2015-2016年福建省厦门市湖滨中学八年级(上)数学期中试卷及参考答案
- 格式:pdf
- 大小:628.24 KB
- 文档页数:17
厦门市八年级(上)数学期中试卷(A 卷)本卷共计100分一、填空题(每题3分,共24分)1.不等式x-3<1的正整数解是_____________.2. 如右图所示的不等式的解集是___________.3.一件商品的进价500元,标价为600元,打折销售后要保证获利不低于8%,则此商品最多打 折.4.四边形ABCD 中,∠A ∶∠B∶∠C∶∠D=1∶2∶3∶4,则四边形ABCD 是______形;5.菱形的一个内角是120°,平分这个内角的一条对角形长是8,则菱形的周长是_______.6.已知平行四边形的周长是28,一组邻边之比是3∶4,则这组邻边长分别是________.7.矩形ABCD 的对角线AC 、BD 相交于点O ,∠BOC=2∠AOB ,若AC=18cm ,则CD=______cm .8.如图,矩形ABCD 的两条对角线交于点O ,AC=5cm ,点E 、F 分别是BC 、CD 的中点,△BOE 沿射线BD 方向平移______cm 可得到△ODF . 二、选择题(每题3分,共24分) 9.不等式3-2x>0的解集是( )23)(23)(23)(23)(-<<->>x D x C x B x A10.()⎧⎨⎩x-1>0不等式组的解集是2x-5<1.()1()3()()31A x B x C D x ><>>无解11.下列说法中,正确的个数是( ).(1)圆既是轴对称图形,又是旋转对称图形,也是中心对称图形(2)旋转对称图形又是中心对称图形(3)一个平行四边形是轴对称图形,但不是旋转对称图形(4)中心对称图形又是旋转对称图形(A )1个 (B )2个 (C )3个 (D )4个12.在角、线段、等腰三角形、等边三角形、平行四边形、长方形、正方形、圆这八种图形中,既是轴对称图形又是中心对称图形的共有( ).(A)3个 (B)4个 (C)5个 (D)6个13.在下面的五幅图案中,平移(1)可得到(A)、(B)、(C)、(D)中的图案的是( ).14.不能判定一个四边形是平行四边形的是( ).(A)一组对边平行,另一组对边相等;(B)两组对边分别平行D CB AO F E(C)一组对边平行且相等; (D)两组对角分别相等15.在等腰梯形、直角梯形、平行四边形、矩形、菱形、正方形中,对角线相等的四边形有()。
厦门湖滨中学2015-2016学年第一学期期中考初二英语试卷(二)基础知识与运用(每小题1.5分,共30分)V. 选择填空: 从A、B、C中,选出一个最佳答案完成句子。
17. I think it’s important for everyone ________ a healthy lifestyle.A. to haveB. haveC. has18. This English storybook is hard for the students because there are so ________ new words in it.A. manyB. fewC. a few19. — Do you often play computer games?— No, ________.A. alwaysB. hardly everC. usually20. — Would you like some more noodles?— No, thanks, I’m ________.A. thirstyB. fullC. hungry21. — Did you buy the car about ten years ago?— Yes, ________ it still runs well.A. BecauseB. ButC. Although22. My sister is always the one who works out ________ difficult problems in class.A. moreB. the mostC. many23. — I prefer speaking to listening in English learning.— Oh, really? I think you should be good at ________ of them.A. bothB. neitherC. all24. — Both of the skirts are in style this year.— But I think this one is ________.A. popularB. more popularC. the most popular25. I have a very good friend. We get well along with each other but she is the same ________ me.A. asB. betweenC. from26. — If you don’t take the shows too ________, they are fun to watch.A. seriouslyB. seriousC. more serious27. Julia doesn’t like the book because she thinks the stories in it are ________.A. got upB. put upC. made up28. — Dad! Today is Saturday. Could you take me to the theater tonight?— ________.We are going there after supper.A. No problemB. Not at allC. Sorry, I can’t29. Tom thinks the TV show is boring, but I don’t ________ it.A. standB. likeC. mind30. Tara works as ________ as Tina.A. hardB. hardlyC. hardworking31. My cousin Jenny always has ________ dresses for her party.A. too manyB. too muchC. much too32. My father is very kind. He always makes people ________ to stay with him.A. comfortableB. comfortablyC. comfortVI. 完形填空:从A、B、C中,选出一个最佳答案,使短文意思完整。
EC B A E C B A 2015-2016学年厦门市初二数学期中考试数 学 试 题(满分:120分; 考试时刻:120分钟)班级____________姓名___________座号__________一、选择题(本大题共10小题,每小题3分,共30分)每小题都有四个选项,其中有且只有一个选项是正确的,请在答题卷上作答。
)1.下列每组数别离表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( )A .2,3,4B .2,2,4C .1,2,3D . 1,2,6 2. 22x 能够表示为( )A .4xB .22x x ⋅C .22x x ⋅D .22x x +3.一种运算机每秒可做7×108次运算,它工作6×103秒运算的次数为 ( )A .42×1024B .×1012C .42×1013D .42×104.等腰三角形两边长为4cm 和9cm ,则它的周长是 ( )A.17cmB.22cmC.17cm 或22cmD.不确信5.已知△ABC ,过点B 作△ABC 边上的高,则符合题意的图形是 ( )A B C D6.下列变形中,属于因式分解的是 ( )A. ()a b c ab ac +=+B. 221(2)1x x x x ++=++C. 29(3)(3)x x x -=+-D. 2244(2)8x x x --=--7.若正n 边形的每一个外角为60°,则n 的值是 ( ).5 C8.图中的两个三角形全等,则∠α等于 ( )° ° ° °E C B A ECB AE D CB A 9.已知32228287m n a b a b b ÷=,那么m 、n 的值为( ) A 、4,3m n == B 、2,3m n == C 、4,1m n == D 、1,3m n ==10.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特点三角形”,其中α称为“特点角”.若是一个“特点三角形”的“特点角”为100°,那么这个 “特点三角形”的最小内角的度数为( )° ° ° °二、填空题(本大题共6小题,每空3分,共18分,请在答题卷上作答。
福建省厦门市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题. (共10题;共20分)1. (2分)下列说法错误的是()A . 三角形的角平分线能把三角形分成面积相等的两部分B . 三角形的三条中线,角平分线都相交于一点C . 直角三角形三条高交于三角形的一个顶点D . 钝角三角形的三条高所在直线的交点在三角形的外部2. (2分)一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A . 带其中的任意两块去都可以B . 带1、2或2、3去就可以了C . 带1、4或3、4去就可以了D . 带1、4或2、4或3、4去均可3. (2分) (2017八上·独山期中) 如图,下列图案是我国几家银行的标志,其中轴对称图形有()A . 4个B . 3个C . 2个D . 1个4. (2分) (2017八上·济南期末) P(3,﹣5)关于x轴对称的点的坐标为()A . (﹣3,﹣5)B . (5,3)C . (﹣3,5)D . (3,5)5. (2分) (2017八上·莒南期末) 下列计算正确的是()A . (2x)3=2x3B . (x+1)2=x2+1C . (x2)3=x6D . x2+x3=x56. (2分) (2020九下·西安月考) 等腰三角形的一腰长为6cm,底边长为6 cm,则其底角为()。
A . 120°B . 90°C . 60°D . 30°7. (2分)等腰三角形的两边长分别为1和2,则其周长为()A . 4B . 5C . 4或5D . 无法确定8. (2分)计算12a5b6c4÷(﹣3a2b3c)÷(2a3b3c3),其结果是()A . -2B . -1C . 1D . 29. (2分)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A . 带①去B . 带②去C . 带③去D . 带①和②去10. (2分)有4个命题:①直径相等的两个圆是等圆;②长度相等的两条弧是等弧;③圆中最大的弦是过圆心的弦;④一条弦把圆分为两条弧,这两条弧不可能是等弧.其中真命题是()A . ①③B . ①③④C . ①④D . ①二、填空题. (共10题;共10分)11. (1分)(2011·南京) 如图,过正五边形ABCDE的顶点A作直线l∥CD,则∠1=________.12. (1分)(2017·临沂模拟) 一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M.如果∠ADF=100°,那么∠BMD为________度.13. (1分)(2019·宁波模拟) 李老师从“淋浴龙头”受到启发,编了一个题目:在数轴上截取从0到3的对应线段AB,实数m对应AB上的点M,如图1;将AB折成正三角形,使点A,B重合于点P,如图2;建立平面直角坐标系,平移此三角形,使它关于y轴对称,且点P的坐标为(0,2),PM与x轴交于点N(n,0),如图3.当m =时,n=________.14. (1分)如图,用直尺和圆规画∠AOB的平分线OE,其理论依据是________.15. (1分)(2017·黄冈模拟) 如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF 与△GEF关于直线EF对称,点B的对称点是G,且点G在边AD上,若EG⊥AC,AB=2,则FG的长为________.16. (1分) (2016八上·长泰期中) 计算:(﹣0.125)2016×82016=________.17. (1分)如图,有一腰长为5cm,底边长为4cm的等腰三角形纸片,沿着底边上的中线将纸片剪开,得到两个全等的直角三角形纸片,用这两个直角三角形纸片拼成的平面图形中有________个不同的四边形.18. (1分) (2020八下·武汉期中) 如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠OAE=15°,则∠AEO的度数为________.19. (1分) (2011八下·新昌竞赛) ________.20. (1分)已知a+b=2,ab=﹣7,则(a﹣2)(b﹣2)=________三、解答题 (共9题;共50分)21. (5分)如图,在所给网格图(每小格均为边长是1的正方形)中完成下各题:(用直尺画图)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;在DE上画出点P,使PB+PC最小;在DE上画出点Q,使QA=QC.22. (10分) (2017八上·沂水期末) 计算:(1)(﹣3x2y2)2•2xy+(xy)5;(2)(x+y)(x﹣y)﹣x(x+y)+2xy.23. (5分)已知多项式3x2﹣y3﹣5xy2﹣x3﹣1;(1)按x的降幂排列;(2)当x=﹣1,y=﹣2时,求该多项式的值.24. (5分)某公园有海盗船、摩天轮、碰碰车三个娱乐项目,现要在公园内建一个售票中心,使三个娱乐项目所处位置到售票中心的距离相等,请在图中确定售票中心的位置.25. (5分)如果a的相反数是-2,且2x+3a=4.求x的值.26. (5分) (2016八上·县月考) 求不等式 5(x+2)≤29+2 x 的非负整数解。
2015-2016学年福建省厦门市湖滨中学八年级(上)期中数学试卷一、选择题(本大题有10小题,每题4分,共40分)1.(4分)下列交通标志图案是轴对称图形的是()A.B.C.D.2.(4分)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A.0根 B.1根 C.2根 D.3根3.(4分)以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm4.(4分)下列计算中,正确的是()A.2a+3b=5ab B.a•a3=a3C.a6﹣a5=a D.(﹣ab)2=a2b25.(4分)下列各式不能分解因式的是()A.2x2﹣4x B.C.x2+9y2D.1﹣m26.(4分)下列各式中,正确的是()A.B.C.D.7.(4分)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15 C.12或15 D.188.(4分)n边形的每个外角都为24°,则边数n为()A.13 B.14 C.15 D.169.(4分)如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于( )A .1:1:1B .1:2:3C .2:3:4D .3:4:510.(4分)要在二次三项式x 2+□x ﹣6的□中填上一个整数,使它能按x 2+(a +b )x +ab 型分解为(x +a )(x +b )的形式,那么这些数只能是( )A .1,﹣1B .5,﹣5C .1,﹣1,5,﹣5D .以上答案都不对二、填空题(本大题有6小题,每题4分,共24分)11.(4分)当x= 时,分式没有意义.12.(4分)已知点P (a ,b )与P 1(8,﹣2)关于y 轴对称,则a +b= .13.(4分)如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,BC=10cm ,BD=6cm ,则点D 到AB 的距离为 .14.(4分)如图,在△ABC 中,AC=BC ,△ABC 的外角∠ACE=100°,则∠A= 度.15.(4分)如图,△ABC 中,DE 是AC 的垂直平分线,AE=4cm ,△ABD 的周长为12cm ,则△ABC 的周长为 .16.(4分)已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C (0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为.三、解答题(共86分)17.(7分)计算:(4a﹣b)•(﹣2b)2.18.(7分)因式分解:9a﹣ab2.19.(7分)在图中作出△ABC关于x轴的对称图形△A1B1C1.20.(7分)如图,AF=DC,BC∥EF,BC=EF,试说明△ABC≌△DEF.21.(7分)计算.22.(7分)先化简,再求值:(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.23.(7分)已知ab=9,a﹣b=﹣3,求a2+3ab+b2的值.24.(7分)如图,BC⊥AD于点B,AB=BC,点E在线段BC上,BE=BD,连结AE,CD.判断AE与CD的数量关系和位置关系,并说明理由.25.(7分)已知,如图所示,甲、乙、丙三个人做传球游戏,游戏规则如下:甲将球传给乙,乙将球立刻传给丙,然后丙又立刻将球传给甲.若甲站在角AOB 内的P点,乙站在OA上,丙站在OB上,并且甲、乙、丙三人的传球速度相同.问乙和丙必须站在何处,才能使球从甲到乙、乙到丙、最后丙到甲这一轮所用的时间最少?请作图说明(保留作图痕迹,不写作法).26.(11分)如图1,C是线段BE上一点,以BC、CE为边分别在BE的同侧作等边△ABC和等边△DCE,连结AE、BD.(1)求证:BD=AE;(2)如图2,若M、N分别是线段AE、BD上的点,且AM=BN,请判断△CMN 的形状,并说明理由.27.(12分)我们把由不平行于底的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD即为“准等腰梯形”,其中∠B=∠C,(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,请问当点E在四边形ABCD内部时(即图2所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD 内部时,情况又将如何?写出你的结论.(不必说明理由)2015-2016学年福建省厦门市湖滨中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题有10小题,每题4分,共40分)1.(4分)下列交通标志图案是轴对称图形的是()A.B.C.D.【分析】根据轴对称的定义结合选项所给的特点即可得出答案.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.【点评】本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.(4分)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A.0根 B.1根 C.2根 D.3根【分析】根据三角形的稳定性进行解答即可.【解答】解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,故这种做法根据的是三角形的稳定性.故选:B.【点评】本题考查的是三角形的稳定性在实际生活中的应用,比较简单.3.(4分)以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:根据三角形的三边关系,知A、2+3=5,不能组成三角形;B、5+6>10,能够组成三角形;C、1+1<3,不能组成三角形;D、3+4<9,不能组成三角形.故选B.【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.4.(4分)下列计算中,正确的是()A.2a+3b=5ab B.a•a3=a3C.a6﹣a5=a D.(﹣ab)2=a2b2【分析】根据幂的乘方和积的乘方的运算法则、同底数幂的乘法法则结合选项选择正确答案.【解答】解:A、2a和3b不是同类项,不能合并,故本选项错误;B、a•a3=a4,计算错误,故本选项错误;C、a6和a5不是同类项,不能合并,故本选项错误;D、(﹣ab)2=a2b2,计算正确,故本选项正确.故选D.【点评】本题考查了幂的乘方和积的乘方以及同底数幂的乘法运算,掌握运算法则是解答本题的关键.5.(4分)下列各式不能分解因式的是()A.2x2﹣4x B.C.x2+9y2D.1﹣m2【分析】A、提取公因式分解因式,本选项不合题意;B、利用完全平方公式分解因式,本选项不合题意;C、本选项不能分解因式,符合题意;D、利用平方差公式分解因式,本选项不合题意.【解答】解:A、2x2﹣4x=2x(x﹣2),本选项不合题意;B、x2+x+=(x+)2,本选项不合题意;C、x2+9y2不能分解因式,本选项符合题意;D、1﹣m2=(1+m)(1﹣m),本选项不合题意.故选C.【点评】此题考查了因式分解﹣运用公式法及提公因式法,熟练掌握公式是解本题的关键.6.(4分)下列各式中,正确的是()A.B.C.D.【分析】利用分式的基本性质化简各项得到结果,即可作出判断.【解答】解:A、﹣=,本选项错误;B、﹣=,本选项错误;C、=,本选项错误;D、﹣=,本选项正确.故选:D.【点评】此题考查了分式的基本性质,熟练掌握分式的基本性质是解本题的关键.7.(4分)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15 C.12或15 D.18【分析】因为已知长度为3和6两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:①当3为底时,其它两边都为6,3、6、6可以构成三角形,周长为15;②当3为腰时,其它两边为3和6,∵3+3=6=6,∴不能构成三角形,故舍去,∴答案只有15.故选B .【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.8.(4分)n 边形的每个外角都为24°,则边数n 为( )A .13B .14C .15D .16【分析】多边形的外角和是固定的360°,依此可以求出多边形的边数.【解答】解:∵一个多边形的每个外角都等于24°,∴多边形的边数为360°÷24°=15.故选C .【点评】本题主要考查了多边形的外角和定理:多边形的外角和是360°.9.(4分)如图,△ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于( )A .1:1:1B .1:2:3C .2:3:4D .3:4:5【分析】利用角平分线上的一点到角两边的距离相等的性质,可知三个三角形高相等,底分别是20,30,40,所以面积之比就是2:3:4.【解答】解:利用同高不同底的三角形的面积之比就是底之比可知选C.故选C.【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质及三角形的面积公式.做题时应用了三个三角形的高时相等的,这点式非常重要的.10.(4分)要在二次三项式x2+□x﹣6的□中填上一个整数,使它能按x2+(a+b)x+ab型分解为(x+a)(x+b)的形式,那么这些数只能是()A.1,﹣1 B.5,﹣5C.1,﹣1,5,﹣5 D.以上答案都不对【分析】根据十字相乘法的分解方法和特点可知:□中填上的整数应该是﹣6的两个因数的和,即1,﹣1,5,﹣5【解答】解:﹣6可以分成:﹣2×3,2×(﹣3),﹣1×6,1×(﹣6),□中填上的整数应该是﹣6的两个因数的和,即1,﹣1,5,﹣5.故选C.【点评】本题主要考查十字相乘法分解因式,对常数项的不同分解是解本题的关键.二、填空题(本大题有6小题,每题4分,共24分)11.(4分)当x=3时,分式没有意义.【分析】分式无意义的条件是分母等于0.【解答】解:若分式没有意义,则x﹣3=0,解得:x=3.故答案为3.【点评】本题考查的是分式没有意义的条件:分母等于0,这是一道简单的题目.12.(4分)已知点P(a,b)与P1(8,﹣2)关于y轴对称,则a+b=﹣10.【分析】关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可直接得到答案.【解答】解:∵点P(a,b)与P1(8,﹣2)关于y轴对称,∴a=﹣8,b=﹣2,∴a+b=﹣10,故答案为:﹣10.【点评】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.13.(4分)如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=6cm,则点D到AB的距离为4cm.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,再根据CD=BC﹣BD求解即可.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∵BC=10cm,BD=6cm,∴CD=BC﹣BD=10﹣6=4cm,∴点D到AB的距离为4cm.故答案为:4cm.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.14.(4分)如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=50度.【分析】根据等角对等边的性质可得∠A=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵AC=BC,∴∠A=∠B,∵∠A+∠B=∠ACE,∴∠A=∠ACE=×100°=50°.故答案为:50.【点评】本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,等边对等角的性质,是基础题,熟记性质并准确识图是解题的关键.15.(4分)如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为12cm,则△ABC的周长为20cm.【分析】由DE是AC的垂直平分线,根据线段垂直平分线的性质,即可求得AC 的长与AD=CD;又由△ABD的周长为12cm,即可求得AB+BC的长,继而求得△ABC的周长.【解答】解:∵DE是AC的垂直平分线,∴AC=2AE=8cm,AD=CD,∵△ABD的周长为12cm,∴AB+BD+AD=12cm,即AB+BD+CD=AB+BC=12cm,∴△ABC的周长为:AB+BC+AC=12+8=20(cm).故答案为:20cm.【点评】此题考查了线段垂直平分线的性质.此题难度不大,注意掌握数形结合思想与整体思想的应用.16.(4分)已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C (0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为(2,4)或(3,4)或(8,4).【分析】分PD=OD(P在右边),PD=OD(P在左边),OP=OD三种情况,根据题意画出图形,作PQ垂直于x轴,找出直角三角形,根据勾股定理求出OQ,然后根据图形写出P的坐标即可.【解答】解:当OD=PD(P在右边)时,根据题意画出图形,如图所示:过P作PQ⊥x轴交x轴于Q,在直角三角形DPQ中,PQ=4,PD=OD=OA=5,根据勾股定理得:DQ=3,故OQ=OD+DQ=5+3=8,则P1(8,4);当PD=OD(P在左边)时,根据题意画出图形,如图所示:过P作PQ⊥x轴交x轴于Q,在直角三角形DPQ中,PQ=4,PD=OD=5,根据勾股定理得:QD=3,故OQ=OD﹣QD=5﹣3=2,则P2(2,4);当PO=OD时,根据题意画出图形,如图所示:过P作PQ⊥x轴交x轴于Q,在直角三角形OPQ中,OP=OD=5,PQ=4,根据勾股定理得:OQ=3,则P3(3,4),综上,满足题意的P坐标为(2,4)或(3,4)或(8,4).故答案为:(2,4)或(3,4)或(8,4)【点评】这是一道代数与几何知识综合的开放型题,综合考查了等腰三角形和勾股定理的应用,属于策略和结果的开放,这类问题的解决方法是:数形结合,依理构图解决问题.三、解答题(共86分)17.(7分)计算:(4a﹣b)•(﹣2b)2.【分析】原式先计算乘方运算,再计算乘法运算即可得到结果.【解答】解:原式=(4a﹣b)•4b2=16ab2﹣4b3.【点评】此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.18.(7分)因式分解:9a﹣ab2.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(9﹣b2)=a(3+b)(3﹣b).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.(7分)在图中作出△ABC关于x轴的对称图形△A1B1C1.【分析】作出各点关于x轴的对称点,再顺次连接即可.【解答】解:如图所示.【点评】本题考查的是作图﹣轴对称变换,熟知关于关于x轴对称的点的坐标特点是解答此题的关键.20.(7分)如图,AF=DC,BC∥EF,BC=EF,试说明△ABC≌△DEF.【分析】根据平行线的性质可得∠EFC=∠BCA,再根据等式的性质可得AC=FD,然后再利用SAS定理可判定△ABC≌△DEF.【解答】证明:∵BC∥EF,∴∠EFC=∠BCA,∵AF=DC,∴AF+FC=CD+FC,∴AC=FD,在△ABC和△DEF中,∴△ABC≌△DEF(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.(7分)计算.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=•=.【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.22.(7分)先化简,再求值:(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.【分析】首先根据整式相乘的法则和平方差公式、完全平方公式去掉括号,然后合并同类项,最后代入数据计算即可求解.【解答】解:原式=9x2﹣4﹣(5x2﹣5x)﹣(4x2﹣4x+1)=9x2﹣4﹣5x2+5x﹣4x2+4x﹣1=9x﹣5,当时,原式==﹣3﹣5=﹣8.【点评】此题主要考查了整式的化简求值,解题的关键是利用整式的乘法法则及平方差公式、完全平方公式化简代数式.23.(7分)已知ab=9,a﹣b=﹣3,求a2+3ab+b2的值.【分析】应把所求式子整理为和所给等式相关的式子.【解答】解:∵ab=9,a﹣b=﹣3,∴a2+3ab+b2,=a2﹣2ab+b2+5ab,=(a﹣b)2+5ab,=9+45,=54.【点评】本题考查了完全平方公式,利用完全平方公式把a2+3ab+b2整理成已知条件的形式是解题的关键.24.(7分)如图,BC⊥AD于点B,AB=BC,点E在线段BC上,BE=BD,连结AE,CD.判断AE与CD的数量关系和位置关系,并说明理由.【分析】延长AE交CD于F点,根据边角边判定三角形全等可以证明△ABE≌△CBD,可以证明AE=CD,∠A=∠C,进而可以证明AE⊥CD,即可解题.【解答】解:AE=CD,AE⊥CD,理由如下:延长AE交CD于F点,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);∵△ABE≌△CBD,∴AE=CD,∠A=∠C,∵∠C+∠CDB=90°,∴∠A+∠CDB=90°,∴AE⊥CD,∴AE、CD的关系为:AE=CD,AE⊥CD【点评】本题考查了全等三角形的判定,考查了全等三角形对应边、对应角相等的性质,本题中求证△ABE≌△CBD是解题的关键.25.(7分)已知,如图所示,甲、乙、丙三个人做传球游戏,游戏规则如下:甲将球传给乙,乙将球立刻传给丙,然后丙又立刻将球传给甲.若甲站在角AOB 内的P点,乙站在OA上,丙站在OB上,并且甲、乙、丙三人的传球速度相同.问乙和丙必须站在何处,才能使球从甲到乙、乙到丙、最后丙到甲这一轮所用的时间最少?请作图说明(保留作图痕迹,不写作法).【分析】欲求一轮所用的时间最少,即使得三者传球的距离最短,分别作P点关于OA、OB的对称点P2、P1,连接P2、P1交OA于D,交OB于点Q,D就是乙所处的位置,Q点就是丙所在的位置.【解答】解:如图:D就是乙所处的位置,Q点就是丙所在的位置.【点评】此题主要考查了轴对称最短路径问题,关键是确定丙,乙的位置.26.(11分)如图1,C是线段BE上一点,以BC、CE为边分别在BE的同侧作等边△ABC和等边△DCE,连结AE、BD.(1)求证:BD=AE;(2)如图2,若M、N分别是线段AE、BD上的点,且AM=BN,请判断△CMN 的形状,并说明理由.【分析】(1)由等边三角形的性质,可证明△DCB≌△ACE,可得到BD=AE;(2)结合(1)中△DCB≌△ACE,可证明△ACM≌△BCN,进一步可得到∠MCN=60°且CM=CN,可判断△CMN为等边三角形.【解答】证明:(1)∵△ABC、△DCE均是等边三角形,∴AC=BC,DC=DE,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE(SAS),∴BD=AE;(2)△CMN为等边三角形,理由如下:由(1)可知:△ACE≌△DCB,∴∠CAE=∠CDB,即∠CAM=∠CBN,∵AC=BC,AM=BN,在△ACM和△BCN中,,∴△ACM≌△BCN(SAS),∴CM=CN,∠ACM=∠BCN,∵∠ACB=60°即∠BCN+∠ACN=60°,∴∠ACM+∠ACN=60°即∠MCN=60°,∴△CMN为等边三角形.【点评】本题主要考查全等三角形的判定和性质及等边三角形的判定和性质,掌握全等三角形的判定和性质是解题的关键,即可以利用全等来证明线段相等,也可以找角相等的条件.27.(12分)我们把由不平行于底的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD即为“准等腰梯形”,其中∠B=∠C,(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,请问当点E在四边形ABCD内部时(即图2所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD 内部时,情况又将如何?写出你的结论.(不必说明理由)【分析】(1)根据条件∠B=∠C和梯形的定义就可以画出图形;(2)根据角平分线的性质可以得出△EFB≌△EHC,就可以得出∠3=∠4,再由条件就可以得出∠ABC=∠DCB,从而得出结论,当点E不在四边形内部时分两种情况讨论就可以求出结论.【解答】解:(1)如图1,过点D作DE∥BC交PB于点E,则四边形ABCD分割成一个等腰梯形BCDE和一个三角形ADE;(2)作EF⊥AB于F,EG⊥AD于G,EH⊥CD于H,如图2:∴∠BFE=∠CHE=90°.∵AE平分∠BAD,DE平分∠ADC,∴EF=EG=EH,在Rt△EFB和Rt△EHC中,,∴Rt△EFB≌Rt△EHC(HL),∴∠3=∠4.∵BE=CE,∴∠1=∠2.∴∠1+∠3=∠2+∠4即∠ABC=∠DCB,∵ABCD为AD截某三角形所得,且AD不平行BC,∴ABCD是“准等腰梯形”.当点E不在四边形ABCD的内部时,有两种情况:如图3,当点E在BC边上时,同理可以证明△EFB≌△EHC,∴∠B=∠C,∴ABCD是“准等腰梯形”.当点E在四边形ABCD的外部时,四边形ABCD不一定是“准等腰梯形”.分两种情况:情况一:当∠BED的角平分线与线段BC的垂直平分线重合时,四边形ABCD为“准等腰梯形”;情况二:当∠BED的角平分线与线段BC的垂直平分线相交时,四边形ABCD不是“准等腰梯形”.【点评】本题考查了平行线的性质的运用,相似三角形的判定及性质的运用,角平分线的性质的运用,全等三角形的判定及性质的运用,解答时多次运用角平分线的性质是关键.。
福建省厦门市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)已知等腰三角形一个外角等于120°,则它的顶角是()A . 60°B . 20°C . 60°或20°D . 不能确定2. (2分)关于x的不等式2x﹣10>﹣5的最小整数解为()A . 3B . 2C . -2D . -33. (2分)如图,某同学把三角形玻璃打碎成三片,现在他要去配一块完全一样的,你帮他想一想,带()片去.A . ①B . ②C . ②和①D . ③4. (2分) (2020九上·湛江开学考) 如图,在中,CE平分∠BCD,交AB于点E,EA=3,EB=5,ED=4.则CE的长是()A . 5B . 6C . 4D . 55. (2分) (2020九上·玉田期末) 如图,一只花猫发现一只老鼠溜进了一个内部连通的鼠洞,鼠洞只有三个出口,要想同时顾及这三个出口以防老鼠出洞,这只花猫最好蹲守在()A . 的三边高线的交点P处B . 的三角平分线的交点P处C . 的三边中线的交点P处D . 的三边中垂线线的交点P处6. (2分)(2016·深圳模拟) 已知下列命题:①同位角相等;②若a>b>0,则;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2﹣2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.其中正确的命题有()A . 1个B . 2个C . 3个D . 4个7. (2分) (2020八下·龙江月考) 如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,若∠DAE∶∠BAE=3∶1,则∠EAC的度数是()A . 18°B . 36°C . 45°D . 72°8. (2分)关于x、y的二元一次方程组没有解时,m的值是()A . -6B . 6C . 1D . 09. (2分)如图,在锐角△ABC中,∠A=60°,∠ACB=45°,以BC为弦作⊙O,交AC于点D,OD与BC交于点E,若AB与⊙O相切,则下列结论:①∠BOD=90°;②DO∥AB;③CD=AD;④△BDE∽△BCD;⑤正确的有()A . ①②B . ①④⑤C . ①②④⑤D . ①②③④⑤10. (2分) (2019八下·孝义期中) 如图,平行四边形中,对角线与相交于点,、分别是对角线BD上的两点,给出下列四个条件:① ;② ;③ ;④ .其中能判断四边形是平行四边形的个数是()A . 1个B . 2个C . 3个D . 4个二、填空题. (共6题;共6分)11. (1分) (2020七下·高邑月考) 已知三角形的边长都是整数,其中两边分别为5和1,则三角形的周长为________。
绝密★启用前2015-2016学年福建厦门湖滨中学初二下期中考试数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:110分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、如图,棱长为1的正方体木块上有一只小虫从顶点A 出发沿着正方体的外表面爬到顶点B ,则它爬行的最短路程是( ) A .3 B .C .D .22、如图,直角三角形两直角边分别为5厘米、12厘米,那么斜边上的高是( )A .6厘米B .8厘米C .厘米D .厘米3、在数轴上表示a 、b 两数的点如图所示,则下列判断正确的是( )A .a+b >0B .a+b <0C .ab >0D .│a│>│b│4、有一个三角形两边长分别为4和5,要使三角形为直角三角形,则第三边长为( ) A .3 B .C .3或D .3或5、下列图形中,不是轴对称图形的是( )6、下列运算中错误的是( )A .B .C .D .7、分别以下列五组数为一个三角形的边长:①6、8、10;②13、12、5;③1、2、3;④3.5、4.5、5.5;⑤8、10、12,其中能够组成直角三角形的有( ) A .4组 B .3组 C .2组 D .1组8、地球上的陆地面积约为149000000平方千米,这个数字用科学记数法表示应为( ) A .0.149B .1.49C .1.49D .14.99、下列二次根式中是最简二次根式的是( )A .B .C .D .10、下列运算中,正确的是( )A .x 3·x 3=x 6B .3x 2÷2x=xC .(x 2)3=x 5D .(x+y 2)2=x 2+y 4第II 卷(非选择题)二、填空题(题型注释)11、计算:(=12、一项工程甲单独做要20小时,乙单独做要12小时。
厦门市中学第一学期期中考初二数学试卷一、选择题(本大题有10小题,每题4分,共40分) 1、下列交通标志图案是轴对称图形的是( ). A . B . C . D . 2、王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?( ) A .0根 B .1根 C .2根 D .3根 3、以下列各组线段为边,能组成三角形的是( ) A .2 cm ,3 cm ,5 cm B .5 cm ,6 cm ,10 cm C .1 cm ,1 cm ,3 cm D .3 cm ,4 cm ,9 cm 4、下列计算中,正确的是( ) A .ab b a 532=+ B .33a a a =⋅ C .a a a =-56 D .222)(b a ab =- 5、下列各式不能..分解因式的是( ) A .224x x - B .214x x ++ C .229x y + D .21m - 6、下列各式中,正确的是( ). A .3355x x y y --=- B .a b a b c c +-+-= C . a b a b c c ---=- D . a a b a a b -=-- 7、等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为() A .12 B .15 C .12或15 D .18 8、n 边形的每个外角都为24°,则边数n 为( ) A .13 B . 14 C .15 D .16 9、如图,△ABC 的三边AB ,BC ,CA 的长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形, 则S △ABO ∶S △BCO ∶S △CAO 等于( ) A.1∶1∶1 B.1∶2∶3 C.2∶3∶4 D.3∶4∶5 10、要在二次三项式x 2+( )x-6的括号中填上一个整数,使它能按因式分解公式x 2+(a+b)x+ab=(x+a)(x+b),那么这些数只能是( )班级 姓名 学号 考场号 ————————————⊙——密——⊙——封——⊙——装——⊙——订——⊙——线———⊙—————————————CDBAA.1,-1B.5,-5C.1,-1,5,-5D.以上答案都不对二、填空题(本大题有6小题,每题4分,共24分)11、当x= 时,分式没有意义.12、已知点P(a, b)与P1(8,-2)关于y轴对称,则a+b=______13、如图,在△ABC中,∠C=,AD平分∠BAC, BC=10cm,BD=6cm,则点D到AB的距离是______。
福建省厦门市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题:本题共12小题,每小题3分,共36分.在每小题给出的 (共12题;共36分)1. (3分) 4的平方根是()A . 2B . ±4C . ±2D . 42. (3分) (2017七下·承德期末) 下列说法正确的是()A . 0.1 是无理数B . 是无限小数,是无理数C . 是分数D . 0.13579…(小数部分由连续的奇数组成)是无理数3. (3分)化简(﹣2)2002•( +2)2003的结果为()A . ﹣1B . ﹣2C . +2D . ﹣﹣24. (3分)下列各组数中,不能作为直角三角形三边长的是()A . 9,12,15B . 7,24,25C . 3,4,5D . 3,5,75. (3分) (2016七下·柯桥期中) 下列方程中,是二元一次方程的是()A .B . x+y=6C . 3x+1=2xyD .6. (3分) (2019八上·西安期中) 点的坐标是,则点一定在第()象限.A . 一B . 二C . 三D . 四7. (3分)实数a、b在数轴上对应的位置如图,则−=()A . b-aB . 2-aC . a-bD . 2+a8. (3分) (2018八下·邯郸开学考) 已知△ABC在平面直角坐标系中,点A,B,C都在第一象限内,现将△ABC 的三个顶点的横坐标保持不变,纵坐标都乘﹣1,得到一个新的三角形,则()A . 新三角形与△ABC关于x轴对称B . 新三角形与△ABC关于y轴对称C . 新三角形的三个顶点都在第三象限内D . 新三角形是由△ABC沿y轴向下平移一个单位长度得到的9. (3分)下列各组数是二元一次方程组的解的是()A .B .C .D .10. (3分) (2019八上·鄂州期末) 如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线OD交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC度数为().A . 108°B . 135°C . 144°D . 160°11. (3分) (2018八下·镇海期末) 如图,在矩形纸片ABCD中,BC=a,将矩形纸片翻折,使点C恰好落在对角线交点O处,折痕为BE,点E在边CD上,则CE的长为()A .B .C .D .12. (3分) (2017九上·西湖期中) 如图,等腰直角三角形的面积为,以点为圆心,为半径的弧与以为直径的半圆围成的图形的面积为,则与的关系是().A .B .C .D .二、填空题:本题共4小题,每小题3分,共12分. (共4题;共12分)13. (3分) (2017八下·凉山期末) 已知﹣ =2,则的值为________.14. (3分) (2019七下·楚雄期末) 若5amb2n与-9a5b6是同类项,则m+n的值是________ 。
福建省厦门市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下列图形中,为轴对称图形的是()A . ①②B . ③④C . ②③D . ①④2. (2分)下列说法中正确的是()A . 三角形的角平分线和中线都是线段B . 三角形的角平分线和中线都是射线C . 三角形的角平分线是射线,而中线是线段D . 三角形的角平分线是线段,而中线是射线3. (2分) (2019七下·丹阳月考) 如果一个三角形的两条边长分别为2和6,那么这个三角形第三边的长可能是()A . 2B . 3C . 4D . 6.24. (2分)(2017·昌平模拟) 如图,△ABC中,∠ACB=90°,∠B=55°,点D是斜边AB的中点,那么∠ACD 的度数为()A . 15°B . 25°C . 35°D . 45°5. (2分)如图已知△ABE≌△ACD, AB=AC, BE=CD,∠B=40°,∠AEC=120°则∠DAC的度数为()A . 80°B . 70°C . 60°D . 50°6. (2分)点A(-3,10)关于y轴对称的点B的坐标为().A . (6,4)B . (-3,5)C . (-3,-4)D . ( 3,10)7. (2分) (2017七下·常州期中) 下列计算正确的是()A . (x3)2=x6B . (﹣2x3)2=4x5C . x4•x4=2x4D . x5÷x=x58. (2分) (2018八上·衢州期中) 已知等腰三角形的一边长等于4,一边长等于9,则它的周长为()A . 22B . 17C . 17或22D . 269. (2分)一个多边形的内角和是900°,则这个多边形的边数是()A . 6B . 7C . 8D . 910. (2分)(2019·贵阳) 如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于 BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE=1,则EC的长度是()A . 2B . 3C .D .11. (2分) (2019七下·岳池期中) 如图,CD∥AB , OE平分∠AOD ,OF⊥OE ,OG⊥CD ,∠CDO=50°,则下列结论:① OG⊥AB;② OF平分∠BOD ;③∠AOE=65°;④∠GOE=∠DOF ,其中符合题意结论的个数有()A . 1个B . 2个C . 3个D . 4个12. (2分)如图OP平分∠AOB,PC⊥OA于C,D在OB上,PC=3,则PD的大小关系是()A . PD≥3B . PD=3C . PD≤3D . 不能确定二、填空题 (共5题;共5分)13. (1分)空调安装在墙上时,一般都会象如图所示的方法固定在墙上,这种方法应用的数学知识是________.14. (1分) (2017七下·自贡期末) 已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=________.15. (1分)2×4n×8n=26 ,则n=________.16. (1分) (2016八上·沈丘期末) 如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为________.17. (1分)如图,等边△ABO的边长为2,点B在x轴上,反比例函数图象经过点A,将△ABO绕点O顺时针旋转a(0°<a<360°),使点A仍落在双曲线上,则a=________.三、解答题 (共9题;共55分)18. (5分) (2017八上·腾冲期中) 某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°,则此时小岛P到AB的距离为多少海里.19. (5分)计算:(x﹣y)2﹣(x﹣2y)(x+y)20. (5分),其中a=-2.21. (5分)△AB C在平面直角坐标系中的位置如图所示,A,B,C三点在格点上,作出△ABC关于x轴对称的△A1B1C1 ,并写出点C1的坐标.22. (5分)(2017·沭阳模拟) 如图,BD是▱ABCD的对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:AE=CF.23. (6分) (2017八上·香洲期中) 如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹)(2)连接AP,当∠B为________度时,AP平分∠CAB.24. (5分)如图,已知房屋的顶角∠BAC=100°,过屋顶A的立柱AD⊥BC,屋椽AB=AC,求顶架上∠B、∠C、∠BAD、∠CAD的度数.25. (12分)(2017·洪泽模拟) 小明拿两个大小不等直角三角板作拼图,如图①小三角板的斜边与大三角板直角边正好重合,已知:AD=1,∠B=∠ACD=30°.(1) AB的长________;四边形ABCD的面积=________(直接填空);(2)如图2,若小明将小三角板ACD沿着射线AB方向平移,设平移的距离为m(平移距离指点A沿AB方向锁经过的线段长度),当点D平移到线段大三角板ABC的边上时,求出相应的m的值;(3)如图3,小明将小三角板ACD绕点A顺时针旋转一个角α(0°<α<180°),记旋转中的△ACD为△AC′D′,在旋转过程中,设C′D′所在的直线与直线BC交于点P,与直线AB交于点Q,是否存在这样的P、Q 两点,使△BPQ为等腰三角形?若存在,请直接求出此时D′Q的长;若不存在,请说明理由26. (7分) (2018八上·新乡期末) 如图(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.①填空:当点A位于________时,线段AC的长取得最大值,且最大值为________(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB、AC为边,作等边三角形ABD 和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共5分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共9题;共55分)18-1、19-1、20-1、21-1、22-1、23-1、23-2、24-1、25-1、25-2、25-3、第11 页共12 页26-1、26-2、第12 页共12 页。
2015-2016学年福建省厦门市湖滨中学八年级(上)期中数学试卷一、选择题(本大题有10小题,每题4分,共40分)1.(4分)下列交通标志图案是轴对称图形的是( )A .B .C .D .2.(4分)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?( )A .0根B .1根C .2根D .3根3.(4分)以下列各组线段为边,能组成三角形的是( )A .2cm ,3cm ,5cmB .5cm ,6cm ,10cmC .1cm ,1cm ,3cmD .3cm ,4cm ,9cm4.(4分)下列计算中,正确的是( )A .2a +3b=5abB .a•a 3=a 3C .a 6﹣a 5=aD .(﹣ab )2=a 2b 25.(4分)下列各式不能分解因式的是( )A .2x 2﹣4xB .C .x 2+9y 2D .1﹣m 2 6.(4分)下列各式中,正确的是( )A .B .C .D .7.(4分)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .188.(4分)n 边形的每个外角都为24°,则边数n 为( )A .13B .14C .15D .169.(4分)如图,△ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于( )A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:510.(4分)要在二次三项式x2+□x﹣6的□中填上一个整数,使它能按x2+(a+b)x+ab型分解为(x+a)(x+b)的形式,那么这些数只能是()A.1,﹣1 B.5,﹣5C.1,﹣1,5,﹣5 D.以上答案都不对二、填空题(本大题有6小题,每题4分,共24分)11.(4分)当x=时,分式没有意义.12.(4分)已知点P(a,b)与P1(8,﹣2)关于y轴对称,则a+b=.13.(4分)如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=6cm,则点D到AB的距离为.14.(4分)如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=度.15.(4分)如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为12cm,则△ABC的周长为.16.(4分)已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C (0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为.三、解答题(共86分)17.(7分)计算:(4a﹣b)•(﹣2b)2.18.(7分)因式分解:9a﹣ab2.19.(7分)在图中作出△ABC关于x轴的对称图形△A1B1C1.20.(7分)如图,AF=DC,BC∥EF,BC=EF,试说明△ABC≌△DEF.21.(7分)计算.22.(7分)先化简,再求值:(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.23.(7分)已知ab=9,a﹣b=﹣3,求a2+3ab+b2的值.24.(7分)如图,BC⊥AD于点B,AB=BC,点E在线段BC上,BE=BD,连结AE,CD.判断AE与CD的数量关系和位置关系,并说明理由.25.(7分)已知,如图所示,甲、乙、丙三个人做传球游戏,游戏规则如下:甲将球传给乙,乙将球立刻传给丙,然后丙又立刻将球传给甲.若甲站在角AOB 内的P点,乙站在OA上,丙站在OB上,并且甲、乙、丙三人的传球速度相同.问乙和丙必须站在何处,才能使球从甲到乙、乙到丙、最后丙到甲这一轮所用的时间最少?请作图说明(保留作图痕迹,不写作法).26.(11分)如图1,C是线段BE上一点,以BC、CE为边分别在BE的同侧作等边△ABC和等边△DCE,连结AE、BD.(1)求证:BD=AE;(2)如图2,若M、N分别是线段AE、BD上的点,且AM=BN,请判断△CMN 的形状,并说明理由.27.(12分)我们把由不平行于底的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD即为“准等腰梯形”,其中∠B=∠C,(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,请问当点E在四边形ABCD内部时(即图2所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD 内部时,情况又将如何?写出你的结论.(不必说明理由)2015-2016学年福建省厦门市湖滨中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题有10小题,每题4分,共40分)1.(4分)下列交通标志图案是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.2.(4分)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A.0根 B.1根 C.2根 D.3根【解答】解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,故这种做法根据的是三角形的稳定性.故选:B.3.(4分)以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm【解答】解:根据三角形的三边关系,知A、2+3=5,不能组成三角形;B、5+6>10,能够组成三角形;C、1+1<3,不能组成三角形;D、3+4<9,不能组成三角形.故选:B.4.(4分)下列计算中,正确的是()A.2a+3b=5ab B.a•a3=a3C.a6﹣a5=a D.(﹣ab)2=a2b2【解答】解:A、2a和3b不是同类项,不能合并,故本选项错误;B、a•a3=a4,计算错误,故本选项错误;C、a6和a5不是同类项,不能合并,故本选项错误;D、(﹣ab)2=a2b2,计算正确,故本选项正确.故选:D.5.(4分)下列各式不能分解因式的是()A.2x2﹣4x B.C.x2+9y2D.1﹣m2【解答】解:A、2x2﹣4x=2x(x﹣2),本选项不合题意;B、x2+x+=(x+)2,本选项不合题意;C、x2+9y2不能分解因式,本选项符合题意;D、1﹣m2=(1+m)(1﹣m),本选项不合题意.故选:C.6.(4分)下列各式中,正确的是()A.B.C.D.【解答】解:A、﹣=,本选项错误;B、﹣=,本选项错误;C、=,本选项错误;D、﹣=,本选项正确.故选:D.7.(4分)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .18【解答】解:①当3为底时,其它两边都为6,3、6、6可以构成三角形,周长为15;②当3为腰时,其它两边为3和6,∵3+3=6=6,∴不能构成三角形,故舍去,∴答案只有15.故选:B .8.(4分)n 边形的每个外角都为24°,则边数n 为( )A .13B .14C .15D .16【解答】解:∵一个多边形的每个外角都等于24°,∴多边形的边数为360°÷24°=15.故选:C .9.(4分)如图,△ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于( )A .1:1:1B .1:2:3C .2:3:4D .3:4:5【解答】解:过点O 作OD ⊥AC 于D ,OE ⊥AB 于E ,OF ⊥BC 于F ,∵点O 是内心,∴OE=OF=OD ,∴S △ABO :S △BCO :S △CAO =•AB•OE :•BC•OF :•AC•OD=AB :BC :AC=2:3:4, 故选:C .10.(4分)要在二次三项式x 2+□x ﹣6的□中填上一个整数,使它能按x 2+(a +b )x +ab 型分解为(x +a )(x +b )的形式,那么这些数只能是( )A .1,﹣1B .5,﹣5C .1,﹣1,5,﹣5D .以上答案都不对【解答】解:﹣6可以分成:﹣2×3,2×(﹣3),﹣1×6,1×(﹣6), □中填上的整数应该是﹣6的两个因数的和,即1,﹣1,5,﹣5.故选:C .二、填空题(本大题有6小题,每题4分,共24分)11.(4分)当x= 3 时,分式没有意义.【解答】解:若分式没有意义,则x ﹣3=0,解得:x=3.故答案为3.12.(4分)已知点P (a ,b )与P 1(8,﹣2)关于y 轴对称,则a +b= ﹣10 .【解答】解:∵点P (a ,b )与P 1(8,﹣2)关于y 轴对称,∴a=﹣8,b=﹣2,∴a +b=﹣10,故答案为:﹣10.13.(4分)如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,BC=10cm ,BD=6cm ,则点D 到AB 的距离为 4cm .【解答】解:如图,过点D 作DE ⊥AB 于E ,∵∠C=90°,AD 平分∠BAC ,∴DE=CD,∵BC=10cm,BD=6cm,∴CD=BC﹣BD=10﹣6=4cm,∴点D到AB的距离为4cm.故答案为:4cm.14.(4分)如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=50度.【解答】解:∵AC=BC,∴∠A=∠B,∵∠A+∠B=∠ACE,∴∠A=∠ACE=×100°=50°.故答案为:50.15.(4分)如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为12cm,则△ABC的周长为20cm.【解答】解:∵DE是AC的垂直平分线,∴AC=2AE=8cm,AD=CD,∵△ABD的周长为12cm,∴AB+BD+AD=12cm,即AB+BD+CD=AB+BC=12cm,∴△ABC的周长为:AB+BC+AC=12+8=20(cm).故答案为:20cm.16.(4分)已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C (0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为(2,4)或(3,4)或(8,4).【解答】解:当OD=PD(P在右边)时,根据题意画出图形,如图所示:过P作PQ⊥x轴交x轴于Q,在直角三角形DPQ中,PQ=4,PD=OD=OA=5,根据勾股定理得:DQ=3,故OQ=OD+DQ=5+3=8,则P1(8,4);当PD=OD(P在左边)时,根据题意画出图形,如图所示:过P作PQ⊥x轴交x轴于Q,在直角三角形DPQ中,PQ=4,PD=OD=5,根据勾股定理得:QD=3,故OQ=OD﹣QD=5﹣3=2,则P2(2,4);当PO=OD时,根据题意画出图形,如图所示:过P作PQ⊥x轴交x轴于Q,在直角三角形OPQ中,OP=OD=5,PQ=4,根据勾股定理得:OQ=3,则P3(3,4),综上,满足题意的P坐标为(2,4)或(3,4)或(8,4).故答案为:(2,4)或(3,4)或(8,4)三、解答题(共86分)17.(7分)计算:(4a﹣b)•(﹣2b)2.【解答】解:原式=(4a﹣b)•4b2=16ab2﹣4b3.18.(7分)因式分解:9a﹣ab2.【解答】解:原式=a(9﹣b2)=a(3+b)(3﹣b).19.(7分)在图中作出△ABC关于x轴的对称图形△A1B1C1.【解答】解:如图所示.20.(7分)如图,AF=DC,BC∥EF,BC=EF,试说明△ABC≌△DEF.【解答】证明:∵BC∥EF,∴∠EFC=∠BCA,∵AF=DC,∴AF+FC=CD+FC,∴AC=FD,在△ABC和△DEF中,∴△ABC≌△DEF(SAS).21.(7分)计算.【解答】解:原式=•=.22.(7分)先化简,再求值:(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.【解答】解:原式=9x2﹣4﹣(5x2﹣5x)﹣(4x2﹣4x+1)=9x2﹣4﹣5x2+5x﹣4x2+4x﹣1=9x﹣5,当时,原式==﹣3﹣5=﹣8.23.(7分)已知ab=9,a﹣b=﹣3,求a2+3ab+b2的值.【解答】解:∵ab=9,a﹣b=﹣3,∴a2+3ab+b2,=a2﹣2ab+b2+5ab,=(a﹣b)2+5ab,=9+45,=54.24.(7分)如图,BC⊥AD于点B,AB=BC,点E在线段BC上,BE=BD,连结AE,CD.判断AE与CD的数量关系和位置关系,并说明理由.【解答】解:AE=CD,AE⊥CD,理由如下:延长AE交CD于F点,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);∵△ABE≌△CBD,∴AE=CD,∠A=∠C,∵∠C+∠CDB=90°,∴∠A+∠CDB=90°,∴AE⊥CD,∴AE、CD的关系为:AE=CD,AE⊥CD25.(7分)已知,如图所示,甲、乙、丙三个人做传球游戏,游戏规则如下:甲将球传给乙,乙将球立刻传给丙,然后丙又立刻将球传给甲.若甲站在角AOB 内的P点,乙站在OA上,丙站在OB上,并且甲、乙、丙三人的传球速度相同.问乙和丙必须站在何处,才能使球从甲到乙、乙到丙、最后丙到甲这一轮所用的时间最少?请作图说明(保留作图痕迹,不写作法).【解答】解:如图:D就是乙所处的位置,Q点就是丙所在的位置.26.(11分)如图1,C是线段BE上一点,以BC、CE为边分别在BE的同侧作等边△ABC和等边△DCE,连结AE、BD.(1)求证:BD=AE;(2)如图2,若M、N分别是线段AE、BD上的点,且AM=BN,请判断△CMN 的形状,并说明理由.【解答】证明:(1)∵△ABC、△DCE均是等边三角形,∴AC=BC,DC=DE,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△DCB和△ECA中,,∴△DCB≌△ECA(SAS),∴BD=AE;(2)△CMN为等边三角形,理由如下:由(1)可知:△ECA≌△DCB,∴∠CAE=∠CBD,即∠CAM=∠CBN,∵AC=BC,AM=BN,在△ACM和△BCN中,,∴△ACM≌△BCN(SAS),∴CM=CN,∠ACM=∠BCN,∵∠ACB=60°即∠BCN+∠ACN=60°,∴∠ACM+∠ACN=60°即∠MCN=60°,∴△CMN为等边三角形.27.(12分)我们把由不平行于底的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD即为“准等腰梯形”,其中∠B=∠C,(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,请问当点E在四边形ABCD内部时(即图2所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD 内部时,情况又将如何?写出你的结论.(不必说明理由)【解答】解:(1)如图1,过点D作DE∥BC交PB于点E,则四边形ABCD分割成一个等腰梯形BCDE和一个三角形ADE;(2)作EF⊥AB于F,EG⊥AD于G,EH⊥CD于H,如图2:∴∠BFE=∠CHE=90°.∵AE平分∠BAD,DE平分∠ADC,∴EF=EG=EH,在Rt△EFB和Rt△EHC中,,∴Rt△EFB≌Rt△EHC(HL),∴∠3=∠4.∵BE=CE,∴∠1=∠2.∴∠1+∠3=∠2+∠4即∠ABC=∠DCB,∵ABCD为AD截某三角形所得,且AD不平行BC,∴ABCD是“准等腰梯形”.当点E不在四边形ABCD的内部时,有两种情况:如图3,当点E在BC边上时,同理可以证明△EFB≌△EHC,∴∠B=∠C,∴ABCD是“准等腰梯形”.当点E在四边形ABCD的外部时,四边形ABCD不一定是“准等腰梯形”.分两种情况:情况一:当∠BED的角平分线与线段BC的垂直平分线重合时,四边形ABCD为“准等腰梯形”;情况二:当∠BED的角平分线与线段BC的垂直平分线相交时,四边形ABCD不是“准等腰梯形”.。