水声通信组网技术第二讲 水声信道传输特性
- 格式:ppt
- 大小:1.97 MB
- 文档页数:52
水声通信网络浅析水声通信网络浅析摘要:随着现代信息技术的飞速发展,覆盖了地面、空中、太空、水面的立体信息网已经形成并为各国的通讯、交通、资源调查、国防等各项业务服务。
近年来,随着世界各国海洋开发步伐的加快,发达国家开始对水下声通信网进行研究。
水声通信网络(UWN)承担着探测、数据通信的重要使命。
它通常由海底传感器、自主式水下运载器(AUV)和水面站组成,水面站可进一步与Internet等主干网连接,在这种环境中人们可以从多个水下远程设备提取实时数据,并把控制信息传递给各个设备。
本文将介绍水声通信网络的发展现状、关键技术、具体应用及发展前景。
关键词:水声通信网络发展现状 AUV 1.发展现状目前陆上与空中的有线及无线通信已经很成熟,但是水下无线通信仍处于研究与试用阶段。
随着人类对海洋探索、开发的不断深入,无论是军用领域还是民用领域,都对水下通信有着极大的需求。
尽管在水下可以使用电缆、光缆等有线方式定的鲁棒性。
80年代后期出现了水声相干通信,与非相干通信相比,水声相干通信技术可以提高有限带宽水声信道的带宽效率,但是由于水声信道的传播特性恶劣,水声相干通信刚开始并不被接受。
90年代DSP(digital signal processing,数字信号处理)芯片技术和数字通信理论的发展使许多复杂信道均衡技术均可以实现,带动了水声相干通信技术的发展,并促使其开始转向对水平信道通信的研究。
水下通信发展的一个里程碑式的关键环节是水下声学调制解调器的出现。
最早的水下声学网络应用概念是1993年美国提出的自主海洋采样网(AOSN)。
美国自1998 年起开始了称为“海网(SeaWeb)”的年度实验,意在验证水下声学网络的概念与实际使用效果。
2. 水声通信网络的特点与拓扑水声通信网络的节点有以下几个特点:第一,移动性,因此必须是能够自组织的自主网络,遵循一定的网络路由方式;第二,由于采用水下无线通信方式,因此必须能够自适应海洋环境特性,能够解决物理层的技术挑战;第三,由于采用电池供电,所以能量受到限制;第四,具有数据传播功能,可把监测数据传达到岸上。
水声通信中的信号调制与解调技术研究在当今科技飞速发展的时代,通信技术的重要性日益凸显。
其中,水声通信作为一种特殊的通信方式,在海洋探索、水下监测、军事应用等领域发挥着至关重要的作用。
而信号的调制与解调技术则是水声通信系统中的核心环节,直接影响着通信的质量和效率。
水声通信面临着诸多独特的挑战。
首先,水声信道是一个极其复杂且多变的环境。
与电磁波在空气中传播不同,声波在水中传播时会受到吸收、散射、折射和多径效应等多种因素的影响,导致信号的衰减和失真。
其次,水下环境的噪声水平通常较高,这包括海洋生物发出的声音、水流的噪声以及船舶等机械产生的噪声。
此外,由于水的密度和压力等特性,声波的传播速度相对较慢,限制了通信的带宽和数据传输速率。
为了在如此恶劣的环境中实现可靠的通信,有效的信号调制与解调技术显得尤为关键。
信号调制是将原始信息加载到载波上的过程,其目的是使信号更适合在信道中传输。
在水声通信中,常见的调制方式包括幅度调制(AM)、频率调制(FM)和相位调制(PM)。
幅度调制是最简单的调制方式之一,通过改变载波的幅度来传递信息。
然而,由于水声信道中的衰减较大,幅度调制容易受到噪声的影响,导致信号的可靠性降低。
频率调制则是根据信息改变载波的频率。
这种调制方式在一定程度上能够抵抗信道中的噪声和衰减,因为频率的变化相对较容易检测。
但频率调制也存在一些局限性,例如占用较宽的带宽,在带宽有限的水声信道中可能不太适用。
相位调制通过改变载波的相位来传输信息。
它具有较高的频谱效率,能够在有限的带宽内传输更多的数据。
但相位调制对相位误差较为敏感,在复杂的水声信道中容易出现相位偏移,从而影响解调的准确性。
除了上述传统的调制方式,近年来,一些新型的调制技术也逐渐应用于水声通信中。
例如,正交频分复用(OFDM)技术将可用的频谱分割成多个子载波,每个子载波可以独立地进行调制和解调。
这种技术能够有效地对抗多径效应和频率选择性衰落,提高通信的可靠性和数据传输速率。
水声通信组网及应用一、水声通信组网水声通信网络协议在物理层之上,解决多个节点之间数据传输的问题,主要研究内容包括媒体访问控制协议(MAC)、路由协议、同步和定位技术等。
用于水声通信网络中的竞争性媒体访问控制协议一般可分为以下三类:随机接入的Aloha协议、握手方式的MACAW协议、载波侦听冲突检测的CSMA/CS协议。
CSMA/CS协议需要专门的侦听硬件和算法支持,一般用于吞吐量较大的组网中,在海洋环境监测组网中不常用。
因而,对于海洋环境监测水声通信组网,如果数据较短,采用Aloha 协议,发射端直接使用信道发送数据,收到正确应答即完成一次传输过程,避免握手带来的开销;如果数据较长,采用MACAW协议,在数据发射之前发送端利用握手信号占据信道使用权,保证传输不被其他节点干扰。
路由协议需根据网络的拓扑结构、数据产生的时间周期、数据流的方向、节点布放的灵活性来综合考虑。
对于海洋环境监测,网络拓扑一般中心式拓扑结合多跳转发的结构,图1 所示是2014年5月南中国海试验的结构。
数据传输一般在中心网关和观测节点之间发生,不要求任意两个观测节点之间的相互数据访问。
中心网关向观测节点下发命令,观测数据按固定时间周期经观测潜标回传至中心网关。
大部分观测节点为固定布放,允许移动节点接入。
另外,水声信道的时变特点可能导致链路的短时中断,各节点的电量需要均衡使用,因而要求水声通信网络具有对路由表进行优化的能力。
图1 水声通信网试验的网络拓扑图二、应用情景分析水声网络观测技术的应用情景主要有:(一)海洋立体观测在深海潜标的不同深度设置多个观测节点,在海底布设多个观测站,通过水声通信网络把各观测设备数据传输到主控器,再通过移动节点将数据取走或通过卫星将数据发送到岸站,解决了水下设备难以用电缆连接的问题。
(二)突发事态的海洋观测在出现类似石油平台爆炸沉没、海上油田溢油、水下输油管泄漏等突发污染事故,以及赤潮爆发等突发生态事件时,采用水声网络观测技术可以快速响应,投放位置和传感器类型选择灵活,观测数据实时性和连续性好。
第28卷第6期声学技术Vo l.28,No.6 2009年12月 Technical Acoustics Dec., 2009水声通信与水声网络的发展与应用许肖梅(厦门大学水声通信与海洋信息技术教育部重点实验室,厦门 361005)摘要:水声信道是迄今为止最为复杂的无线通信信道之一,其固有的时-空-频变以及窄带、高噪、强多途、长时延传输等特征,使水声通信和水声网络在性能上还难以满足人们在实际应用中的迫切需求,面临极大的技术挑战。
介绍了水声通信与水声网络的特点和发展现状,分析了复杂多变的水声信道特点及水声通信所要解决的关键技术,包括调制、解调技术和信号检测技术;介绍了水声网络中的拓扑结构、多路访问、MAC协议和路由选择等方法。
最后简要介绍美国Teledyne Benthos 公司的水声Modem和美国海军的海网Seaweb网络及国内在此方面所取得的一些进展及应用前景。
关键词:水声Modem;水声网络;水声信道;Seaweb中图分类号:TB557 文献标识码:A 文章编号:1000-3630(2009)-06-0811-06DOI编码:10.3969/j.issn1000-3630.2009.06.026Development and applications of underwater acousticcommunication and networksXU Xiao-mei(Key Laboratory of Underwater Acoustic Communication and Marine Information Technology,Ministry of Education, Xiamen University, Xiamen 361005, China)Abstract: Underwater acoustic channel is one of the most complex wireless communication channels. The inherent characteristics, such as space-time-frequency varying, narrow-band, high-noise, strong multipath interference, long transmission delay, and large fluctuation, make the effectiveness and reliability of underwater acoustic communication face enormous challenges. In this paper, the features and development of underwater acoustic communications and networks are introduced, the key techniques in UAC and UACN, including modulation, demodulation and signal de-tection analyzed, and the protocol layer in UACN provided. Finally the 4th generation modem made by Benthos and the US Navy‘s Seaweb Program and the perspective on development and application of UAC and UACN in China is illu-minated.Key words: underwater acoustic Modem; underwater acoustic network; underwater acoustic channel; Seaweb1 引言海洋蕴藏着丰富的资源,实现海洋观测、资源勘探与开发是当前各海洋国家最为关注的问题之一。
水声通信实验技术及其应用研究水声通信是一种利用水中的声波传播信息的通信技术。
它是一种浸泡在水中的设备通过声波进行数据传输的技术,广泛应用于水下勘探、海洋观测以及海底资源开发等领域。
本文将对水声通信实验技术及其应用进行研究。
水声通信技术利用声波在水中传播的特性,通过声音的频率、振幅来实现信号的传输。
在水中,声波的传播速度较快,衰减较小,而且水声信道的噪声相对较低,使得水声通信成为了水下通信的重要手段。
为了研究水声通信技术的可行性和性能,人们进行了一系列的实验。
首先,通过设计实验设备,人们可以模拟水下通信环境进行测试。
在实验中,一个发射器将需要传输的信息转换为声波信号并发送到水中。
接收器则接收到信号并转换为可读的信息。
通过调整声波的频率、振幅和编码方式,可以实现不同的传输效果。
实验中还可以测量声波在水中的传播速度和衰减情况,从而更好地理解水声通信技术的特点和限制。
水声通信技术的应用非常广泛。
首先,它在水下勘探中起到了重要作用。
通过水声通信技术,研究人员可以实时传输水下勘探装置收集到的数据,实现对海洋资源的探测和监测。
同时,水声通信技术还可以用于海底资源的开发。
比如,在石油钻探中,水声通信可以实现井下设备和地面指挥中心之间的数据传输,以及井下设备之间的联网。
此外,水声通信技术在海洋观测中也有重要应用。
例如,水声浮标可以通过水声通信技术将海洋中的观测数据传输回地面实验室,供研究人员进行分析和研究。
同时,水声通信技术还可以用于海底地震监测。
通过在海底布设水声传感器网络,可以实时监测海底地震活动,提前预警并防范海啸等自然灾害。
此外,水声通信技术还有一些特殊的应用。
比如,在水下考古中,研究人员可以利用水声通信技术对沉船或古代遗迹进行定位和勘测。
另外,在水下潜艇通信中,水声通信技术也扮演着重要角色。
通过潜艇发出声波信号,可以与海上指挥中心进行无线通信,实现沟通和指挥。
总体而言,水声通信技术是一种在水下进行通信的重要手段。
水声通信信道建模及信号检测技术研究水声通信是一种利用水介质进行通信传输的技术,其信道特性的建模和信号检测技术的研究对于水声通信系统的设计和性能提升具有重要意义。
本文将对水声通信信道的建模方法及信号检测技术进行综述,展示当前研究进展和未来发展方向。
水声通信信道建模是研究水声通信的基础工作之一,主要通过对水声信道的特性进行建模和分析,为水声通信系统的设计和性能评估提供理论支持。
根据水声通信信道的特点,一般可以将其建模为时变、多径、多路徑衰落且噪声干扰较大的信道。
具体的建模方法包括几何模型、传输模型和统计模型等。
几何模型通过建立海底和海面几何形状、声源位置和接收器位置等信息,来预测水声信号的传播损耗和传播路径。
传输模型则是基于声波传播的物理特性和扩散特性进行建模,通过模拟诸如反射、折射、散射等传播效应来描述水声信道。
统计模型则通过对实际采集到的水声信号进行统计分析来提取相关的信道参数,并基于这些参数构建信道模型。
信号检测技术是水声通信系统中关键的研究内容之一,其目的是在复杂的水声信道中,通过设计有效的检测算法来实现对发送信号的准确接收。
由于水声信道的时变性和多普勒效应等因素的影响,传统的通信系统中常用的信号检测技术在水声通信中并不适用。
因此,研究者们提出了许多针对水声通信信道的信号检测算法。
其中,常用的方法包括:1.盲源分离算法:利用信号的独立性和非高斯性来从混合信号中分离出原始信号。
通过将混合信号与水声通信信道建模进行比较,可以实现盲源分离和信号检测。
2.自适应均衡算法:通过对接收到的信号进行均衡处理,抵消信道引起的时移和符号间干扰。
自适应均衡算法在估计信道响应的同时,实时调整均衡滤波器的系数,以适应信道变化。
3.多解码器组合算法:将多个解码器输出的结果进行组合,通过结合不同解码器的输出信息提高系统的译码性能。
4.采用智能算法:如神经网络和遗传算法等,用于优化信号检测算法的参数设置,提高检测性能。
除了上述方法,还有一些新兴的技术正在被研究和应用到水声通信中,例如多输入多输出(MIMO)技术、空时编码技术等,这些技术可以提高水声信道容量和系统的可靠性。
水声通信技术进展随着科技的快速发展,水声通信技术已经成为海洋探测和通信的重要手段。
水声通信技术是一种利用声波在水下进行信息传输的技术,具有传输距离远、抗干扰能力强、传输速度快等优点,被广泛应用于海洋资源开发、水下考古、军事等领域。
本文将介绍水声通信技术的发展现状及未来趋势。
一、水声通信技术的概述水声通信技术是一种利用声波在水下进行信息传输的技术。
水声通信系统由发送端和接收端组成,发送端将信息编码成声波信号,通过水介质传播到接收端,接收端解码声波信号并恢复出原始信息。
水声通信技术可以广泛应用于海洋资源开发、水下考古、军事等领域。
二、水声通信技术的发展现状1、国外水声通信技术的发展现状随着全球经济的不断发展,各国对于海洋资源的开发越来越重视。
因此,水声通信技术成为了一个热门领域。
在国外,美国、俄罗斯、日本等国家都在水声通信技术方面进行了大量的研究和实践,取得了很多成果。
例如,美国科学家研制出了一种名为“海卫”的水声通信系统,该系统可以在水下传输高速数据,并且具有很强的抗干扰能力。
2、国内水声通信技术的发展现状在我国,水声通信技术也得到了越来越多的和研究。
中国海洋大学、中科院声学研究所等科研机构在此领域进行了深入研究,并取得了一系列的科研成果。
例如,中国海洋大学研制出了一种名为“海之语”的水声通信系统,该系统可以在水下传输语音、文字和图片等多种类型的信息。
三、水声通信技术的未来趋势1、高速率传输由于水声通信技术的传输速率受到很多因素的影响,例如水的温度、盐度、压力等,因此提高传输速率成为了水声通信技术的一个重要方向。
未来,水声通信技术将会向着高速率传输的方向发展,以实现更快速的数据传输和更高效的通信。
2、远距离传输远距离传输是水声通信技术的另一个重要方向。
目前,水声通信技术的传输距离还受到很多限制,因此提高传输距离成为了未来发展的重要方向。
未来,水声通信技术将会向着更远距离传输的方向发展,以实现更广泛的通信覆盖范围。
水声通信技术的研究与发展随着科技的不断发展,水声通信技术也得到了越来越多的关注和发展。
水声通信技术是一种利用水作为传递信号媒介,进行语音、数据传输和定位的技术。
它具有传输距离远、信号稳定、抗干扰能力强等特点,被广泛应用于海洋、水下勘探、海底资源开发和军事通信等领域中。
一、水声通信技术的研究现状目前,国内外对水声通信技术的研究已经取得了一定的成果,并且在一些特定领域的应用也得到了广泛的推广和应用。
例如,在海洋勘探中,水声通信技术可以通过声波将数据传输到远处,达到远距离数据收发的目的。
而在军事通信方面,水声通信技术也可以利用水的特性来进行保密通信,确保传输的安全可靠。
二、水声通信技术的研究重点在水声通信技术的研究中,主要集中在以下几个方面:1.声信号的设计与制备水声通信技术的关键在于声信号的设计与制备。
目前,国内外的研究者们已经提出了多种不同的声信号的设计方法,并且在实验室中进行了验证。
例如,可以通过信号处理技术来设计适合不同场景的声信号,使其具有更好的传输性能。
2.水声通信中的信道建模与优化在水声通信中,信道建模与优化也是影响通信性能的重要因素之一。
建立合理的信道模型并且进行优化可以帮助提升通信质量,并且减少通信误差率。
3.水声通信技术中的混杂环境处理在实际应用中,水声通信技术有时会受到周围噪声的干扰,从而影响通信信号的传输质量。
因此,在水声通信技术中,如何处理混杂环境的信号干扰问题,也是研究的重点之一。
4.水声通信技术中的多路信号传输多路信号传输是水声通信技术中一个非常重要的方向。
在水下勘探、海洋资源开发等领域中,需要同时传输多路信息,因此如何设计多路信号传输方案,也是水声通信技术研究中的一个重要问题。
三、水声通信技术的未来发展随着社会的不断发展,水声通信技术也将不断得到创新和发展。
未来,我们可以望到水声通信技术在以下几个方面的新进展:1. 水声通信技术的自适应算法随着人工智能技术的不断发展,自适应算法也在水声通信技术中得到广泛应用。