计量经济学重点
- 格式:doc
- 大小:29.00 KB
- 文档页数:3
第一章绪论1、什么是计量经济学?由哪三组组成?答:计量经济学是经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科。
统计学、经济理论和数学三者结合起来便构成了计量经济学。
2、计量经济学的内容体系,重点是理论计量和应用计量和经典计量经济学理论方法方面的特征答:1)广义计量经济学和狭义计量经济学 2)初、中、高级计量经济学3)理论计量经济学和应用计量经济理论计量经济学是以介绍、研究计量经济学的理论与方法为主要内容,侧重于理论与方法的数学证明与推导,与数理统计联系极为密切。
除了介绍计量经济模型的数学理论基础、普遍应用的计量经济模型的参数估计方法与检验方法外,还研究特殊模型的估计方法与检验方法,应用了广泛的数学知识。
应用计量经济学则以建立与应用计量经济学模型为主要内容,强调应用模型的经济学和经济统计学基础,侧重于建立与应用模型过程中实际问题的处理。
本课程是二者的结合。
4)、经典计量经济学和非经典计量经济学经典计量经济学(Classical Econometrics)一般指20世纪70年代以前发展并广泛应用的计量经济学。
经典计量经济学在理论方法方面特征是:⑴模型类型—随机模型;⑵模型导向—理论导向;⑶模型结构—线性或者可以化为线性,因果分析,解释变量具有同等地位,模型具有明确的形式和参数;⑷数据类型—以时间序列数据或者截面数据为样本,被解释变量为服从正态分布的连续随机变量;⑸估计方法—仅利用样本信息,采用最小二乘方法或者最大似然方法估计模型。
经典计量经济学在应用方面的特征是:⑴应用模型方法论基础—实证分析、经验分析、归纳;⑵应用模型的功能—结构分析、政策评价、经济预测、理论检验与发展;⑶应用模型的领域—传统的应用领域,例如生产、需求、消费、投资、货币需求,以及宏观经济等。
5)、微观计量经济学和宏观计量经济学3、为什么说计量经济学是经济学的一个分支?(4点和综述)答:(1)、从计量经济学的定义看(2)、从计量经济学在西方国家经济学科中的地位看(3)、从计量经济学与数理统计学的区别看(4)、从建立与应用计量经济学模型的全过程看综上所述,计量经济学是一门经济学科,而不是应用数学或其他。
第一章 导论1、什么是计量经济学模型?它有哪些要素?要素的内容是什么?计量经济模型就是经济变量之间所存在的随机关系的一种数学表达式,其一般形式为: 模型由经济变量(x,y ),随机误差项(u ),参数(β)和方程的形式 f (▪)等四个要素构成。
经济变量(x,y )——用于描述经济活动水平的各种量,是经济计量建模的基础随机误差项(u )——表示模型中尚未包含的影响因素对因变量的影响,一般假定其满足一定条件。
参数(β)——是模型中表示变量之间 数量关系的系数,具体说明解释变量对解释变量的影响程度。
方程的形式 f (▪) ——是将计量经济模型的三个要素联系在一起的数学表达式,分为线性模型和非线性模型。
2、经典计量经济学模型的建模步骤及主要内容是什么?经典计量建模可分为四个连续的阶段:模型设定,参数估计,模型检验,模型应用。
模型设定阶段需研究有关经济理论并确定变量以及函数形式,进行样本数据的收集与整理;模型的参数估计阶段要用到统计推断、回归分析方法,经常需要借助于统计软件的帮助得到参数的估计结果,参数一经确定,模型中各变量之间的关系就确定了,模型也就随之确定了。
参数估计的主要方法有最小平方法(OLS )及其拓展形式(GLS 、WLS 、2StageLS 等)、最大似然估计法、数值计算法等;模型检验包括经济意义检验、统计检验、计量经济检验;模型可应用于验证与发展经济理论、结构分析、经济预测、政策评价等方面。
3、数据及数据类型变量的具体取值称为数据(Data)。
数据是经济计量分析的原材料,根据形式不同,数据分为时间序列数据、横截面数据和合并数据。
1.时间序列数据(Time series data )是按时间顺序排列而成的数据。
2.截面数据(Cross sectional data )又称横断面数据,是指在同一时间,不同统计单位的相同统计指标组成的数据列。
3.合并数据(Pooled data )是指既有时间序列数据又有横截面数据。
1、经济变量:用来描述经济因素数量水平的指标。
2、解释变童:用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。
它对因变量的变额为发热所引5动做出解释。
3、被解释变量:是作为研究对象的变量。
它的变动是由•解释变量做出廉释的4、控制变量:在计量经济模型中人为设置的反映政黃要求、决策者意愿、经济系统运行条件和状态等方面的变量。
5、计量经济模型:为了研究分析某个系统中经济变量之问的数量关系而采用的随机代数模型。
6、相关关系:如果一个变量y的取值受另一个变量或另一组变量的彩响.但并不由它们惟一确定,则y与这个变量或这组变量之问的关系就是相关关系。
7、最小二乘法:用使估计的剩余平方和最小的原则确定样本回归函数的方法。
8、拟合优度:样本回归直线与样本观测数据之问的拟合程度。
(9、残差:样本回归方程的拟合值与观測值的误差。
10、显著性检验:利用样本结果,来证实一个虚拟假设的真伪的一种检豔程序。
11、偏相关系数:在Y. X|. 1三个变量中,当儿既定时,表示Y与X2之问相关关系的指标。
12、异方差性:在线性回归模型中,如果随机误差项的方差不是常数,即对不同的解释变量观测值彼此不同,则称葩机项U1具有异方差性。
13、序列相关性:对于模型Xi = % + 妙九 +色乜+•••+%%+“i = 12 …屮菠机误差项互相独立的基本假设表现为C"(冷"” =0 /> j,i,j = \2…』(I分)如果出现Cov(比,“ J) H 0 i H人i J = 12…屮即对于不同的样本点•随机误差项之问不再是完全互相独立,而是存在某种相关性,则认为出现了序列相关性。
14、自回归模型:15、广乂最小二乘法:是最有普遍意义的最小二乘法,普通最小二乘法和加权最小二乘法是它的特例。
16、相关系数:度量变量之问相关程度的一个系数,一般用P表示。
17、多重共线性:解释变量之问存在完全或不完全的线性关系。
计量经济学重点知识整理计量经济学是经济学中重要的一个分支,主要研究经济现象和经济理论的数理化方法。
本文将整理计量经济学中的重点知识,帮助读者系统地理解和掌握这门学科。
一、计量经济学简介计量经济学是运用统计方法和经济模型对经济问题进行定量分析的学科。
它利用数理统计学的工具,根据经济理论和实证研究的需要,对经济现象进行测度和解释。
计量经济学方法的特点是同时考虑了外生性和内生性变量之间的关系,能够揭示其中的因果关系。
二、计量经济学的基本原理1. 线性回归模型线性回归模型是计量经济学中最基本的模型之一,用于描述因变量与自变量之间的线性关系。
常见的线性回归模型有简单线性回归模型和多元线性回归模型。
对于简单线性回归模型,可以通过最小二乘法估计模型参数,求得最佳拟合曲线。
而多元线性回归模型则通过矩阵运算推导出参数的估计公式。
2. 假设检验在计量经济学中,假设检验是一种重要的统计方法,用于验证经济理论的假设。
常见的假设检验包括 t 检验、F 检验和卡方检验等。
通过构建原假设和备择假设,并计算相应的统计量,可以对经济理论提出的假设进行检验,从而得出结论。
3. 时间序列分析时间序列分析是计量经济学中的一个重要分支,用于研究随时间变化的经济现象。
常见的时间序列分析方法包括自相关函数(ACF)和偏自相关函数(PACF)的计算,以及平稳性检验、白噪声检验、单位根检验等。
这些方法可以帮助我们了解时间序列数据的性质,并进行有效的预测。
4. 面板数据分析面板数据是计量经济学中常用的一种数据类型,指同一时期内多个个体或单位的多个观测数据。
面板数据分析方法可以更好地解决普通截面数据和时间序列数据的缺陷,提高分析的效果。
常见的面板数据模型包括固定效应模型和随机效应模型,通过估计模型参数,可以得到各个因素对经济变量的影响。
三、计量经济学的应用领域1. 消费者行为分析计量经济学方法可以应用于消费者行为的分析,通过对消费者支出和收入等因素的测度和分析,揭示消费者行为背后的规律。
1 •计量经济学是以揭示经济活动中客观存在的为内容的分支学科,挪威经济学家弗里希,将计量经济学定义为__、—、—三者的结合。
2.被解释变量的观测值乙与其刨归理论值E(y)z间的偏差,称为 _;被解释变量的观测值齐与其回归估计值Z之间的偏差,称为______ O3.在多元线性回归模型屮,解释变量间呈现线性关系的现象称为一性问题,给计量经济建模带來不利影响,因此需检验和处理它。
4.以时间序列数据为样本建立起来的计量经济模型中的随机误差项往往存在—5.普通最小二乘法得到的参数估计量具有_、__ _、统计性质。
1 •时间序列数据和横截面数据有何不同?2.给定一元线性凹归模型:乙=0o +卩K +角t =1,2,…,兀(1)叙述模型的基本假泄;(2)写出参数0。
和几的最小二乘估计公式;(3)说明满足基本假定的最小二乘估计量的统计性质;(4)写出随机扰动项方羌的无偏估计公式。
5.随机误差项包含哪些彫响因素?1、判断模型是否存在异方差的主要方法包括 ____________ 、_____________ 、2、处理模型屮异方差的主要方法是________________ o3、检验模型中是否存在序列自相关的方法有____________4、处理模型中序列自和关的方法是_____________ 和____________ o5、处理模型中多重共线性的方法_____________ o1、建立与应用计量经济学模型要经过那些主要步骤?(8分。
2、多元回归模型中应用普通最小二乘法的基木假设是什么?(6分)3、在多元线性回归中,t检验与F检验有何不同?在一元线性回归分析中,二者是否有等价作用(6分)?1、下列模型是否属于因果关系的计量经济学模型?为什么?(4分)(1)S F112.0+0. 12R t,其中St为第t年农村居民储蓄增加额(单位:亿元),乩为第t 年城镇居民可支配收入总额(单位:亿元)。
(2)S t=112・0+0.12R“ 其中St为第t年底农村居民储蓄余额(单位:亿元),—为第t-l 年农村居民可支配收入总额(单位:亿元)。
计量经济学知识点汇总1. 变量类型
- 连续变量和离散变量
- 定量变量和定性变量
- 内生变量和外生变量
2. 数据类型
- 横截面数据
- 时间序列数据
- 面板数据
3. 回归分析
- 简单线性回归
- 多元线性回归
- 非线性回归模型
4. 估计方法
- 普通最小二乘法(OLS)
- 加权最小二乘法(WLS)
- 极大似然估计法(MLE)
5. 假设检验
- t检验
- F检验
- 拉格朗日乘数检验
6. 模型诊断
- 异方差性
- 自相关
- 多重共线性
7. 面板数据模型
- 固定效应模型
- 随机效应模型
- hausman检验
8. 时间序列分析
- 平稳性和单位根检验
- 自回归模型(AR)
- 移动平均模型(MA)
- 自回归移动平均模型(ARMA)
9. 计量经济学软件
- Stata
- EViews
- R
10. 应用领域
- 宏观经济分析
- 微观经济分析
- 金融经济分析
- 政策评估
以上是计量经济学的一些主要知识点,涵盖了变量类型、数据类型、回归分析、估计方法、假设检验、模型诊断、面板数据模型、时间序列分析等内容,以及常用的计量经济学软件和应用领域。
计量经济学重点知识整理1一般性定义计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
研究的主体(出发点、归宿、核心):经济现象及数量变化规律研究的工具(手段):模型数学和统计方法必须明确:方法手段要服从研究对象的本质特征(与数学不同),方法是为经济问题服务2注意:计量经济研究的三个方面理论:即说明所研究对象经济行为的经济理论——计量经济研究的基础数据:对所研究对象经济行为观测所得到的信息——计量经济研究的原料或依据方法:模型的方法与估计、检验、分析的方法——计量经济研究的工具与手段三者缺一不可3计量经济学的学科类型●理论计量经济学研究经济计量的理论和方法●应用计量经济学:应用计量经济方法研究某些领域的具体经济问题4区别:●经济理论重在定性分析,并不对经济关系提供数量上的具体度量●计量经济学对经济关系要作出定量的估计,对经济理论提出经验的内容5计量经济学与经济统计学的关系联系:●经济统计侧重于对社会经济现象的描述性计量●经济统计提供的数据是计量经济学据以估计参数、验证经济理论的基本依据●经济现象不能作实验,只能被动地观测客观经济现象变动的既成事实,只能依赖于经济统计数据6计量经济学与数理统计学的关系联系:●数理统计学是计量经济学的方法论基础区别:●数理统计学是在标准假定条件下抽象地研究一般的随机变量的统计规律性;●计量经济学是从经济模型出发,研究模型参数的估计和推断,参数有特定的经济意义,标准假定条件经常不能满足,需要建立一些专门的经济计量方法3、计量经济学的特点:计量经济学的一个重要特点是:它自身并没有固定的经济理论,而是根据其它经济理论,应用计量经济方法将这些理论数量化。
4、计量经济学为什么是一门单独的学科计量经济学是经济理论、数理经济、经济统计与数理统计的混合物。
1、经济理论所作的陈述或假说大多数是定性性质的,计量经济学对大多数经济理论赋予经验内容。
计量经济学复习要点第1章 绪论数据类型:截面、时间序列、面板用数据度量因果效应,其他条件不变的概念 习题:C1、C2第2章 简单线性回归回归分析的基本概念,常用术语现代意义的回归是一个被解释变量对若干个解释变量依存关系的研究,回归的实质是由固定的解释变量去估计被解释变量的平均值;简单线性回归模型是只有一个解释变量的线性回归模型; 回归中的四个重要概念1. 总体回归模型Population Regression Model,PRMt t t u x y ++=10ββ--代表了总体变量间的真实关系;2. 总体回归函数Population Regression Function,PRFt t x y E 10)(ββ+=--代表了总体变量间的依存规律;3. 样本回归函数Sample Regression Function,SRFtt t e x y ++=10ˆˆββ--代表了样本显示的变量关系; 4. 样本回归模型Sample Regression Model,SRMtt x y 10ˆˆˆββ+=---代表了样本显示的变量依存规律; 总体回归模型与样本回归模型的主要区别是:①描述的对象不同;总体回归模型描述总体中变量y 与x 的相互关系,而样本回归模型描述所关的样本中变量y 与x 的相互关系;②建立模型的依据不同;总体回归模型是依据总体全部观测资料建立的,样本回归模型是依据样本观测资料建立的;③模型性质不同;总体回归模型不是随机模型,而样本回归模型是一个随机模型,它随样本的改变而改变;总体回归模型与样本回归模型的联系是:样本回归模型是总体回归模型的一个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型; 线性回归的含义线性:被解释变量是关于参数的线性函数可以不是解释变量的线性函数 线性回归模型的基本假设简单线性回归的基本假定:对模型和变量的假定、对随机扰动项u 的假定零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定 普通最小二乘法原理、推导最小二乘法估计参数的原则是以“残差平方和最小”;Min21ˆ()niii Y Y =-∑01ˆˆ(,)ββ: 1121()()ˆ()nii i n ii XX Y Y X X ==--β=-∑∑ , 01ˆˆY X β=-βOLS 的代数性质拟合优度R 2离差平方和的分解:TSS=ESS+RSS“拟合优度”是模型对样本数据的拟合程度;检验方法是构造一个可以表征拟合程度的指标——判定系数又称决定系数;121SSE SST SSR SSRR SST SST SST-===-,表示回归平方和与总离差平方和之比;反映了样本回归线对样本观测值拟合优劣程度的一种描述; 2 2[0,1]R ∈;3 回归模型中所包含的解释变量越多,2R 越大改变度量单位对OLS 统计量的影响函数形式对数、半对数模型系数的解释101ˆˆˆi iY X =β+β:X 变化一个单位Y 的变化 201ˆˆˆln ln i i Y X =β+β: X 变化1%,Y 变化1ˆβ%,表示弹性; 301ˆˆˆln i i Y X =β+β:X 变化一个单位,Y 变化百分之1001ˆβ 401ˆˆˆln i i Y X =β+β:X 变化1%,Y 变化1ˆβ%; OLS 无偏性,无偏性的证明 OLS 估计量的抽样方差 误差方差的估计 OLS 估计量的性质1线性:是指参数估计值0β和1β分别为观测值t y 的线性组合; 2无偏性:是指0β和1β的期望值分别是总体参数0β和1β; 3最优性最小方差性:是指最小二乘估计量0β和1β在在各种线性无偏估计中,具有最小方差;高斯-马尔可夫定理OLS 参数估计量的概率分布2^22()iVar x σβ=∑OLS 随机误差项μ的方差σ2的估计 简单回归的高斯马尔科夫假定 对零条件均值的理解习题:4、5、6;C2、C3、C4第3章 多元回归分析:估计1、变量系数的解释剔除、控制其他因素的影响对斜率系数1ˆβ的解释:在控制其他解释变量X2不变的条件下,X1变化一个单位对Y 的影响;或者,在剔除了其他解释变量的影响之后,X1的变化对Y 的单独影响2、多元线性回归模型中对随机扰动项u 的假定,除了零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定以外,还要求满足无多重共线性假定;3、多元线性回归模型参数的最小二乘估计式;参数估计式的分布性质及期望、方差和标准误差;在基本假定满足的条件下,多元线性回归模型最小二乘估计式是最佳线性无偏估计式;最小二乘法 OLS 公式:Y ' X X)' (X ˆ-1=β 估计的回归模型:的方差协方差矩阵:残差的方差 : 估计的方差协方差矩阵是: 拟合优度 遗漏变量偏误 多重共线性多重共线性的概念多重共线性的后果 多重共线性的检验 多重共线性的处理习题:1、2、6、7、8、10;C2、C5、C6第4章 多元回归分析:推断经典线性模型假定 正态抽样分布2^22i e n σ=-∑变量显着性检验,t 检验 检验β值的其他假设 P 值实际显着性与统计显着性 检验参数的一个线性组合假设 多个线性约束的检验:F 检验 理解排除性约束 报告回归结果习题:1、2、3、4、6、7、10、11;C3、C5、C8第6章 多元回归分析:专题测度单位对OLS 统计量的影响 进一步理解对数模型 二次式的模型 交互项的模型 拟合优度修正可决系数的作用和方法;习题:1、3、4、7;C2、C3、C5、C9、C12第7章 虚拟变量虚拟变量的定义如何引入虚拟变量:如果一个变量分成N 组,引入该变量的虚拟变量形式是只能放入N-1个虚拟变量 虚拟变量系数的解释虚拟变量系数的解释:不同组均值的差基准组或对照组与处理组 以下几种模型形式表达的不同含义;1tt t t u D X Y +++=210βββ:截距项不同; 2tt t t t u X D X Y +++=210βββ:斜率不同;3tt t t t t u X D D X Y ++++=3210ββββ:截距项与斜率都不同;其中D 是二值虚拟变量,X 是连续的变量;虚拟变量陷阱虚拟变量的交互作用习题:2、4、9;C2、C3、C6、C7、C11第8章异方差异方差的后果异方差稳健标准误BP检验异方差的检验White检验加权最小二乘法习题:1、2、3、4;C1、C2、C8、C9Eviews回归结果界面解释表计量经济学复习题第1章习题:C1、C2第2章习题:4、5、6;C2、C3、C4第3章习题:1、2、6、7、8、10;C2、C5、C6 第4章习题:1、2、3、4、6、7、10、11;C3、C5、C8 第6章习题:1、3、4、7;C2、C3、C5、C9、C12 第7章习题:2、4、9;C2、C3、C6、C7、C11 第8章习题:1、2、3、4;C1、C2、C8、C9 1、判断下列表达式是否正确2469 2、给定一元线性回归模型:1叙述模型的基本假定;2写出参数0β和1β的最小二乘估计公式; 3说明满足基本假定的最小二乘估计量的统计性质; 4写出随机扰动项方差的无偏估计公式; 3、对于多元线性计量经济学模型:1该模型的矩阵形式及各矩阵的含义; 2对应的样本线性回归模型的矩阵形式; 3模型的最小二乘参数估计量;4、根据美国1961年第一季度至1977年第二季度的数据,我们得到了如下的咖啡需求函数的回归方程:D D D P I P t t t t t t tT Q 321'0097.0157.00961.00089.0ln 1483.0ln 5115.0ln 1647.02789.1ˆln ----++-=其中,Q=人均咖啡消费量单位:磅;P=咖啡的价格以1967年价格为不变价格;I=人均可支配收入单位:千元,以1967年价格为不变价格;P '=茶的价格1/4磅,以1967年价格为不变价格;T=时间趋势变量1961年第一季度为1,…,1977年第二季度为66;D 1=1:第一季度;D 2=1:第二季度;D 3=1:第三季度; 请回答以下问题:① 模型中P 、I 和P '的系数的经济含义是什么 ② 咖啡的需求是否很有弹性③ 咖啡和茶是互补品还是替代品 ④ 你如何解释时间变量T 的系数 ⑤ 你如何解释模型中虚拟变量的作用 ⑥ 哪一个虚拟变量在统计上是显着的 ⑦ 咖啡的需求是否存在季节效应5、为研究体重与身高的关系,我们随机抽样调查了51名学生其中36名男生,15名女生,并得到如下两种回归模型:h W5662.506551.232ˆ+-= t=h D W7402.38238.239621.122ˆ++-= t=其中,Wweight=体重 单位:磅;hheight=身高 单位:英寸 请回答以下问题:① 你将选择哪一个模型为什么② 如果模型确实更好,而你选择了,你犯了什么错误 ③ D 的系数说明了什么6、简述异方差对下列各项有何影响:1OLS 估计量及其方差;2置信区间;3显着性t 检验和F 检验的使用;4预测;7、假设某研究者基于100组三年级的班级规模CS 和平均测试成绩TestScore 数据估计的OLS 回归为:(1) 若某班级有22个学生,则班级平均测试成绩的回归预测值是多少 (2) 某班去年有19个学生,而今年有23个学生,则班级平均测试成绩变化的回归预测值是多少(3) 100个班级的样本平均班级规模为,则这100个班级的样本平均测试成绩是多少(4) 100个班级的测试成绩样本标准差是多少提示:利用R 2和SER 的公式 (5) 求关于CS 的回归斜率系数的95%置信区间;(6) 计算t 统计量,根据经验法则t=2来判断显着性检验的结果; 8、设从总体中抽取一容量为200的20岁男性随机样本,记录他们的身高和体重;得体重对身高的回归为:其中体重的单位是英镑,身高的单位是英寸;(1) 身高为70英寸的人,其体重的回归预测值是多少65英寸的呢74英寸的呢(2) 某人发育较晚,一年里蹿高了英寸;则根据回归预测体重增加多少 (3) 解释系数值和的含义;(4)假定不用英镑和英寸度量体重和身高而分别用厘米和千克,则这个新的厘米-千克回归估计是什么给出所有结果,包括回归系数估计值,R2和SER;(5)基于回归方程,能对一个3岁小孩的体重假设身高1米作出可靠预测吗9、假设某研究使用250名男性和280名女性工人的工资Wage数据估计出如下OLS回归:标准误其中WAGE的单位是美元/小时,Male为男性=1,女性=0的虚拟变量;用男性和女性的平均收入之差定义工资的性别差距;1性别差距的估计值是多少2计算截距项和Male系数的t统计量,估计出的性别差距统计显着不为0吗5%显着水平的t统计量临界值为3样本中女性的平均工资是多少男性的呢4对本回归的R2你有什么评论,它告诉了你什么,没有告诉你什么这个很小的R2可否说明这个回归模型没有什么价值5另一个研究者利用相同的数据,但建立了WAGE对Female的回归,其中Female为女性=1,男性=0的变量;由此计算出的回归估计是什么10、基于美国CPS人口调查1998年的数据得到平均小时收入对性别、教育和其他特征的回归结果,见下表;该数据集是由4000名全年工作的全职工人数据组成的;其中:AHE=平均小时收入;College=二元变量大学取1,高中取0;Female女性取1,男性取0;Age=年龄年;Northeast居于东北取1,否则为0;Midwest居于中西取1,否则为0;South居于南部取1,否则为0;West居于西部取1,否则取0;表1:基于2004年CPS数据得到的平均小时收入对年龄、性别、教育、地区的回归结果概括统计量和联合检验SERR2注:括号中是标准误;(1)计算每个回归的调整R2;(2)利用表1中列1的回归结果回答:大学毕业的工人平均比高中毕业的工人挣得多吗多多少这个差距在5%显着性水平下统计显着吗男性平均比女性挣的多吗多多少这个差距在5%显着性水平下统计显着吗(3)年龄是收入的重要决定因素吗请解释;使用适当的统计检验来回答; (4)Sally是29岁女性大学毕业生,Betsy是34岁女性大学毕业生,预测她们的收入;(5)用列3的回归结果回答:地区间平均收入存在显着差距吗利用适当的假设检验解释你的答案;(6)为什么在回归中省略了回归变量West如果加上会怎样;解释3个地区回归变量的系数的经济含义;7Juantia是南部28岁女性大学毕业生,Jennifer是中西部28岁女性大学毕业生,计算她们收入的期望差距计量经济学补充复习题一、填空题1、 计量经济学常用的三类样本数据是_横截面数据__、__时间序列数据__和_面板数据;2、虚拟解释变量不同的引入方式产生不同的作用;若要描述各种类型的模型在截距水平的差异,则以 加法形式 引入虚拟解释变量;若要反映各种类型的模型的不同相对变化率时,则以 乘法形式 引入虚拟解释变量;二、选择题1、参数的估计量βˆ具备有效性是指 BA Var βˆ=0B Var βˆ为最小C βˆ-=0D βˆ-为最小2、产量x,台与单位产品成本y, 元/台之间的回归方程为yˆ=356-,这说明 DA 产量每增加一台,单位产品成本增加356元B 产量每增加一台,单位产品成本减少元C 产量每增加一台,单位产品成本平均增加356元D 产量每增加一台,单位产品成本平均减少元3、在总体回归直线E x y10)ˆ(ββ+=中,1β表示 B A 当x 增加一个单位时,y 增加1β个单位B 当x 增加一个单位时,y 平均增加1β个单位C 当y 增加一个单位时,x 增加1β个单位D 当y 增加一个单位时,x 平均增加1β个单位4、以y 表示实际观测值,yˆ表示回归估计值,则普通最小二乘法估计参数的准则是使 DA )ˆ(i i yy -∑=0 B 2)ˆ(i i y y -∑=0 C )ˆ(i i yy -∑为最小 D 2)ˆ(i i y y -∑为最小 5、设y 表示实际观测值,yˆ表示OLS 回归估计值,则下列哪项成立 D A yˆ=y B y ˆ=y C yˆ=y D y ˆ=y 6、用普通最小二乘法估计经典线性模型t t t u x y ++=10ββ,则样本回归线通过点 DA x,yB x,yˆ C x ,yˆ D x ,y 7、判定系数2R 的取值范围是 CA 2R -1B 2R 1C 02R 1D -12R 18、对于总体平方和TSS 、回归平方和RSS 和残差平方和ESS 的相互关系,正确的是 BA TSS>RSS+ESSB TSS=RSS+ESSC TSS<RSS+ESSD TSS 2=RSS 2+ESS 29、决定系数2R 是指 CA 剩余平方和占总离差平方和的比重B 总离差平方和占回归平方和的比重C 回归平方和占总离差平方和的比重D 回归平方和占剩余平方和的比重10、如果两个经济变量x 与y 间的关系近似地表现为当x 发生一个绝对量变动x 时,y 有一个固定地相对量y/y 变动,则适宜配合地回归模型是 BA i i i u x y ++=10ββB ln i i i u x y ++=10ββC i ii u x y ++=110ββ D ln i i i u x y ++=ln 10ββ 11、下列哪个模型为常数弹性模型 AA ln i i i u x y ++=ln ln 10ββB ln i i i u x y ++=10ln ββC i i i u x y ++=ln 10ββD i ii u x y ++=110ββ 12、模型i i i u x y ++=ln 10ββ中,y 关于x 的弹性为 C A i x 1β B i x 1β C iy 1β D i y 1β 13、模型ln i i i u x y ++=ln ln 10ββ中,1β的实际含义是 BA x 关于y 的弹性B y 关于x 的弹性C x 关于y 的边际倾向D y 关于x 的边际倾向14、当存在异方差现象时,估计模型参数的适当方法是 AA 加权最小二乘法B 工具变量法C 广义差分法D 使用非样本先验信息15、加权最小二乘法克服异方差的主要原理是通过赋予不同观测点以不同的权数,从而提高估计精度,即 BA 重视大误差的作用,轻视小误差的作用B 重视小误差的作用,轻视大误差的作用C 重视小误差和大误差的作用D 轻视小误差和大误差的作用16、容易产生异方差的数据是 CA 时间序列数据B 修匀数据C 横截面数据D 年度数据17、设回归模型为i i i u x y +=β,其中var i u =22i x σ,则的最小二乘估计量为 CA. 无偏且有效 B 无偏但非有效C 有偏但有效D 有偏且非有效18、如果模型t t t u x b b y ++=10存在序列相关,则 DA cov t x ,t u =0B cov t u ,s u =0tsC cov t x ,t u 0D cov t u ,s u 0ts19、下列哪种形式的序列相关可用DW 统计量来检验i v 为具有零均值,常数方差,且不存在序列相关的随机变量 AA t t t v u u +=-1ρB t t t t v u u u +++=-- 221ρρC t t v u ρ=D ++=-12t t t v v u ρρ20、DW 的取值范围是DA -1DW0B -1DW1C -2DW2D 0 DW421、当DW =4是时,说明 DA 不存在序列相关B 不能判断是否存在一阶自相关C 存在完全的正的一阶自相关D 存在完全的负的一阶自相关22、模型中引入一个无关的解释变量 CA 对模型参数估计量的性质不产生任何影响B 导致普通最小二乘估计量有偏C 导致普通最小二乘估计量精度下降D 导致普通最小二乘估计量有偏,同时精度下降23、如果方差膨胀因子VIF =10,则认为什么问题是严重的 CA 异方差问题B 序列相关问题C 多重共线性问题D 解释变量与随机项的相关性24、某商品需求函数为i i i u x b b y ++=10,其中y 为需求量,x 为价格;为了考虑“地区”农村、城市和“季节”春、夏、秋、冬两个因素的影响,拟引入虚拟变量,则应引入虚拟变量的个数为 BA 2B 4C 5D 625、根据样本资料建立某消费函数如下:tC ˆ=+tD +t x ,其中C 为消费,x 为收入,虚拟变量D =农村家庭城镇家庭⎩⎨⎧01,所有参数均检验显着,则城镇家庭的消费函数为AA t C ˆ=+t xB tC ˆ=+t xC t C ˆ=+t xD tC ˆ=+t x 26、假设某需求函数为i i i u x b b y ++=10,为了考虑“季节”因素春、夏、秋、冬四个不同的状态,引入4个虚拟变量形式形成截距变动模型,则模型的 DA 参数估计量将达到最大精度B 参数估计量是有偏估计量C 参数估计量是非一致估计量D 参数将无法估计27、对于模型i i i u x b b y ++=10,为了考虑“地区”因素北方、南方,引入2个虚拟变量形式形成截距变动模型,则会产生 DA 序列的完全相关B 序列不完全相关C 完全多重共线性D 不完全多重共线性28、如果一个回归模型中不包含截距项,对一个具有m 个特征的质的因素要引入虚拟变量的数目为 AA mB m-1C m-2D m+129、某一时间序列经一次差分变换成平稳时间序列,此时间序列称为A;A .1阶单整B .2阶单整C .K 阶单整D .以上答案均不正确30、当随机误差项存在自相关时,进行单位根检验是由B 来实现;A . DF 检验B .ADF 检验C .EG 检验D .DW 检验三、多项选择题:1、一元线性回归模型t t t u x y ++=10ββ的经典假设包括 ABCDEA 0)(=t u EB 2)(σ=t u Var 常数C 0),cov(=j i u uD t u ~N0,1E x 为非随机变量,且0),cov(=t t u x2、以带“”表示估计值,u 表示随机误差项,如果y 与x 为线性相关关系,则下列哪些是正确的 BEA t t x y 10ββ+=B t t t u x y ++=10ββC t t t u x y ++=10ˆˆββD tt t u x y ++=10ˆˆˆββ E tt x y 10ˆˆˆββ+= 3、用普通最小二乘法估计模型t t t u x y ++=10ββ的参数,要使参数估计量具备最佳线性无偏估计性质,则要求: ABCDEA 0)(=t u EB 2)(σ=t u Var 常数C 0),cov(=j i u uD t u 服从正态分布E x 为非随机变量,且0),cov(=t t u x4、假设线性回归模型满足全部基本假设,则其参数估计量具备 CDEA 可靠性B 合理性C 线性D 无偏性E 有效性5、下列哪些非线性模型可以通过变量替换转化为线性模型 ABC A i i i u x y ++=210ββ B i ii u x y ++=110ββ C ln i i i u x y ++=ln 10ββ D i i i u x y ++=210ββE i i i i u x y ++=ββ06、异方差性将导致 BCDEA 普通最小二乘估计量有偏和非一致B 普通最小二乘估计量非有效C 普通最小二乘估计量的方差的估计量有偏D 建立在普通最小二乘估计基础上的假设检验失效E 建立在普通最小二乘估计基础上的预测区间变宽7、当模型中解释变量间存在高度的多重共线性时 ACDA 各个解释变量对被解释变量的影响将难于精确鉴别B 部分解释变量与随机误差项之间将高度相关C 估计量的精度将大幅下降D 估计量对于样本容量的变动将十分敏感E 模型的随机误差项也将序列相关8、下述统计量可以用来检验多重共线性的严重性 ACDA 相关系数B DW 值C 方差膨胀因子D 特征值E 自相关系数三、判断题1、随机误差项u i 与残差项e i 是一回事; F2、当异方差出现时,常用的t 检验和F 检验失效; T3、在异方差情况下,通常预测失效; T四、计算分析题1、指出下列模型中的错误,并说明理由;1 tt Y C 2.1180ˆ+= 其中,C 、Y 分别为城镇居民的消费支出和可支配收入;2 tt t L K Y ln 28.0ln 62.115.1ˆln -+= 其中,Y 、K 、L 分别为工业总产值、工业生产资金和职工人数;2、对下列模型进行适当变换化为标准线性模型:(1) y =0β+1βx 1+2β21x +u ; (2) Q =A u e L K βα;(3) Y =exp 0β+1βx+u ;3、一个由容量为209的样本估计的解释CEO 薪水的方程为:其中,Y 表示年薪水平单位:万元, 1X 表示年收入单位:万元, 2X 表示公司股票收益单位:万元; 321D D D ,,均为虚拟变量,分别表示金融业、消费品工业和公用事业;假设对比产业为交通运输业;(1) 解释三个虚拟变量参数的经济含义;(2) 保持1X 和2X 不变,计算公用事业和交通运输业之间估计薪水的近似百分比差异;这个差异在1%的显着性水平上是统计显着吗消费品工业和金融业之间估计薪水的近似百分比差异是多少。
1、广义计量经济学和狭义计量经济学广义…是利用经济理论、数学以及统计学定量研究经济现象的方法统称。
(回归分析、投入产出分析、时间序列分析等)狭义…以揭示经济变量间的关系为目的,主要应用回归分析方法。
单方程模型和联立方程模型对股票市场的研究VS对金融市场的研究a. 横截面数据集(cross-sectional data set):即给定时点对个人、家庭、企业、城市、国家或一系列其他单位采集的样本所构成的数据集(应该忽略细小的时间差别)b.时间序列数据集(time series data set):是由一个或几个变量在不同时间的观测值所构成的。
c.混合横截面数据(pooled cross section):有些数据既有横截面数据的特点又有时间序列的特点,但每一时点的样本不同,通常是分析政府政策效果的有力数据d.综列数据(panel data):由横截面数据集中每个数据的一个时间序列组成。
(定点长期调查)回归分析是关于研究一个应变量对另一个或多个自变量的依赖关系,通过后者的已知或给定值,去估计和预测前者的(总体)均值随机干扰项的意义:1。
理论的含糊性(其他因素)2。
数据的欠缺(如财富)3。
核心变量与周边变量(或上或下的随机影响)4。
人类行为的内在随机性5。
糟糕的替代变量(永久消费和永久收入)6。
节省原则(多重共线性的影响)7。
错误的函数形式线性回归模型的假定1。
函数形式:2。
干扰项的零均值:干扰项的零均值的意思是凡是模型不显著含有的并因而归属u的因素,对y的均值都没有系统的影响;正的u值抵销了负的u值,以至于他们对y的平均值的影响为零3。
同方差性:u的同方差性同时也意味着y的同方差性,即随着x的变动,y的取值的分布是一定的,是分布不变的。
4。
无自相关:干扰项之间的无自相关意味着y的决定与其他期的u值无关,即不存在u(t-1)决定u(t)从而决定y的情况5。
回归量与干扰项的非相关:干扰项与自变量之间的非相关,干扰项本身是独立于自变量之外的,且如果干扰项与自变量存在相关,则不能独自说明其作用6。
计量经济学期末考试重点整理.docx
谢谢阅读第一章绪论
1、什么是计量经济学?由哪三组组成?
答:计量经济学是经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科。
统计学、经济理论和数学三者结合起来便构成了计量经济学。
2、计量经济学的内容体系,重点是理论计量和应用计量和经典计量经济学理论方法方面的特
征
答:1)广义计量经济学和狭义计量经济学2)初、中、高级计量经济学3)理论计量经济学和应用计量经济
理论计量经济学是以介绍、研究计量经济学的理论与方法为主要内容,侧重于理论与方法的数学证明与推导,与数理统计联系极为密切。
除了介绍计量经济模型的数学理论基础、普遍应用的计量经济模型的参数估计方法与检验方法外,还研究特殊模型的估计方法与检验方法,应用了广泛的数学知识。
应用计量经济学则以建立与应用计量经济学模型为主要内容,强调应用模型的经济学和经济统计学基础,侧重于建立与应用模型过程中实际问题的处理。
本课程是二者的结合。
4)、经典计量经济学和非经典计量经济学
经典计量经济学(Classical Econometrics)一般指20世纪70年代以前发展并广泛应用的计量经济学。
经典计量经济学在理论方法方面特征是:
⑴模型类型—随机模型;
⑵模型导向—理论导向;
谢谢阅读。
计量经济学重点(师应来版)
一、试卷结构
单选(15*1)多选(5*2);名词解释(5*3);问答题(5*5);计算题(3*8);综合分析(1*11)
二、名词解释
理论经济计量学
应用经济计量学
内生变量
外生变量
解释变量
被解释变量
时间序列数据(举例)
截面数据(举例)
面板数据(举例)
总体回归线(函数)
离差
判定系数
异方差性(举例)
加权最小二乘法
自相关
多重共线性(完全共线性,近似共线性)
工具变量法
虚拟变量
联立性偏误
单整
三、其他内容
1、应用计量经济学核心环节是建立和应用经济计量模型
2、经济计量分析的四个连续的步骤:建立模型;估计参数;验证模型;使用模型
3、验证模型的三种准则:经济理论准则;统计准则;经济计量准则
4、统计准则是由统计理论决定的,其目的在与考察所求参数估计值的统计可靠性
5、经济计量模型的使用主要是用来进行经济结构分析,预测未来和规划政策
6、结构分析所采用的主要方法是弹性分析、乘数分析与比较静力分析
7、解释总体回归函数中两个参数的含义
8、解释样本回归函数的含义
9、理解普通最小二乘法原理P24
10、总体线性回归模型的经典假定:误差项均值为零;同方差性;误差项之间无自相关;解释变量与误差项协方差为零;正确地设定了回归模型,不存在设定偏误;多元线性回归模型中,没有完全的多重共线性。
11、高斯——马尔科夫定理的意义
12、P30(2.35)(2.37)(2.38)
判定系数与相关系数的异同:异:取值范围不同;目的不同同:见公式
13、随即误差项服从正态分布的原因P37
14、t检验中的原假设t检验和p值检验的判定方法
15、调整判定系数:为何调整;如何调整P65(3.33);作用
16、F检验;t检验各自的作用。
P75(3.64)(3.65)
17、对数线性模型的优点;对数到线性、线性到对数模型中参数的含义
18、多元回归模型中的设定偏误:模型中包含了无关解释变量;模型中遗漏了重要解释变量;模型中的函数形式设定偏误
19、异方差产生的原因:
20、异方差(自相关)的后果:对参数估计量统计特性的影响;对参数显著性检验的影响;对模型预测的影响
21、异方差的检验方法:图示检验法;等级相关系数法;戈德菲尔德——夸特检验;戈里瑟检验;怀特检验(红的是重点,其他的记名字)
22、加权最小二乘法中权数的选择:P100-P101
23、自相关的检验方法:图示检验法;DW检验;拉格朗日乘数检验
24、自相关的补救措施:一阶差分法;广义差分法;(广义最小二乘法)
25、多重共线性的后果,多重共线性的检验方法(方差扩大因子法的概念)不明觉厉
26、多重共线性的补救措施:使用非样本先验信息;横截面与时间序列数据并用;剔除一些不重要的共线性解释变量;增大样本容量;逐步回归法;使用有偏估计(别怕,记名字就好)
27、随机解释变量带来的三种不同情况P132
28、工具变量的选取条件:与所替代的解释变量高度相关;与随机误差项不相关
29、截距变动模型;斜率变动模型;变参数模型;分段回归都要求会写,so把第五章看下吧,其实挺简单。
30、短期乘数和长期乘数的概念
31、分布滞后模型估计的困难:产生多重共线性;损失自由度;最大值后期k难以确定
32、阿尔蒙多项式的条件(m小于k),已知阿拉法,计算贝塔。
过程不考
33、库伊克模型的两个假设:模型中所有参数的符号都是相同的,模型中的参数是按几何数列衰减的
34、自适应预期的理论假定(6.33)的形成过程
35、部分调整模型:模型所表达的不应是t期解释变量观测值与同期被解释变量观测值之间的关系,而应是t期解释变量观测值与同期被解释变量希望达到的水平之间的关系即(6.34),如何调整(6.35)
35、三种模型的估计方法。
36、格兰杰检验的目的。
(不考过程)
37、结构式模型与简化式模型的含义
38、识别的分类:分为可识别和不可识别,可识别分为恰好识别与过度识别
39、识别的条件,阶条件与秩条件
40、间接最小二乘法的步骤
41、若平稳的概念与条件
42、DF、ADF检验
43、拖尾与截尾的含义
44、时间序列模型三种过程的判别(MA,AR,ARMA)
45、协整的概念和协整检验P235(8.54)
四、了解内容
1、随机误差项的意义:理论的欠缺;数据的欠缺;核心变量与非核心变量;人类行为的内在随机性;节省原则
2、估计量与估计值
五、不考内容
各种模型估计方法的证明不考;跟矩阵有关的不考;第五章第四节不考;平时不考的这次也不考;重点里没怎么提的不考。
当我没说~~。