奥数圆形周长阴影面积试题及解析
- 格式:docx
- 大小:103.97 KB
- 文档页数:8
六年级奥数练习题(圆和组合图形)1、算出圆内正方形的面积为多少2.右图是一个直角等腰三角形,直角边长2厘米,图中阴影部分面积是多少平方厘米.3.一个扇形圆心角120,以扇形的半径为边长画一个正方形,这个正方形的面积是120平方厘米.这个扇形面积是多少4.右图中三角形是等腰直角三角形,阴影部分的面积是(平方厘米).5.三角形ABC是直角三角形,阴影部分①的面积比阴影部分②的面积小28平方厘米. AB长40厘米, BC长厘米.6.如右图,阴影部分的面积为2平方厘米,等腰直角三角形的面积为 .7.扇形的面积是平方厘米,它所在圆的面积是157平方厘米,这个扇形的圆心角是度.8.图中扇形的半径OA=OB=6厘米.45=∠AOB, AC垂直OB于C,那么图中阴影部分的面积是平方厘米.)14.3(=π9.右图中正方形周长是20厘米.图形的总面积是平方厘米.10.在右图中(单位:厘米),两个阴影部分面积的和是平方厘米.12.如图,半圆S1的面积是平方厘米,圆S2的面积是平方厘米.那么长方形(阴影部分的面积)是多少平方厘米13.如图,已知圆心是O,半径r=9厘米,1521=∠=∠,那么阴影部分的面积是多少平方厘米)14.3(≈π13、如图,求阴影部分的面积 .14、大圆的半径比小圆的半径长6厘米,且大圆半径是小圆半径的4倍.大圆的面积比小圆的面积大平方厘米.212112215、在一个半径是厘米的圆中挖去两个直径都是2厘米的圆.剩下的图形的面积是 平方厘米.(π取,结果精确到1平方厘米)16、如图所求,圆的周长是厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是 厘米.)14.3(=π17.下图中正方形部分是一个水池,其余部分是草坪,已知正方形的面积是300平方米,草坪的面积是多少平方米17、已知:ABCD 是正方形, ED =DA =AF =2厘米,阴影部分的面积是 .18、如图:阴影部分的面积是多少四分之一大圆的半径为r .(计算时圆周率取722)19、已知右图中大正方形边长是6厘米,中间小正方形边长是4厘米.求阴影部分的面积.20.如图{图在下面}两个连在一起的轮轴,已知小轮的半径是3分米,当这个小轮转3圈时,大轮正好转一圈,只蜜蜂分别沿着阴影部分的边缘飞1次,那只蜜蜂飞过的路线最长(3个正方形的边长都为4m )23.将半径分别是3厘米和2厘米的两个半圆如图放置,求阴影部分的周长24.求阴影部分的面积25.一个圆环外直径是内直径的二分之三倍,圆环面积150cm ,求外圆的面积26.一个长方形的面积是20平方厘米,如果在这个长方DCB AGF形里画一个最大的半圆形,这个半圆形是多少平方厘米因为这个半圆的直径是长方形的长,半径是宽,说明长方形的长是宽的2倍。
1、几何图形计算公式1)正方形:周长=边长×4 C=4a 面积=边长×边长S=a×a2)正方体 :表面积 =棱长×棱长×6 S 表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3)长方形:周长=(长+宽)×2 C=2(a+b) 面积=长×宽S=ab4)长方体:表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) 体积=长×宽×高V=abh5) 三角形 :面积=底×高÷2 s=ah÷26) 平行四边形:面积=底×高s=ah7)梯形:面积=(上底+下底)×高÷2 s=(a+b)×h÷28)圆形:周长=直径×Π=2×Π×半径C=Πd=2Πr 面积=半径×半径×Π9)圆柱体 :侧面积 =底面周长×高表面积=侧面积+底面积×2 体积=底面积×高10) 圆锥体:体积=底面积×高÷32、面积求解类型从整体图形中减去局部;割补法:将不规则图形通过割补,转化成规则图形。
重难点:观察图形的特点,根据图形特点选择合适的方法求解图形的面积。
能灵活运用所学过的基本的平面图形的面积求阴影部分的面积。
练习题例 1.求阴影部分的面积。
(单位:厘米)例 2.正方形面积是7 平方厘米,求阴影部分的面积。
(单位:厘米)例 3.求图中阴影部分的面积。
(单位:厘米)例 4.求阴影部分的面积。
(单位:厘米)例 5.求阴影部分的面积。
(单位:厘米)例 6.如图:已知小圆半径为 2 厘米,大圆半径是小圆的 3 倍,问:空白部分甲例 7.求阴影部分的面积。
(单位:厘米)例 8.求阴影部分的面积。
六年级奥数练习题(圆和组合图形)1、算出圆内正方形的面积为多少2.右图是一个直角等腰三角形,直角边长2厘米,图中阴影部分面积是多少平方厘米.3.一个扇形圆心角120,以扇形的半径为边长画一个正方形,这个正方形的面积是120平方厘米.这个扇形面积是多少?4.右图中三角形是等腰直角三角形,阴影部分的面积是(平方厘米).5.三角形ABC是直角三角形,阴影部分①的面积比阴影部分②的面积小28平方厘米. AB长40厘米, BC长厘米.6.如右图,阴影部分的面积为2平方厘米,等腰直角三角形的面积为 .7.扇形的面积是31.4平方厘米,它所在圆的面积是157平方厘米,这个扇形的圆心角是度.8.图中扇形的半径OA=OB=6厘米.45=∠AOB, AC垂直OB于C,那么图中阴影部分的面积是平方厘米.)14.3(=π9.右图中正方形周长是20厘米.图形的总面积是平方厘米.10.在右图中(单位:厘米),两个阴影部分面积的和是平方厘米.12.如图,半圆S1的面积是14.13219.625平方厘米.那么长方形(阴影部分的面积)是多少平方厘米?13.如图,已知圆心是O,半径r=9厘米,1521=∠=∠,那么阴影部分的面积是多少平方厘米?)14.3(≈π13、如图,求阴影部分的面积 .14、大圆的半径比小圆的半径长6厘米,且大圆半径是小圆半径的4倍.大圆的面积比小圆的面积大平方厘米.15、在一个半径是4.5厘米的圆中挖去两个直径都是2厘米的圆.剩下的图形的面积是平方厘米.(π取3.14,结果精确到1平方厘米)16、如图所求,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是厘米.)14.3(=π2 1 2112217.下图中正方形部分是一个水池,其余部分是草坪,已知正方形的面积是300平方米,草坪的面积是多少平方米?17、已知:ABCD是正方形, ED=DA=AF=2厘米,阴影部分的面积是 .18、如图:阴影部分的面积是多少?四分之一大圆的半径为r.(计算时圆周率取722)19、已知右图中大正方形边长是6厘米,中间小正方形边长是4厘米.求阴影部分的面积.20.如图{图在下面}两个连在一起的轮轴,已知小轮的半径是3分米,当这个小轮转3圈时,大轮正好转一圈,21.3只蜜蜂分别沿着阴影部分的边缘飞1次,那只蜜蜂飞过的路线最长?(3个正方形的边长都为4m)23.将半径分别是3厘米和2厘米的两个半圆如图放置,求阴影部分的周长24.求阴影部分的面积E DC BAGF25.一个圆环外直径是内直径的二分之三倍,圆环面积150cm,求外圆的面积26.一个长方形的面积是20平方厘米,如果在这个长方形里画一个最大的半圆形,这个半圆形是多少平方厘米?因为这个半圆的直径是长方形的长,半径是宽,说明长方形的长是宽的2倍。
六年级圆形阴影面积专项典型练习题(附完整答案)1、几何图形计算公式1) 正方形:周长=边长×4 C=4a 面积=边长×边长S=a×a2) 正方体:表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3) 长方形:周长=(长+宽)×2 C=2(a+b) 面积=长×宽S=ab4) 长方体:表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) 体积=长×宽×高V=abh5) 三角形:面积=底×高÷2 s=ah÷26) 平行四边形:面积=底×高s=ah7) 梯形:面积=(上底+下底)×高÷2 s=(a+b)×h÷28) 圆形:周长=直径×Π=2×Π×半径C=Πd=2Πr 面积=半径×半径×Π9) 圆柱体:侧面积=底面周长×高表面积=侧面积+底面积×2 体积=底面积×高10) 圆锥体:体积=底面积×高÷32、面积求解类型从整体图形中减去局部;割补法:将不规则图形通过割补,转化成规则图形。
重难点:观察图形的特点,根据图形特点选择合适的方法求解图形的面积。
能灵活运用所学过的基本的平面图形的面积求阴影部分的面积。
练习题例1.求阴影部分的面积。
(单位:厘米)大图模式例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)大图模式例3.求图中阴影部分的面积。
(单位:厘米)大图模式例4.求阴影部分的面积。
(单位:厘米)大图模式例5.求阴影部分的面积。
(单位:厘米)大图模式例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?大图模式例7.求阴影部分的面积。
六年级奥数练习(阴影面积)1、算出圆内正方形的面积为多少2.右图是一个直角等腰三角形,直角边长2厘米,图中阴影部分面积是多少平方厘米.3.一个扇形圆心角120,以扇形的半径为边长画一个正方形,这个正方形的面积是120平方厘米.这个扇形面积是多少?4.右图中三角形是等腰直角三角形,阴影部分的面积是 (平方厘米).5.三角形ABC是直角三角形,阴影部分①的面积比阴影部分②的面积小28平方厘米. AB长40厘米, BC长厘米.6.如右图,阴影部分的面积为2平方厘米,等腰直角三角形的面积为 .7.扇形的面积是31.4平方厘米,它所在圆的面积是157平方厘米,这个扇形的圆心角是度.8.图中扇形的半径OA=OB=6厘米.45=∠AOB, AC垂直OB于C,那么图中阴影部分的面积是平方厘米.)14.3(=π9.右图中正方形周长是20厘米.图形的总面积是平方厘米.10.在右图中(单位:厘米),两个阴影部分面积的和是平方厘米.12.如图,半圆S1的面积是14.13平方厘米,圆S2的面积是19.625平方厘米.那么长方形(阴影部分的面积)是多少平方厘米?13.如图,已知圆心是O,半径r=9厘米,1521=∠=∠,那么阴影部分的面积是多少平方厘米?)14.3(≈π13、如图,求阴影部分的面积 .14、大圆的半径比小圆的半径长6厘米,且大圆半径是小圆半径的4倍.大圆的面积比小圆的面积大平方厘米.15、在一个半径是4.5厘米的圆中挖去两个直径都是2厘米的圆.剩下的图形的面积是平方厘米.(π取3.14,结果精确到1平方厘米)16、如图所求,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是 厘米.)14.3(=π17.下图中正方形部分是一个水池,其余部分是草坪,已知正方形的面积是300平方米,草坪的面积是多少平方米?17、已知:ABCD 是正方形, ED =DA =AF =2厘米,阴影部分的面积是 .18、如图:阴影部分的面积是多少?四分之一大圆的半径为r .(计算时圆周率取722)19、已知右图中大正方形边长是6厘米,中间小正方形边长是4厘米.求阴影部分的面积.20.如图{图在下面}两个连在一起的轮轴,已知小轮的半径是3分米,当这个小轮转3圈时,大轮正好转一圈,21.3只蜜蜂分别沿着阴影部分的边缘飞1次,那只蜜蜂飞过的路线最长?(3个正方形的边长都为4m )23.将半径分别是3厘米和2厘米的两个半圆如图放置,求阴影部分的周长24.求阴影部分的面积25.一个圆环外直径是内直径的二分之三倍,圆环面积150cm,求外圆的面积26.一个长方形的面积是20平方厘米,如果在这个长方形里画一个最大的半圆形,这个半圆形是多少平方厘米?因为这个半圆的直径是长方形的长,半径是宽,说明长方形的长是宽的2倍。
六年级圆的周长奥数题一、基础题型1. 一个圆的半径是3厘米,它的周长是多少厘米?- 解析:根据圆的周长公式C = 2π r(其中C表示周长,π通常取3.14,r为半径)。
当r = 3厘米时,C=2×3.14×3 = 18.84厘米。
2. 已知圆的直径是8分米,求这个圆的周长。
- 解析:因为圆的周长C=π d(d是直径),当d = 8分米时,C = 3.14×8=25.12分米。
3. 一个圆的半径扩大到原来的2倍,它的周长扩大到原来的几倍?- 解析:设原来圆的半径为r,则原来的周长C_1 = 2π r。
半径扩大2倍后变为2r,此时周长C_2=2π×(2r) = 4π r。
C_2div C_1=(4π r)div(2π r)=2,所以它的周长扩大到原来的2倍。
4. 有一个圆形花坛,半径是5米,在它的周围铺一条宽1米的小路,求小路的外沿周长是多少米?- 解析:小路的外沿半径为5 + 1=6米。
根据圆的周长公式C = 2π r,当r = 6米时,C=2×3.14×6 = 37.68米。
5. 一个半圆的直径是10厘米,求这个半圆的弧长(周长的一半)。
- 解析:圆的周长C=π d,半圆的弧长为(1)/(2)π d。
当d = 10厘米时,弧长=(1)/(2)×3.14×10 = 15.7厘米。
二、组合图形中的圆周长问题6. 正方形的边长为10厘米,在正方形内画一个最大的圆,求这个圆的周长。
- 解析:正方形内最大的圆的直径等于正方形的边长,即d = 10厘米。
根据圆的周长公式C=π d,C = 3.14×10 = 30.4厘米。
7. 长方形的长是12厘米,宽是8厘米,在长方形内画一个最大的半圆,求这个半圆的弧长。
- 解析:因为长方形的长是12厘米,宽是8厘米,所以这个半圆的直径最大为12厘米。
半圆的弧长=(1)/(2)π d=(1)/(2)×3.14×12 = 18.84厘米。
六年级奥数练习题(圆和组合图形)1、算出圆内正方形的面积为多少2.右图是一个直角等腰三角形,直角边长2厘米,图中阴影部分面积是多少平方厘米.3.一个扇形圆心角120,以扇形的半径为边长画一个正方形,这个正方形的面积是120平方厘米.这个扇形面积是多少4.右图中三角形是等腰直角三角形,阴影部分的面积是(平方厘米).5.三角形ABC是直角三角形,阴影部分①的面积比阴影部分②的面积小28平方厘米. AB长40厘米, BC长厘米.6.如右图,阴影部分的面积为2平方厘米,等腰直角三角形的面积为 .7.扇形的面积是平方厘米,它所在圆的面积是157平方厘米,这个扇形的圆心角是度.8.图中扇形的半径OA=OB=6厘米.45=∠AOB, AC垂直OB于C,那么图中阴影部分的面积是平方厘米.)14.3(=π9.右图中正方形周长是20厘米.图形的总面积是平方厘米.10.在右图中(单位:厘米),两个阴影部分面积的和是平方厘米.12.如图,半圆S1的面积是平方厘米,圆S2的面积是平方厘米.那么长方形(阴影部分的面积)是多少平方厘米13.如图,已知圆心是O,半径r=9厘米,1521=∠=∠,那么阴影部分的面积是多少平方厘米)14.3(≈π13、如图,求阴影部分的面积 .14、大圆的半径比小圆的半径长6厘米,且大圆半径是小圆半径的4倍.大圆的面积比小圆的面积大平方厘米.212112215、在一个半径是厘米的圆中挖去两个直径都是2厘米的圆.剩下的图形的面积是 平方厘米.(π取,结果精确到1平方厘米)16、如图所求,圆的周长是厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是 厘米.)14.3(=π17.下图中正方形部分是一个水池,其余部分是草坪,已知正方形的面积是300平方米,草坪的面积是多少平方米17、已知:ABCD 是正方形, ED =DA =AF =2厘米,阴影部分的面积是 .18、如图:阴影部分的面积是多少四分之一大圆的半径为r .(计算时圆周率取722)19、已知右图中大正方形边长是6厘米,中间小正方形边长是4厘米.求阴影部分的面积.20.如图{图在下面}两个连在一起的轮轴,已知小轮的半径是3分米,当这个小轮转3圈时,大轮正好转一圈,只蜜蜂分别沿着阴影部分的边缘飞1次,那只蜜蜂飞过的路线最长(3个正方形的边长都为4m )DCB AGF23.将半径分别是3厘米和2厘米的两个半圆如图放置,求阴影部分的周长24.求阴影部分的面积25.一个圆环外直径是内直径的二分之三倍,圆环面积150cm ,求外圆的面积26.一个长方形的面积是20平方厘米,如果在这个长方形里画一个最大的半圆形,这个半圆形是多少平方厘米因为这个半圆的直径是长方形的长,半径是宽,说明长方形的长是宽的2倍。
圆的周长与面积
例1:计算阴影部分的周长。
练一练:计算阴影部分的周长.(单位:厘米)
例2:现有两根圆木,横截面直径都是2分米,如果把它们用铁丝捆在一起,两端各捆一圈(接头不计),那么应准备多长的铁丝?
练一练:求右图阴影部分的周长(每个圆的半径都是2厘米)。
例3:求右图外圆的周长。
(单位:分米)
练一练:求右图阴影部分的周长。
例4:如右图,已知正方形面积是60平方厘米,求圆的面积。
练一练:已知右图中阴影部分的面积是300平方厘米,求圆的面积。
例5:已知右图中阴影部分的面积是40平方厘米,求圆环的面积。
练一练:右图中平行四边形的面积是100平方厘米,求阴影部分的面积。
例6:有一个半圆形零件,周长是20。
56厘米,求这个半圆形零件的面积。
练一练:如右图,一个扇形的圆心角是90°,它的周长是14。
28厘米,求它的面积。
例7:图中ABCD是边长为4米的正方形,分别以AB、BC、CD、AD为直径画半圆,求这四个半圆弧所围成的阴影部分的面积.
练一练:图中三角形ABC是边长为6厘米的正三角形,求阴影部分的面积。
例8:计算阴影部分的面积。
练一练:计算阴影部分的面积。
(单位:厘米)
例9:求出右图中正方形面积与圆的面积比。
练一练:右图圆的面积是942平方分米,那么正方形的面积是多少?如果正方形的面积是360平方厘米,那么圆的面积是多少?。
圆的周长和面积【典型例题】如图所示,A圆的半径为3厘米,B圆的半径为4厘米,如果A圆不动,B圆沿A 圆的圆周滚动,当B圆滚动到原处时,B圆自身滚动了多少圈B【举一反三】1.如图所示,圆的面积等于长方形的面积,圆的周长是30厘米. 求图中阴影部分的周长是多少厘米?2.圆的面积计算公式是通过把圆转化成长方形推导出来的,把一个圆转化成长方形,长方形的周长比圆的周长多8厘米,原来长方形的周长是多少厘米?7.如图所示,半圆内有一个直角三角形,AB长4厘米,AC长3厘米,求阴影部分的面积。
分数应用题【题型概述】我们知道:知道一个数的几分之几是多少,应该列方程计算,今天,我们就学习这种类型的应用题。
【典型例题】41,第二小组做了13多10个4.晶晶有一些邮票,她把其中的16 多6张送给小芳,把其中的15少8张送给小青,自己还留下40张。
晶晶原来有多少张邮票?5.一只空水缸,早晨放满了水,白天用去其中的15,傍晚又用去29升,这时,水缸中的水比半缸多1升。
求早晨放入水缸多少升水?16只123第二小时行了余下路程的821,8.某人从甲城到乙城需要2小时,第一小时走全程的13多50千米,第二小时的行程等于第一小时的910.求甲乙两城的距离。
【题型概述】记得在学习分数乘法巧算的时候,我们曾拆分分数,运用乘法分配律进行巧算,这样的方法在分数除法中同样适用。
【典型例题】458(14 +0.75) ÷(212 ×0.4+145÷1.8)【题型概述】今天,我们学习在分数除法中如何灵活使用乘法分配律。
【典型例题】414 ÷5+212 ×0.2+514 ×156. (212003 ×958 +720022003 ×9.625)÷9614。
奥数圆形周长阴影面积试题及解析Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998奥数圆形周长阴影面积试题及解析1、如图,正方形边长为1,正方形的4个顶点和4条边分别为4个圆的圆心和半径,求阴影部分面积.(π取3.14)2、如图中三个圆的半径都是5cm ,三个圆两两相交于圆心.求阴影部分的面积和.(圆周率取3.14)3、如图,ABCD 是正方形,且1FA AD DE ===,求阴影部分的面积.(取π3=)4、如图,边长为3的两个正方形BDKE 、正方形DCFK 并排放置,以BC 为边向内侧作等边三角形,分别以B 、C 为圆心,BK 、CK 为半径画弧.求阴影部分面积.(π 3.14=)5、如图,边长为12厘米的正五边形,分别以正五边形的5个顶点为圆心,12厘米为半径作圆弧,请问:中间阴影部分的周长是多少(π 3.14=)6、下图中每一个小正方形的面积是1平方厘米,那么格线部分的面积是多少平方厘米7、如图,已知扇形BAC 的面积是半圆ADB 面积的34倍,则角CAB 的度数是________. 8、在4×7的方格纸板上面有如阴影所示的”6”字,阴影边缘是线段或圆弧.问阴影面积占纸板面积的几分之几9、先做一个边长为2cm的等边三角形,再以三个顶点为圆心,2cm为半径作弧,形成曲边三角形(如左图).再准备两个这样的图形,把一个固定住(右图中的阴影),另一个围绕着它滚动,如右图那样,从顶点相接的状态下开始滚动.请问此图形滚动时经过的面积是多少平方厘米(π 3.14=) 10、求下图中阴影部分的面积:11、右上图中每个小圆的半径是1厘米,阴影部分的面积是_______平方厘米.(π=)12、如右图,矩形ABCD中,AB=6厘米,BC=4厘米,扇形ABE半径AE=6厘米,扇形CBF的半CB=4厘米,求阴影部分的面积13、如下图,等腰直角三角形ABC的腰为10厘米;以A为圆心,EF为圆弧,组成扇形AEF;阴影部分甲与乙的面积相等。
求扇形所在的圆面积。
14、如下图,AB与CD是两条垂直的直径,圆O的半径为15厘米,15、在一个边长为2厘米的正方形内,分别以它的三条边为直径向内作三个半圆,则图中阴影部分的面积为平方厘米.16、如图,大圆半径为小圆的直径,已知图中阴影部分面积为,空白部分面积为,那么这两个部分的面积之比是多少(圆周率取)20、如图所示,正方形ABCD 的边长为4,求阴影部分的周长和面积. 21、在图中,两个四分之一圆弧的半径分别是2和4,求两个阴影部分的面积差.(圆周率取 ) 22、如图所示,以B 、C 为圆心的两个半圆的直径都是2厘米,则阴影部分的周长是()厘米.(保留两位小数)23、如图,用边长为20厘米的正方形铁皮为材料制作一种零件(阴影部分),求制作这种零件的材料的利用率。
24、如下图所示,200米赛跑的起点和终点都在直跑道上,中间的弯道是一个半圆。
已知每条跑道宽米,那么外道的起点在内道起点前面多少米(精确到米)25、下图为一圈"心相印"圈纸的截面图,纸卷直径为20厘米,中间有一直径为6厘米的卷轴,若纸的厚度为毫米,问:中心的卷轴到纸用完时大约会转多少圈这卷纸展开后大约有多长( 取)26、如下图所示,用一块面积为36平方厘米铝板下料,可裁出七个同样大小的圆铝板。
问余下的边角料的总面积是多少平方厘米?17、一块圆形稀有金属板平分给甲、乙二人.但此金属板事先已被两条互相垂直的弦切割成如图所示尺寸的四块.现甲取②、③两块,乙取①、④两块.如果这种金属板每平方厘米价值1000元,问:甲应偿付给乙多少元18、如下图所示,是半圆的直径,是圆心,,是的中点,是弦的中点.若是上一点,半圆的面积等于12平方厘米,则图中阴影部分的面积是 平方厘米.19、如图所示,是一边长为的正方形,是的中点,而是的中点.以为圆心、半径为的四分之一圆的圆弧交于,以为圆心、半径为的四分之一圆的圆弧交于点,若图中和两块面积之差为(其中、为正整数),请问之值为何27、如下图所示,求阴影面积,图中是一个正六边形,面积为1040平方厘米,空白部分是6个半径为10厘米的小扇形。
(π取3)答案及解析1、解析:2、解析:3、解析:4、解析:5、解析:6、解析:7、解析:8、解析:9、解析:10、解析:如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。
可以看出,原题图的阴影部分等于右下图中AB弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。
所以阴影面积:π×4×4÷4-4×4÷2=。
11、解析:可见大圆的半径是小圆的3倍,所以半径为3,那么阴影部分的面积就等于1个大圆的面积减去7个小圆的面积,即π×3×3-π×1×7=2π。
12、解析:S阴影=S扇形ABE+S扇形CBF-S矩形ABCD=13π-24=15(平方厘米)(取π=3)。
13、解析:等腰三角形的角为45度,则扇形所在圆的面积为扇形面积的8倍。
而扇形面积为等腰三角形面积:S=1/2×10×10=50。
则:圆的面积为400。
14、解析:225平方厘米=225(平方厘米)【提示】:由等积式:AC×BC=AB×OC,则AC×AC=AB×OC,即AC2=30×15。
15、解析:采用割补法.如果将阴影半圆中的2个弓形移到下面的等腰直角三角形中,那么就形成两个相同的等腰直角三角形,所以阴影部分的面积等于两个等腰直角三角形的面积和,即正方形面积的一半,所以阴影部分的面积等于(平方厘米).16、解析:如图添加辅助线,小圆内部的阴影部分可以填到外侧来,这样,空白部分就是一个圆的内接正方形.设大圆半径为,则,,所以.总结:移动图形是解这种题目的最好方法,一定要找出图形之间的关系.17、解析: 如下图所示,④的面积与Ⅰ的面积相等,①的面积等于②与Ⅱ的面积之和.可见甲比乙多拿的部分为中间的长方形,所以甲比乙多拿的面积为:,而原本应是两人平分,所以甲应付给乙:(元).18、解析:如下图所示,连接OC 、CD 、OH 。
本题中由于C 、D 是半圆的两个三等分点,M 是弧CD 的中点,H 是弦CD 的中点,可见这个图形是对称的,由对称性可知CD 与AB 平行。
由此可得三角形CHN 的面积与三角形CHO 的面积相等,所以阴影部分的面积等于扇形COD 面积的一半,而扇形COD 的面积又等于半圆面积的三分之一,所以阴影部分的面积是半圆面积的六分之一,为26112=⨯(平方厘米)。
19、解析:长方形FCDE 的面积为24=8(平方厘米),扇形BCD 的面积为π44÷4=4π(平方厘米),扇形BFH 的面积为π22÷4=π(平方厘米),21S S -=扇形BCD 的面积减去扇形BFH 的面积再减去长方形FCDE 的面积=4π-π-8=3π-8(平方厘米),所以m=3,n=8,m+n=11。
20、解析:(1)阴影部分的周长等于以正方形的边长为直径的圆的周长与以正方形的边长为半径的圆周长四分之一的和.(2)阴影部分的面积等于以正方形的边长为直径的圆的面积加上,正方形的面积减去以正方形的边长为半径的四分之一圆的面积.阴影部分的周长:×4+2××4÷4,=+,=.阴暗部分的面积:×(4÷2)2+(4××42÷4),=×4+(4××16÷4),=+(),=+,=16.答:阴影部分的周长是,周长是16.点评:在求不规则图形的面积时,一般要转化成求几个规律图形的面积相加或相减的方法进行计算.21、解答:看清楚阴影部分如何构成则不难求解.左边的阴影是大扇形减去小扇形,再扣除一个长方形中的不规则白色部分,而右边的阴影是长方形扣除这块不规则白色部分,那么它们的差应为大扇形减去小扇形,再减去长方形.则为:考点:等积变形(位移、割补).22、分析:由题意可知,三角形BCE为等边三角形,则其边长等于半径,每个角的度数都是60度,再依据弧长公式即可求阴影部分的周长.解答:解:连接BE、CE,则BE=CE=BC=1(厘米),故三角形BCE为等边三角形.于是∠EBC=∠BCE=60°;于是弧BE=弧CE=×2×≈(厘米),则阴影部分周长为×2+1=≈(厘米);答:则阴影部分周长为厘米.故答案为:.点评:此题关键是连接BE、CE,将阴影部分进行变形,再利用弧长公式即可作答.23、分析:由题意可知:阴影部分的面积=以正方形的边长为半径的1/4圆的面积-以正方形的边长为直径的半圆的面积,再用阴影部分的面积除以正方形的面积,然后乘100%,即可得解。
24、解析:半径越大,周长越长,所以外道的弯道比内道的弯道长,要保证内、外道的人跑的距离相等,外道的起点就要向前移,移的距离等于外道弯道与内道弯道的长度差。
虽然弯道的各个半径都不知道,然而两条弯道的中心线的半径之差等于一条跑道之宽。
设外弯道中心线的半径为R,内弯道中心线的半径为r,则两个弯道的长度之差为25、解析:26、解析:由图可知大圆直径是小圆直径的3倍,所以每个小圆面积是大圆面积的 1/9,即4平方厘米,所以余下的边角料的总面积是8平方厘米.。