晶闸管的基本特性
- 格式:ppt
- 大小:626.50 KB
- 文档页数:29
1.5双向晶闸管双向晶闸管(TRIAC,Bidirectional Triode Thyrister,Triode AC Switch)是把两个反并联的晶闸管集成在同一硅片上,用一个门极控制触发的组合型器件。
这种结构使它在两个方向都具有和晶闸管同样的对称的开关特性,且伏安特性相当于两只反向并联的晶闸管,不同的是它由一个门极进行两个方向控制,因此可以认为是一种控制交流功率的理想器件,主要应用于交流无触点继电器、交流相位控制等。
1.5.1双向晶闸管的基本结构和伏安特性双向晶闸管是一种交流器件,其伏安特性是对称的。
即正向或反向都具有能触发导通的开关特性,因此无所谓阳极与阴极。
通常,把通向主回路的两个引出端子分别称为Tl,T2端,并假定靠近门极的端子为T1端,也就是常规的阴极,见图1.9。
1、特性与符号双向晶闸管的外形与普通晶闸管相同,也有塑封式、螺栓式和平板式,也有三个电极,其中一个是门极G,另外两个则分别叫做第一阳极和第二阳极。
图1.9(a)给出了双向晶闸管的典型结构。
它内部有NPNPN五层结构;T2,Tl,G为三个引出端子。
其中P1N1P2N2 称为正向晶闸管,其伏安特性画在第1象限,称为(I)特性。
而把与正向晶闸管反向并联的N4P1N1P2 称为反向晶闸管,其伏安特性画在第1II象限,称为(111)特性。
如图1.9(b)所示,这两个晶闸管的触发导通都是由门极G来控制的。
2、触发方式双向晶闸管的触发信号加在门极与第一阳极之间。
不论触发信号的极性如何,都能被触发。
因此可用交流信号做触发信号。
因双向晶闸管的主电路加正、反向电压都能被触发的特性双向晶闸管的触发方式有四种。
(1)Ⅰ+触发方式:曲线在第一象限,a2为正,a1为负,g对a1为正。
(2)Ⅰ-触发方式:曲线在第一象限,a2为正,a1为负,g对a1为负。
(3)Ⅲ+触发方式:曲线在第三象限,a2为负,a1为正,g对a1为正(4)Ⅲ-触发方式:曲线在第三象限,a2为负,a1为正,g对a1为负四种触发方式中其中以Ⅲ+方式要求触发电流最大,因而触发灵敏度最低,使用中应尽量避免使用这种触发方式。
晶闸管的工作原理在中频炉中整流侧关断时间采用KP-60微秒以内,逆变侧关短时间采用KK-30微秒以内这也是KP管与KK管的主要区别晶闸管T在工作过程中,它的阳极A和阴极K与电源和负载连接,组成晶闸管的主电路,晶闸管的门极G和阴极K与控制晶闸管的装置连接,组成晶闸管的控制电路。
晶闸管的工作条件:1. 晶闸管承受反向阳极电压时,不管门极承受和种电压,晶闸管都处于关短状态。
2. 晶闸管承受正向阳极电压时,仅在门极承受正向电压的情况下晶闸管才导通。
3. 晶闸管在导通情况下,只要有一定的正向阳极电压,不论门极电压如何,晶闸管保持导通,即晶闸管导通后,门极失去作用。
4. 晶闸管在导通情况下,当主回路电压(或电流)减小到接近于零时,晶闸管关断。
从晶闸管的内部分析工作过程:晶闸管是四层三端器件,它有J1、J2、J3三个PN结图1,可以把它中间的NP分成两部分,构成一个PNP型三极管和一个NPN型三极管的复合管图2当晶闸管承受正向阳极电压时,为使晶闸管导铜,必须使承受反向电压的PN结J2失去阻挡作用。
图2中每个晶体管的集电极电流同时就是另一个晶体管的基极电流。
因此,两个互相复合的晶体管电路,当有足够的门机电流Ig流入时,就会形成强烈的正反馈,造成两晶体管饱和导通,晶体管饱和导通。
设PNP 管和NPN管的集电极电流相应为Ic1和Ic2;发射极电流相应为Ia和Ik;电流放大系数相应为a1=Ic1/Ia和a2=Ic2/Ik,设流过J2结的反相漏电电流为Ic0,晶闸管的阳极电流等于两管的集电极电流和漏电流的总和:Ia=Ic1+Ic2+Ic0 或Ia=a1Ia+a2Ik+Ic0若门极电流为Ig,则晶闸管阴极电流为Ik=Ia+Ig从而可以得出晶闸管阳极电流为:I=(Ic0+Iga2)/(1-(a1+a2))(1—1)式硅PNP管和硅NPN管相应的电流放大系数a1和a2随其发射极电流的改变而急剧变化如图3所示。
当晶闸管承受正向阳极电压,而门极未受电压的情况下,式(1—1)中,Ig=0,(a1+a2)很小,故晶闸管的阳极电流Ia≈Ic0 晶闸关处于正向阻断状态。
晶闸管的导通条件和关断条件晶闸管是一种广泛使用的半导体器件,可以实现高功率的电控制。
晶闸管的导通条件和关断条件是晶闸管工作的基本原理,也是晶闸管的设计和应用的关键。
本文将详细介绍晶闸管的导通条件和关断条件,包括物理原理、数学模型和实际应用。
一、晶闸管的物理原理晶闸管是一种四层PNPN结构的半导体器件,由一个P型区、一个N型区、一个P型区和一个N型区组成。
晶闸管的导通和关断是通过控制PNPN结中的正向和反向电压来实现的。
当晶闸管的控制端施加一个正向脉冲信号时,PNPN结中的P型区和N型区之间的正向电压将增加,当正向电压达到一定值时,PNPN 结中的P型区和N型区之间的空穴和电子会发生复合,形成一个电子流,晶闸管开始导通。
导通时晶闸管的电压降低至低电平,电流增加至高电平。
当晶闸管的控制端施加一个反向脉冲信号时,PNPN结中的N型区和P型区之间的反向电压将增加,当反向电压达到一定值时,PNPN 结中的N型区和P型区之间的电子和空穴会发生复合,形成一个电流,晶闸管开始关断。
关断时晶闸管的电压升高至高电平,电流降低至低电平。
晶闸管的导通和关断是通过控制PNPN结中的正向和反向电压来实现的,因此晶闸管的导通和关断条件与PNPN结的物理特性密切相关。
下面将介绍晶闸管的导通条件和关断条件的数学模型。
二、晶闸管的导通条件晶闸管的导通条件是指晶闸管开始导通的最小正向电压。
根据PNPN结的物理特性,晶闸管的导通条件可以用下式表示:Vgt = Vf + Vr + Vp其中,Vgt为晶闸管的触发电压,Vf为PNPN结的正向电压,Vr 为PNPN结的反向电压,Vp为PNPN结的电压降。
PNPN结的正向电压Vf取决于PNPN结的材料和掺杂浓度,通常在0.5V至0.7V之间。
PNPN结的反向电压Vr取决于PNPN结的击穿电压,通常在20V至200V之间。
PNPN结的电压降Vp取决于PNPN结中的电流和电阻,通常在0.1V至0.5V之间。