沸腾换热
- 格式:ppt
- 大小:10.34 MB
- 文档页数:70
沸腾换热计算式沸腾换热计算式(1) 大容器饱和核态沸腾前面的分析表明,影响核态沸腾的因素主要是壁面过热度和汽化核心数,而汽化核心又受到墨面材料及其表面状况、压力和物性的影响。
由于因素比较复杂,如墨面的表面状况受表面污染、氧化等影响而有不同,文献中提岀的计算式分歧较大。
在此仅介绍两种类型的计算式:一种是针对某一种液体的;另一种是广泛适用于各种液体的。
当然,针对性强的计算式精确度往往较高。
对于水,米海耶夫推荐的在105〜4X 10 6Pa压力下大容器饱和沸腾的计算式为Cj = (JJ224 *5!°^ 疋巧按q=h At的关系,上式也可转换成h二G严旷小(3-5)C2二(L5W5 W\/伽"・V • K)以上两式中h:沸腾换热表面传热系数,W/(m2・K)p:沸腾绝对压力,Pa;△ t:壁面过热度,C;q:热流密度,W/m2基于核态沸腾换热主要是气泡高度扰动的强制对流换热的设想验关联式式中C pi:饱和液体的比定压热容,J/(kg • K);C wl:取决于加热表面-液体组合情况的经验常数,推荐以下使用性光的实(3-4)r:汽化潜热,J/kg;g:重力加速度,m/s 2;Pr i:饱和液体的普朗数,Pr i=C pi卩i/k i饱和液体的动力粘度,kg/(m • s);P i、p v:饱和液体和饱和蒸汽的密度,kg/mY :液体-蒸汽截面的表面张力,N/m;s:经验指数,对于水s=1,对于其他液体s=表面-液体组合情况Gvi水-铜烧焦的铜抛光的铜水-黄铜水-铂水-不锈钢磨光并抛光的不锈钢化学腐蚀的不锈钢机械抛光的不锈钢苯-铬乙醇-铬由实验确定的C wi值见表3-1表3-1各种表面-液体组合情况的C wi值0 . S 04图3-5铂丝加热水的沸腾换热实验数据的整理水在不同压力下沸腾的实验数据与式(3-6)的比较见图3-5式(3-6)还可以改写成为以下便于计算的形式2)由于沸腾换热的复杂性,目前在各类对流换热的准则式中以沸腾换热准回式与实验数据的偏差程度最大。
沸腾强化换热原因
沸腾强化换热是指在传统换热过程中,由于流体的沸腾现象而引起的加强换热效果。
沸腾强化换热的原因主要包括以下几点:
1.传热面积增加:在沸腾过程中,流体与换热壁面之间会形成大量的气液界面,这些界面的形成增加了传热面积,从而增强了换热效果。
2.温度梯度增大:沸腾过程中,由于液态流体与蒸汽在温度上的差异,使得传热界面上的温度梯度增大。
温度梯度的增大将导致更大的传热驱动力,从而提高换热效率。
3.对流换热增强:在沸腾过程中,由于液相的剪切作用,蒸汽的产生和泡沫的移动导致了流体的对流换热,这种对流换热机制使得热量的传递更加迅速和有效。
4.泡沫脱落热传递:在沸腾过程中,泡沫在壁面上形成并快速脱落,这种泡沫脱落会带走大量的热量,从而促进了换热过程。
5.液体搅动增强:在沸腾过程中,蒸汽的产生和泡沫的移动会引起流体的搅动,这种液体搅动可以破坏边界层,促进流体与换热面之间的传热,从而增强了换热效果。
总的来说,沸腾强化换热的原因是由于沸腾过程中产生的气液界面、温度梯度增大、对流换热、泡沫脱落和液体搅动等因
素共同作用,这些因素使得沸腾强化换热具有高效、高传热能力的特点。
沸腾换热计算式沸腾换热计算式(1)大容器饱和核态沸腾前面的分析表明,影响核态沸腾的因素主要是壁面过热度和汽化核心数,而汽化核心数又受到墨面材料及其表面状况、压力和物性的影响。
由于因素比较复杂,如墨面的表面状况受表面污染、氧化等影响而有不同,文献中提出的计算式分歧较大。
在此仅介绍两种类型的计算式:一种是针对某一种液体的;另一种是广泛适用于各种液体的。
当然,针对性强的计算式精确度往往较高。
对于水,米海耶夫推荐的在105~4×106Pa压力下大容器饱和沸腾的计算式为(3-4)按q=h△t的关系,上式也可转换成(3-5)以上两式中 h:沸腾换热表面传热系数,W/(m2·K)p:沸腾绝对压力,Pa;△t:壁面过热度,℃;q:热流密度,W/m2。
基于核态沸腾换热主要是气泡高度扰动的强制对流换热的设想,推荐以下使用性光的实验关联式:(3-6)式中 c pl:饱和液体的比定压热容,J/(kg·K);C wl:取决于加热表面-液体组合情况的经验常数;r:汽化潜热,J/kg;g:重力加速度,m/s2;Pr l:饱和液体的普朗数,Pr l=c plμl/k l;μl:饱和液体的动力粘度,kg/(m·s);ρl、ρv:饱和液体和饱和蒸汽的密度,kg/m3;γ:液体-蒸汽截面的表面张力,N/m;s:经验指数,对于水s=1,对于其他液体s=1.7。
由实验确定的C wl值见表3-1。
表面-液体组合情况C wl水-铜烧焦的铜0.0068抛光的铜0.0130水-黄铜0.0060水-铂0.0130水-不锈钢磨光并抛光的不锈0.0060钢化学腐蚀的不锈钢0.0130机械抛光的不锈钢0.0130苯-铬0.101乙醇-铬0.0027表3-1 各种表面-液体组合情况的C wl值图3-5 铂丝加热水的沸腾换热实验数据的整理水在不同压力下沸腾的实验数据与式(3-6)的比较见图3-5。
式(3-6)还可以改写成为以下便于计算的形式:(3-7)这里要着重指出两点:1)式(3-6)实际上也是形如Nu=f(Re,Pr)或St=f(Re,Pr)的主则式。
池沸腾换热定义
池沸腾换热,是一种常见的热传递现象。
当我们将水加热至一定温度时,水中的分子开始快速运动,水温也随之升高。
当水温达到一定程度时,池中的水会出现剧烈的沸腾现象。
沸腾是一种液体与气体相变的过程,也是热量从液体传递到气体的方式之一。
当水温升高到一定程度时,水中的分子获得足够的能量,开始从液态转变为气态。
这个过程中,水分子迅速蒸发,并形成大量的气泡。
这些气泡不断地从液体中上升,破裂后释放出热量和水蒸汽。
池沸腾换热的过程可以用来加热和烹饪食物。
在烹饪过程中,我们通常会将水加热至沸腾状态,然后将食物放入水中,利用水中的热量来煮熟食物。
由于沸腾过程中释放出的热量大,所以煮食物的速度也很快。
除了在烹饪中的应用,池沸腾换热也在工业生产和科学研究中得到广泛应用。
比如在化工生产中,池沸腾换热可以用来加热反应物,提高反应速度。
在科学研究中,池沸腾换热可以用来研究液体的热传导性质,以及研究气泡的形成和破裂机制。
池沸腾换热是一种重要的热传递方式,它不仅可以加热食物和物体,还可以用来研究和应用于工业生产和科学研究中。
通过控制沸腾过程中的温度和压力,我们可以实现更高效的热传递,提高生产效率
和科研成果。
池沸腾换热不仅是一种物理现象,更是人们智慧的结晶,为我们的生活和工作带来了许多便利和进步。
沸腾换热对流换热现象
沸腾换热是指两个物质在彼此之间通过温度和压力耦合的动力学过程
而进行热传递的一种特殊热传递形式。
它是指当其中一个物质处于沸点时,由于其蒸汽压力较大,蒸汽中的能量可以穿过低温的另一个物质,从而使
它的温度上升,从而达到换热的目的。
传统的沸腾换热,典型的热源只有
液体,如水,而物质汇热只有气体,如汽水。
例如在一个真空环境下,水
在沸点时,沸气会通过物质层,把热量传给气体层,起到换热的作用,从
而使得低温的气体温度上升。
沸腾换热是一种高效换热方式,具有很高的换热系数,可以大大减少
换热所需的时间,从而提高整个换热系统的整体性能,同时也可以一定程
度上降低能耗。
然而,沸腾换热的温差也比较高,它的换热效率也会随着
温差的增大而降低,因此沸腾换热只适用于温差较大的情况。
对流换热是指一种热传递方式,即由于热源和物质汇热之间的温度差,彼此之间的空气层形成热对流,使热量从高温物质向低温物质传递,从而
达到换热的目的。
对流换热的特点是其换热效率较高、所需温差较小,换
热过程中涉及体积和能量变化较小,不需要利用任何额外的机械装置即可
实现换热。
沸腾换热的重要特征
沸腾换热是一种在液体与固体或液体与气体之间进行热传递的现象。
它具有以下重要特征:
1. 高传热系数:沸腾换热过程中,由于液体物质的剧烈搅动和蒸汽形成的泡沫层的存在,使得传热系数大幅提高,比传统的对流换热方式高几个数量级。
2. 均匀的温度分布:沸腾换热能够实现热量在液体中均匀分布,从而减小局部热应力,确保传热表面温度均匀。
3. 高热传递功率密度:由于沸腾时产生的大量蒸汽可以带走更多的热量,因此沸腾换热可以实现高热传递功率密度,适用于需要高能量密度的热传递应用。
4. 自冷却效应:沸腾换热过程中,蒸汽的生成会使得换热表面自行冷却,从而提高了换热效率和系统的稳定性。
5. 抗污积效应:沸腾过程中,蒸汽泡沫的形成和运动可以将表面附着物冲刷掉,从而减少了换热表面的污积,提高了换热效率和长期稳定性。
总之,沸腾换热具有高传热系数、均匀温度分布、高热传递功率密度、自冷却效应和抗污积效应等重要特征,使其在许多工业和科学领域得到广泛应用。
沸腾换热的传热特性及机理研究沸腾换热是一种广泛应用的传热方式,在工业和科技领域有着广泛的应用。
沸腾换热的特点是传热速度快,传热效果好,被广泛应用于工业领域中。
在沸腾换热过程中,液体接触到加热表面时,其表面温度超过了液体的饱和温度,从而形成了蒸汽泡。
这些蒸汽泡会在液体中上升,从而带走了液体中的热量,从而实现了传热。
沸腾换热的这种机制是一种非常重要的传热方式。
除了这种传热方式之外,沸腾换热还具有一些其他的特点。
沸腾换热传热速度很快,远远快于自然对流和强迫对流。
另外,沸腾换热还可以显著的提高传热系数,从而在工业和科技领域中被广泛应用。
在沸腾换热的研究中,还发现了一些有趣的现象。
例如,民族式沸腾,这是沸腾换热的一种反卷性状现象。
另外,在沸腾换热过程中,还存在着一些缺陷区域,这些区域可能会降低传热效果,从而影响工业生产的效率。
因此,在研究沸腾换热的过程中,需要注意到这些现象,以便更好地提高沸腾换热的效率。
此外,在研究沸腾换热的过程中,还需要考虑沸腾换热的机理。
沸腾换热的机理是非常重要的,因为只有了解了沸腾换热的机理,才能更好地提高沸腾换热的效率,并压缩设备成本。
沸腾换热的机理是非常复杂的。
大部分人可能会认为,沸腾换热的机理就是液体接触到加热表面时,蒸汽泡会形成。
但实际上,沸腾换热的机理还涉及到了很多因素,例如液体性质、加热方式、加热强度等。
因此,在研究沸腾换热的机理时,需要充分考虑这些因素的影响。
一些研究表明,在沸腾换热的过程中,液体的表面张力起着非常重要的作用,可以影响沸腾换热的传热效率。
另外,在不同的加热方式下,沸腾换热的机理也是不同的。
例如,在微重力下,沸腾换热的机理就与地球重力下的沸腾换热机理有所不同。
此外,加热强度也是影响沸腾换热机理的另一个重要因素。
在高加热强度下,沸腾换热机理受到的影响可能会超过其他因素的影响。
因此,研究沸腾换热的机理非常重要。
这种传热方式的高效、高速、低成本等特点,使得它在工业生产和科技创新中有着广泛的应用。
沸腾换热名词解释
嘿,咱今儿来聊聊沸腾换热这个事儿哈!你说啥是沸腾换热呀?就好比你煮开水的时候,水咕嘟咕嘟地冒泡,那热量不就从火传递到水里啦,这过程就是沸腾换热呀!
想象一下,那水在锅里欢快地翻滚着,热气腾腾的,这可不就是热量在欢快地传递嘛!沸腾换热就像是一场热闹的舞会,热量是主角,水就是那个尽情舞动的舞者。
你看啊,在我们的生活中,沸腾换热可太常见啦!家里的水壶烧水,不就是沸腾换热在发挥作用嘛。
还有那锅炉房里,热水通过管道把温暖送到各个房间,这也是沸腾换热的功劳呀!它就像一个勤劳的小蜜蜂,默默地为我们服务着。
那沸腾换热有啥特点呢?嘿嘿,这可多了去了。
它的换热效率可高啦!就像一个超级大力士,能快速地把热量传递出去。
而且呀,它还很灵活呢,可以在不同的条件下工作,不管是高温还是低温,它都能应对自如。
就好比一个优秀的运动员,不管是在炎热的夏天还是寒冷的冬天,都能发挥出自己的实力。
沸腾换热不也是这样嘛,不管环境怎么变,它都能稳稳地完成自己的任务。
你说这沸腾换热神奇不神奇?它虽然看不见摸不着,但却在我们生活中无处不在呀!没有它,我们的生活可就没那么方便咯!
咱再想想,要是没有沸腾换热,那冬天我们怎么取暖呀?洗澡水怎么烧热呀?哎呀,简直不敢想象没有它的日子会是啥样!
所以呀,沸腾换热可真是个了不起的东西呢!我们可得好好珍惜它,好好利用它,让它为我们的生活带来更多的便利和温暖。
它就像是我们生活中的一个好朋友,默默地陪伴着我们,为我们付出着。
你说,我们能不爱它吗?反正我是爱死它啦!哈哈!。