应接近于零。
因此,拉格朗日乘数检验就是检验某些拉格朗日乘
数的值是否“足够大”,如果“足够大”,则拒绝
约束条件为真的假设。
检验思路:
H0:Y12X2 kmXkmu(有约束条 ) 件模型 H1:Y12X2 kmXkm kXku(无约束条件)
对于非约束的极大 估似 计然 量 UR,有LUnRL0. 若约束条件成 ,则 立施加约束条件 的下 极大似然估计量
但最终的极大似然 量估 都计 是一致的和
渐近有效。的
二、非线性约束 似然比检验和拉格朗日乘数检验
这两种检验所用统计量都是基于极大似然 估计法的计算,可用于检验数据是否支持某些参 数限制条件。
二、非线性约束
当对模型 Y 0 1 X 1 2 X 2 k X k
施加非线性约束12=1,得到受约束回归模型:
Yf(X1,X2, Xk,10 ,20 , p0)i p1i0(fi)|0
p f
i1
i(i)|0
u
f
一组令新左的边自为变一量个,新(的1因,变2,量 ,右p)边为未(知i )参|数0为,
则原模型转化成线性模型,可以用普通最小二乘
法来估计这些参数。
将(1,2,p)的第一次估计(值 11,记 21, 为p1),
对非线性约束,沃尔德统计量W的算法描述要复杂得多。
3、拉格朗日乘数检验(LM)
• 与W检验不同的是拉格朗日(Lagrange) 乘数(LM)检验只需估计约束模型。所以 当施加约束条件后模型形式变得简单时, 更适用于这种检验。LM检验是由艾奇逊— 西尔维(Aitchison-Silvey 1960)提出的。
首先,用OLS法估计约束模型,计算残差序列
e ty tˆ1ˆ2 x 2 t ˆqx qt