范围是⎝⎛⎭⎪⎫22,2.。
星期四 (函数与导数)2017年____月____日函数与导数知识(命题意图:考查含参数的函数单调性的求解以及不等式恒成立条件下的参数范围的求取.考查考生的分类讨论思想以及转化与化归思想的应用)(本小题满分15分)已知函数f (x )=(a +1)ln x +ax 2+1.(1)讨论函数f (x )的单调性;(2)设a <-1,如果对任意x 1,x 2∈(0,+∞),|f (x 1)-f (x 2)|≥4|x 1-x 2|,求a 的取值范围.解 (1)f (x )的定义域为(0,+∞),f ′(x )=a +1x +2ax =2ax 2+a +1x . 当a ≥0时,f ′(x )>0,故f (x )在(0,+∞)上单调递增;当a ≤-1时,f ′(x )<0,故f (x )在(0,+∞)上单调递减;当-1<a <0时,令f ′(x )=0,解得x =-a +12a . 即x ∈⎝ ⎛⎭⎪⎫0,-a +12a 时,f ′(x )>0; x ∈⎝ ⎛⎭⎪⎫-a +12a ,+∞时,f ′(x )<0. 故f (x )在⎝ ⎛⎭⎪⎫0,-a +12a 上单调递增, 在⎝ ⎛⎭⎪⎫-a +12a ,+∞上单调递减. (2)法一 不妨设x 1≤x 2,而a <-1,由(1)知f (x )在(0,+∞)上单调递减,从而对任意x 1、x 2∈(0,+∞),恒有|f (x 1)-f (x 2)|≥4|x 1-x 2|⇔f (x 1)-f (x 2)≥4(x 2-x 1)⇔f (x 1)+4x 1≥f (x 2)+4x 2.令g (x )=f (x )+4x ,则g ′(x )=a +1x +2ax +4,则f (x 1)+4x 1≥f (x 2)+4x 2等价于g (x )在(0,+∞)上单调递减,即g ′(x )=a +1x+2ax +4≤0, 从而a ≤-4x -12x 2+1=(2x -1)2-4x 2-22x 2+1=(2x -1)22x 2+1-2, 故a 的取值范围为(-∞,-2].法二 a ≤⎝ ⎛⎭⎪⎫-4x -12x 2+1min.设φ(x )=-4x -12x 2+1,2 则φ′(x )=-4(2x 2+1)-(-4x -1)·4x (2x 2+1)2 =8x 2+4x -4(2x 2+1)2=8x 2+4x -4(2x 2+1)2=4(2x -1)(x +1)(2x 2+1)2. 当x ∈⎝ ⎛⎭⎪⎫0,12时,φ′(x )<0,φ(x )为减函数,x ∈⎝ ⎛⎭⎪⎫12,+∞时,φ′(x )>0,φ(x )为增函数,∴φ(x )min =φ⎝ ⎛⎭⎪⎫12=-2,∴a 的取值范围为(-∞,-2].。
创新设计(浙江专用)2017届高考数学二轮复习选修部分不等式选讲练习编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(创新设计(浙江专用)2017届高考数学二轮复习选修部分不等式选讲练习)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为创新设计(浙江专用)2017届高考数学二轮复习选修部分不等式选讲练习的全部内容。
2017届高考数学二轮复习选修部分不等式选讲练习1。
已知函数f(x)=|x+2|-2|x-1|。
(1)解不等式f(x)≥-2.(2)对任意x∈[a,+∞),都有f(x)≤x-a成立,求实数a的取值范围。
解(1)f(x)=错误!f(x)≥-2,当x≤-2时,x-4≥-2,即x≥2,所以x∈∅;当-2<x<1时,3x≥-2,即x≥-错误!,所以-错误!≤x<1,当x≥1时,-x+4≥-2,即x≤6,所以1≤x≤6,综上,不等式f(x)≥-2的解集为错误!.(2)f(x)=错误!函数f(x)的图象如图所示:令y=x-a,-a表示直线的纵截距,当直线过(1,3)点时,-a=2;所以当-a≥2,即a≤-2时成立;当-a<2,即a>-2时,令-x+4=x-a,得x=2+a 2,所以a≥2+错误!,即a≥4时成立,综上可知a的取值范围为(-∞,-2]∪[4,+∞).2.已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1]。
(1)求m的值;(2)若a,b,c大于0,且错误!+错误!+错误!=m,求证:a+2b+3c≥9. (1)解∵f(x+2)=m-|x|,∴f(x+2)≥0等价于|x|≤m。
由|x|≤m有解,得m≥0且其解集为{x|-m≤x≤m}.又f(x+2)≥0的解集为[-1,1],故m=1.(2)证明由(1)知错误!+错误!+错误!=1,且a,b,c大于0,a+2b+3c=(a+2b+3c)错误!=3+错误!+错误!+错误!≥3+22ba·a2b+2错误!+2错误!=9。
教育配套资料K12 教育配套资料K12 专题一 函数与导数、不等式 第5讲 导数与不等式的证明、恒成立及能成立问题练习 一、选择题 1.设f(x)是定义在R上的奇函数,当x<0时,f′(x)>0,且f(0)=0,f-12=0,则不等式f(x)<0的解集为( ) A.xx<12 B.x0<x<12 C.xx<-12或0<x<12 D.x-12≤x≤0或x≥12 解析 如图所示,根据图象得不等式f(x)<0的解集为xx<-12或0<x<12.
答案 C 2.若不等式2xln x≥-x2+ax-3恒成立,则实数a的取值范围为( ) A.(-∞,0) B.(-∞,4] C.(0,+∞) D.[4,+∞) 解析 条件可转化为a≤2ln x+x+3x恒成立. 设f(x)=2ln x+x+3x, 则f′(x)=(x+3)(x-1)x2(x>0). 当x∈(0,1)时,f′(x)<0,函数f(x)单调递减; 当x∈(1,+∞)时,f′(x)>0,函数f(x)单调递增, 所以f(x)min=f(1)=4.所以a≤4. 答案 B 3.若存在正数x使2x(x-a)<1成立,则a的取值范围是( ) A.(-∞,+∞) B.(-2,+∞) C.(0,+∞) D.(-1,+∞) 解析 ∵2x(x-a)<1,∴a>x-12x. 教育配套资料K12 教育配套资料K12 令f(x)=x-12x,∴f′(x)=1+2-xln 2>0. ∴f(x)在(0,+∞)上单调递增, ∴f(x)>f(0)=0-1=-1, ∴a的取值范围为(-1,+∞),故选D. 答案 D 4.(2015·全国Ⅱ卷)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是( )
A.(-∞,-1)∪(0,1) B.(-1,0)∪(1,+∞) C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞) 解析 令F(x)=f(x)x,因为f(x)为奇函数,所以F(x)为偶函数,由于F′(x)=xf′(x)-f(x)x2,当x>0时,xf′(x)-f(x)<0,所以F(x)=f(x)
x在(0,+∞)上
单调递减,根据对称性,F(x)=f(x)x在(-∞,0)上单调递增,又f(-1)=0,f(1)=0,数形结合可知,使得f(x)>0成立的x的取值范围是(-∞,-1)∪(0,1).故选A. 答案 A 5.(2016·山东师范大学附中二模)已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<ex的解集为( ) A.(-2,+∞) B.(0,+∞) C.(1,+∞) D.(4,+∞) 解析 由f(x+2)为偶函数可知函数f(x)的图象关于x=2对称,则f(4)=f(0)=1.令F(x)=f(x)ex,则F′(x)=f′(x)-f(x)ex<0.∴函数F(x)在R上单调递减. 又f(x)<ex等价于f(x)ex<1,∴F(x)<F(0),∴x>0. 答案 B 二、填空题 6.已知不等式ex-x>ax的解集为P,若[0,2]⊆P,则实数a的取值范围是________. 解析 由题意知不等式ex-x>ax在x∈[0,2]上恒成立. 当x=0时,显然对任意实数a,该不等式都成立. 当x∈(0,2]时,原不等式即a<exx-1,令g(x)=exx-1,则g′(x)=ex(x-1)x2,当0<x教育配套资料K12 教育配套资料K12 <1时,g′(x)<0,g(x)单调递减,当1<x<2时,g′(x)>0,g(x)单调递增,故g(x)在(0,2]上的最小值为g(1)=e-1, 故a的取值范围为(-∞,e-1). 答案 (-∞,e-1) 7.已知函数f(x)=ln x-a,若f(x)<x2在(1,+∞)上恒成立,则实数a的取值范围是________. 解析 ∵函数f(x)=ln x-a,且f(x)<x2在(1,+∞)上恒成立, ∴a>ln x-x2,x∈(1,+∞). 令h(x)=ln x-x2,有h′(x)=1x-2x. ∵x>1,∴1x-2x<0,∴h(x)在(1,+∞)上为减函数, ∴当x∈(1,+∞)时,h(x)<h(1)=-1,∴a≥-1. 答案 [-1,+∞) 8.已知函数f(x)=x-1x+1,g(x)=x2-2ax+4,若对于任意x1∈[0,1],存在x2∈[1,2],使f(x1)≥g(x2),则实数a的取值范围是________. 解析 由于f′(x)=1+1(x+1)2>0,因此函数f(x)在[0,1]上单调递增,所以x∈[0,1]时,f(x)min=f(0)=-1.根据题意可知存在x∈[1,2],使得g(x)=x2-2ax+4≤-1,即x2-2ax+5≤0,即a≥x2+52x能成立,令h(x)=x2+52x,则要使a≥h(x)在x∈[1,2]上能成立,只需使a≥h(x)min,又函数h(x)=x2+52x在x∈[1,2]上单调递减,所以h(x)min=h(2)=94,故只需a≥94.
答案 94,+∞ 三、解答题 9.已知a∈R,函数f(x)=4x3-2ax+a. (1)求f(x)的单调区间; (2)证明:当0≤x≤1时,f(x)+|2-a|>0. (1)解 由题意得f′(x)=12x2-2a. 当a≤0时,f′(x)≥0恒成立,此时f(x)的单调递增区间为(-∞,+∞).
当a>0时,f′(x)=12x-a6x+a6,此时函数f(x)的单调递增区间为
-∞,-a
6教育配套资料K12 教育配套资料K12 和a6,+∞,单调递减区间为-a6,a6. (2)证明 由于0≤x≤1,故当a≤2时, f(x)+|2-a|=4x3-2ax+2≥4x3-4x+2.
当a>2时,f(x)+|2-a|=4x3+2a(1-x)-2≥4x3+4(1-x)-2=4x3-4x+2. 设g(x)=2x3-2x+1,0≤x≤1,
则g′(x)=6x2-2=6x-33x+33,于是
x 0 0,33 33
3
3,1 1
g′(x) - 0 +
g(x) 1 减 极小值 增 1
所以,g(x)min=g33=1-439>0. 所以当0≤x≤1时,2x3-2x+1>0. 故f(x)+|2-a|≥4x3-4x+2>0. 10.(2016·湖州一模)已知函数f(x)=ln x+x2-ax(a为常数). (1)若x=1是函数f(x)的一个极值点,求a的值; (2)当0<a≤2时,试判断f(x)的单调性; (3)若对任意的a∈(1,2),x0∈[1,2],不等式f(x0)>mln a恒成立,求实数m的取值范围.
解 f′(x)=1x+2x-a. (1)由已知得:f′(1)=0, 所以1+2-a=0,所以a=3.
(2)当0<a≤2时,f′(x)=1x+2x-a=2x2-ax+1x=2x-a42+1-a28x. 因为0<a≤2,所以1-a28>0,而x>0, 即f′(x)=2x2-ax+1x>0, 故f(x)在(0,+∞)上是增函数. (3)当a∈(1,2)时,由(2)知,f(x)在[1,2]上的最小值为f(1)=1-a,
故问题等价于:对任意的a∈(1,2),不等式1-a>mln a恒成立,即m<1-aln a恒成立. 教育配套资料K12 教育配套资料K12 记g(a)=1-aln a(1<a<2), 则g′(a)=-aln a-1+aa(ln a)2. 令M(a)=-aln a-1+a,则M′(a)=-ln a<0, 所以M(a)在(1,2)上单调递减, 所以M(a)<M(1)=0,故g′(a)<0,
所以g(a)=1-aln a在a∈(1,2)上单调递减,
所以m≤g(2)=1-2ln 2=-log2e, 即实数m的取值范围为(-∞,-log2e]. 11.已知函数f(x)=ax+bx+c(a>0)的图象在点(1,f(1))处的切线方程为y=x-1. (1)用a表示出b,c; (2)若f(x)≥ln x在[1,+∞)上恒成立,求a的取值范围; (3)证明:1+12+13+…+1n>ln(n+1)+n2(n+1)(n≥1).
(1)解 f′(x)=a-bx2,则有f(1)=a+b+c=0,f′(1)=a-b=1, 解得b=a-1,c=1-2a. (2)解 由(1)知,f(x)=ax+a-1x+1-2a. 令g(x)=f(x)-ln x=ax+a-1x+1-2a-ln x,x∈[1,+∞),
则g(1)=0,g′(x)=a-a-1x2-1x=ax2-x-(a-1)x2=a(x-1)x-1-aax2, (ⅰ)当0<a<12时,1-aa>1. 若1<x<1-aa,则g′(x)<0,g(x)是减函数, 所以g(x)<g(1)=0,即f(x)<ln x. 故f(x)≥ln x在[1,+∞)上不成立. (ⅱ)当a≥12时,1-aa≤1. 若x>1,则g′(x)>0,g(x)是增函数,