蛋白质的SDS-PAGE电泳
- 格式:ppt
- 大小:1.36 MB
- 文档页数:37
SDS-PAGE一. 实验原理SDS 是一种阴离子表面活性剂,在蛋白质溶液里加入 SDS 和巯基乙醇后,巯基乙醇能使蛋白质分子中的二硫键还原, SDS 能使蛋白质的氢键、疏水键打开并结合到蛋白质分子上,形成蛋白质-SDS 复合物。
在一定条件下,SDS 与大多数蛋白质的结合比例为 1.4:1。
由于十二烷基磺酸根带负电,使各种蛋白质的SDS-复合物都带上相同密度的负电荷,它的量大大超过了蛋白质原有的电荷量,因而掩盖了不同种类蛋白质间原有的电荷差别。
SDS与蛋白质结合后,还引起了蛋白质构象的改变。
蛋白质-SDS复合物的流体力学和光学性质表明,它们在水溶液中的形状,近似于雪茄烟形的长椭圆棒,不同蛋白质的 SDS 复合物的短轴长度都一样,约为 1.8nm ,而长轴则随蛋白质的 Mr 成正比的变化。
基于上述原因,蛋白质-SDS 复合物在凝胶电泳中的迁移率,不再受蛋白质原有电荷和形状的影响,而只与椭圆棒的长度有关,也就是蛋白质 Mr 的函数。
二. 试剂器材30%凝胶贮液(100mL):称取试剂Acr 29.2g和Bis 0.8g置于100mL烧杯中,向烧杯中加入约60mL双蒸水,充分搅拌溶解后加双蒸水定容至100mL,置于棕色瓶内4℃贮存,每过1-2个月应重新配制;注意:丙稀酰胺具有很强的神经毒性,并可通过皮肤吸收,其作用有积累性,配制时应戴手套和口罩等。
分离胶缓冲液(1.5 mol/L Tris-HCl,pH 8.8,100mL):称取Tris 18.2g 溶于约80mL 双蒸水,用6mol/L的HCl 调整pH值至8.8,加双蒸水定容到100mL,4℃ 贮存;堆积胶缓冲液(0.5 M Tris-HCl,pH 6.8,100mL):称取Tris 6.0g溶于约80mL双蒸水,用1mol/L的HCl 调整pH值至6.8,加双蒸水定容到100mL,4℃ 贮存;电泳缓冲液(1L):称取试剂Tris 3.03g和甘氨酸 14.4g置于500mL烧杯中,向烧杯中加入约400mL双蒸水充分溶解,再加入10%SDS溶液1.0mL,以双蒸水定容至1L (自然pH值为8.3,无需再调),4℃ 贮存,可重复使用5-6次;2×加样缓冲液(10mL):取下列试剂置于10mL塑料离心管中0.5mol/L Tris-HCl缓冲液(pH6.8) 2.0mL10%SDS溶液 4.0mL甘油 2.0mL巯基乙醇 2.0mL溴酚蓝 0.02g,混匀后1mL分装,-70℃可贮存6个月;10%AP:称取(NH4)2S2O3 1.0 g,溶于10.0mL双蒸水中,分装成每份1mL,-20℃贮存;TEMED:分装成每份1mL,4℃避光贮存;水饱和正丁醇(100mL):在玻璃瓶中加入50mL双蒸水和50mL正丁醇,振摇。
简述SDS聚丙烯酰胺凝胶电泳的原理和应用1. 原理SDS聚丙烯酰胺凝胶电泳(Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis,简称SDS-PAGE)是一种常用的蛋白质分离和分析技术。
它基于蛋白质的分子量和电荷差异,通过电场作用将蛋白质分离成不同的带。
SDS-PAGE的原理基于以下几个方面:1.SDS的作用:SDS是一种阴离子表面活性剂,可以使蛋白质分子迅速与其结合,并赋予蛋白质大量的负电荷,使得蛋白质在电场中按照大小和形状进行分离。
2.聚丙烯酰胺凝胶:聚丙烯酰胺凝胶是一种聚合物,可以形成一种网状结构,这种结构具有孔隙,可以通过孔隙大小筛选不同大小和形状的蛋白质分子。
3.电场作用:在电泳槽中施加电场后,带负电荷的蛋白质会向阳极迁移,迁移速度取决于蛋白质分子的质量和形状。
通过以上原理,可以将蛋白质样品加载在聚丙烯酰胺凝胶的孔隙中,然后施加电场,蛋白质按照其分子量的大小和形状进行分离,最终形成不同的蛋白质带。
2. 应用SDS-PAGE广泛应用于生物医学和生命科学的各个领域,以下是SDS-PAGE的几个主要应用:2.1 蛋白质分离与纯化SDS-PAGE是一种常用的蛋白质分离和纯化技术。
通过SDS-PAGE,可以将混合蛋白质样品根据其分子量进行分离,得到纯化的蛋白质。
这对于研究蛋白质的结构、功能以及相互作用具有重要意义。
2.2 亚细胞结构研究通过SDS-PAGE,可以将细胞或亚细胞结构中的蛋白质分离出来,进一步研究其在细胞内的定位、功能以及与其他分子的相互作用。
这有助于揭示细胞和亚细胞结构的功能机制。
2.3 蛋白质质量测定通过SDS-PAGE,可以通过与已知分子量的蛋白质标准品进行比较,估计未知蛋白质的分子量。
这对于研究蛋白质的结构、功能以及其在生物过程中的变化具有重要意义。
2.4 蛋白质组学研究SDS-PAGE结合质谱技术可以进行蛋白质组学研究。
聚丙烯酰胺凝胶电泳(英语:polyacrylamide gel electrophoresis,简称PAGE),是以聚丙烯酰胺凝胶作为支持介质的一种常用电泳技术,用于分离蛋白质和寡核苷酸。
作用原理:聚丙烯酰胺凝胶是具有分子筛作用的网络结构。
它有两种形式:非变性聚丙烯酰胺凝胶电泳(Native-PAGE)和变性聚丙烯酰胺凝胶。
在蛋白质的非变性聚丙烯酰胺凝胶电泳中,蛋白质可以保持完整的状态,并根据蛋白质的分子量,蛋白质的形状和附着的电荷量逐渐彼此分离。
在DNA的非变性聚丙烯酰胺凝胶电泳中,DNA以双链状态游动,其迁移率受碱基组成和序列的影响。
在变性聚丙烯酰胺凝胶电泳中,变性剂通常为SDS(SDS-PAGE),变性剂通常为尿素和甲酰胺。
蛋白质的SDS-PAGE技术由Shapiro于1967年首次建立。
他们发现,蛋白质亚基的电泳迁移率主要取决于亚基的分子量(电荷因子可忽略不计),加入离子去污剂和强还原剂(SDS,十二烷基样品介质和丙烯酰胺凝胶。
SDS是一种阴离子洗涤剂。
作为变性剂和增溶剂,SDS可以破坏分子之间的氢键,展开分子并破坏蛋白质分子的二级和三级结构。
诸如巯基乙醇和二硫苏糖醇之类的强还原剂可以破坏半胱氨酸残基之间的二硫键。
将还原剂和SDS加入样品和凝胶后,分子解聚成多肽链。
解聚的氨基酸侧链与SDS结合形成蛋白质SDS胶束。
聚合物的负电荷远高于蛋白质的原始电荷,因此消除了不同分子之间的电荷和结构差异。
通常,不连续缓冲系统用于SDS-PAGE,其分辨率高于连续缓冲系统。
浓缩胶的作用是积聚,凝胶小,孔径大,将较薄的样品加入到增稠胶中,通过大孔胶的迁移作用将其浓缩到狭窄区域。
当选择Tris / HCl缓冲溶液作为样品溶液和浓缩凝胶时,选择Tris /甘氨酸作为电极溶液。
电泳开始时,HCl分解为氯离子,甘氨酸分解为甘氨酸离子。
蛋白质带负电荷,因此它们一起移动到正电极。
氯离子最快,甘氨酸离子最慢,蛋白质在中间。
sds-page分离蛋白的原理SDS-PAGE(SDS-聚丙烯酰胺凝胶电泳)是一种在实验室中常用的生物化学技术。
SDS-PAGE可以用来分离蛋白质,使研究者能够研究它们的结构和功能。
SDS-PAGE的基本原理是利用电泳现象将复杂的混合物分离成单一的组分。
电泳是一种根据物质的电荷、大小和形状利用电场作用通过凝胶进行分离的方法。
SDS-PAGE是利用聚丙烯酰胺凝胶电泳技术分离蛋白质的一种方法。
蛋白质分子因其分子量和分子结构不同,在SDS-PAGE中将被分离为单独的、清晰的带状带。
这些带状带每个代表一个不同的蛋白质。
通过观察这些蛋白质带状带,可以获得蛋白质分子的相关信息,如分子量(MW)和含量。
在SDS-PAGE中,聚丙烯酰胺凝胶被用作固定相。
凝胶是通过将聚丙烯酰胺单体和交联剂混合后形成的。
这种凝胶可以形成微孔和孔径,使凝胶能够分离不同大小的蛋白质分子。
在准备样品时,蛋白质分子通常会在缓冲液中添加SDS (十二烷基硫酸钠)。
SDS是一种表面活性剂,可以使蛋白质分子带有负电荷并具有等电点(pI)价值。
当SDS蛋白质混合物被加入聚丙烯酰胺凝胶电泳电场中时,它们会在电泳作用下向负极移动。
这是因为凝胶的孔径大小使得分子量大的蛋白质分子移动缓慢,分子量小的蛋白质分子移动较快。
SDS-PAGE还需要在样品上和凝胶中加入还原剂和染色剂。
还原剂可以断裂蛋白质分子的二硫键,并使氨基酸带上负电,而染色剂则通过与蛋白质分子中的某些氨基酸或特定结构相互作用来着色。
这些特殊的化学试剂可以使蛋白质更容易在凝胶上定位,并且可以观察到蛋白质分子的相对含量。
总的来说,SDS-PAGE是一种有效的蛋白质分离技术,可以帮助生物学家了解蛋白质分子的研究方向。
任何要研究或描绘蛋白质质量、酸碱平衡、多肽结构或寻找抗原、肽链或酶活性的科学家都需要使用这种技术。
百泰派克生物科技
蛋白SDS-PAGE蛋白范围
十二烷基硫酸钠聚丙烯酰氨凝胶电泳(SDS-PAGE),也称之为变性聚丙烯酰胺凝胶
电泳,是以聚丙烯酰胺凝胶作为支持介质的一种含有十二烷基硫酸钠(SDS,变性剂)的常用电泳技术,常用于检测蛋白质分子量大小和样品中的蛋白纯度。
SDS-PAGE有效分离蛋白的范围取决于聚丙烯酰胺的浓度和交联度,其分子筛孔径
随着双丙烯酰胺与丙烯酰胺比率的增加而减小。
因此,SDS-PAGE蛋白范围主要取
决于丙烯酰胺的浓度(%)。
通常情况下,丙烯酰胺的浓度为15%、12.5%、10%、
7.5%、5.0%时,SDS-PAGE蛋白范围分别为15-43.5kDa、15-60kDa、18-75kDa、30-120kDa、60-212kDa。
因此,在进行蛋白SDS-PAGE检测之前,需要预估目标蛋白的分子量大小,然后通过SDS-PAGE实验进行验证。
若无法预知目标蛋白分子量大小,则可优先选择蛋白分子量检测范围大的丙烯酰胺浓度开展SDS-PAGE实验,然后将
电泳后的凝胶蛋白条带采用凝胶呈像系统软件计算蛋白分子量和纯度。
百泰派克生物科技提供基于SDS-PAGE的蛋白分离服务,经过SDS-PAGE电泳将获取蛋白质样品的电泳图谱,结合其它基于质谱的蛋白质鉴定服务对样品进行分析或纯化,用于复杂生物样品的蛋白质谱分析。
您只需将实验目的告知并将样品寄出,我们将负责项目后续所有事宜,包括样品净化(去除DNA和RNA,减少s-s键,蛋白质)、消除样品中高丰度蛋白质以及蛋白质提取、纯化、浓缩和水解消化等处理。
SDS-PAGE测定蛋白质相对分子质量一、前言聚丙烯酰胺凝胶电泳聚丙烯酰胺凝胶电泳,简称PAGE,是以聚丙烯酰胺凝胶作为支持介质的一种常用电泳技术。
聚丙烯酰胺凝胶由单体丙烯酰胺和甲叉双丙烯酰胺聚合而成,聚合过程由自由基催化完成。
催化聚合的常用方法有两种:化学聚合法和光聚合法。
化学聚合以过硫酸铵(APS)为催化剂,以四甲基乙二胺(TEMED)为加速剂。
在聚合过程中,TEMED催化过硫酸铵产生自由基,后者引发丙烯酰胺单体聚合,同时甲叉双丙烯酰胺与丙烯酰胺链间产生甲叉键交联,从而形成三维网状结构。
PAGE根据其有无浓缩效应,分为连续系统和不连续系统两大类,连续系统电泳体系中缓冲液pH值及凝胶浓度相同,带电颗粒在电场作用下,主要靠电荷和分子筛效应。
不连续系统中由于缓冲液离子成分,pH,凝胶浓度及电位梯度的不连续性,带电颗粒在电场中泳动不仅有电荷效应,分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳。
不连续体系由电极缓冲液、浓缩胶及分离胶所组成。
浓缩胶是由AP催化聚合而成的大孔胶,凝胶缓冲液为pH6.7的Tris-HCl。
分离胶是由AP催化聚合而成的小孔胶,凝胶缓冲液为pH8.9 Tris-HCl。
电极缓冲液是pH8.3 Tris-甘氨酸缓冲液。
2种孔径的凝胶、2种缓冲体系、3种pH值使不连续体系形成了凝胶孔径、pH值、缓冲液离子成分的不连续性,这是样品浓缩的主要因素。
SDS是阴离子去污剂,作为变性剂和助溶试剂,它能断裂分子内和分子间的氢键,使分子去折叠,破坏蛋白分子的二、三级结构。
而强还原剂如巯基乙醇,二硫苏糖醇能使半胱氨酸残基间的二硫键断裂。
在样品和凝胶中加入还原剂和SDS后,分子被解聚成多肽链,解聚后的氨基酸侧链和SDS结合成蛋白- SDS胶束,所带的负电荷大大超过了蛋白原有的电荷量,这样就消除了不同分子间的电荷差异和结构差异。
SDS-PAGE一般采用的是不连续缓冲系统,与连续缓冲系统相比,能够有较高的分辨率。
实验⼗聚丙烯酰胺凝胶电泳(SDS-PAGE)分离蛋⽩质实验⼗聚丙烯酰胺凝胶电泳(SDS-PAGE)分离蛋⽩质【实验⽬的】1. 了解和掌握聚丙烯酰胺凝胶电泳的技术和原理;2. 掌握⽤此法分离蛋⽩质组分的操作⽅法。
【实验原理】在⽣物化学、分⼦⽣物学和基因(遗传)⼯程实验中,常常要进⾏蛋⽩质和核酸的分离⼯作。
聚丙烯酰胺凝胶电泳(Polyacrylamide Gel Electrophoresis, PAGE)是以聚丙烯酰胺凝胶作为⽀持介质进⾏蛋⽩质或核酸分离的⼀种电泳⽅法。
聚丙烯酰胺凝胶是由丙烯酰胺单体(acrylamide,简称ACR)和交联剂N,N-甲叉双丙烯酰胺(N,N-methylene bisacrylsmide 简称BIS)在催化剂的作⽤下聚合交联⽽成的三维⽹状结构的凝胶。
通过改变单体浓度与交联剂的⽐例,可以得到不同孔径的凝胶,⽤于分离分⼦量⼤⼩不同的物质。
聚丙烯酰胺凝胶聚合的催化体系有两种:(1)化学聚合:催化剂采⽤过硫酸铵,加速剂为N,N,N,N-四甲基⼄⼆胺(简称TEMED)。
通常控制这⼆种溶液的⽤量,使聚合在1⼩时内完成。
(2)光聚合:通常⽤核黄素为催化剂,通过控制光照时间、强度控制聚合时间,也可加⼊TEMED 加速反应。
聚丙烯酰胺凝电泳常分为⼆⼤类:第⼀类为连续的凝胶(仅有分离胶)电泳;第⼆类为不连续的凝胶(浓缩胶和分离胶)电泳。
⼀般地,不连续聚丙烯酰胺凝胶电泳有三种效应:①电荷效应(电泳物所带电荷的差异性);②凝胶的分⼦筛效应(凝胶的⽹状结构及电泳物的⼤⼩形状不同所致)。
③浓缩效应(浓缩胶与分离胶中聚丙烯酰胺的浓度及pH的不同,即不连续性所致)。
因此,样品分离效果好,分辨率⾼。
SDS即⼗⼆烷基硫酸钠(Sodium Dodecyl Sulfate,简称SDS)是阴离⼦表⾯活性剂,它能以⼀定⽐例和蛋⽩质结合,形成⼀种SDS-蛋⽩质复合物。
这时,蛋⽩质即带有⼤量的负电荷,并远远超过了其原来的电荷,从⽽使天然蛋⽩质分⼦间的电荷差别降低仍⾄消除。
生化实验总结报告实验名称:SDS - PAGE法测定蛋白质的相对分子量作者:田景辉(201306230114)专业:生物工程指导教师:许培雅日期:2015.12.30组员:杨瑞徐巧妹尹彪程健刘嘉南目录一、实验介绍 (3)二、实验原理 (3)三、实验材料、试剂、器皿 (4)四、操作步骤 (5)五、注意事项 (7)六、实验数据记录与处理 (7)七、总结与建议 (8)八、术语表 (9)九、参考文献 (9)十、附录 (9)一、实验介绍1.实验目的掌握SDS-聚丙烯酰胺凝胶电泳法和测定蛋白质分子量的技术。
2.实验背景在实验一中,用100g新鲜酵母用甲苯自溶法、研磨法、SDS(十二烷基苯磺酸钠)法进行了蔗糖酶的提取以及粗提取,得到初提取液A、热提取液B、乙醇提取液C。
最终得到9.0ml蔗糖酶初提取液。
实验二采用QAE-葡聚糖凝胶离子交换柱层析法进行蔗糖酶的纯化,得到经线性阶梯洗脱的分离液D1和经阶梯梯度洗脱的分离液D2。
实验三采用苯基琼脂糖凝胶柱层析法进行进一步纯化,得到经2mol/L(NH4)2SO4的0.05mol/L Tris-HCl ph7.3 缓冲液洗脱的分离液E1和经2mol/L NaCl的0.05mol/L Tris-HCl ph7.3 缓冲液洗脱的分离液E2。
二、实验原理SDS-聚丙烯酰胺凝胶电泳,是在聚丙烯酰胺凝胶系统中引进SDS(十二烷基硫酸钠), SDS会与变性的多肽,并使蛋白带负电荷,由于多肽结合SDS的量几乎总是与多肽的分子量成正比而与其序列无关,因此SDS多肽复合物在丙稀酰胺凝胶电泳中的迁移率只与多肽的大小有关,在达到饱和的状态下,每克多肽可与1.4g去污剂结合。
当分子量在15KD到200KD之间时,蛋白质的迁移率和分子量的对数呈线性关系,符合下式:logMW=K-bX,式中:MW为分子量,X为迁移率,k、b均为常数,若将已知分子量的标准蛋白质的迁移率对分子量对数作图,可获得一条标准曲线,未知蛋白质在相同条件下进行电泳,根据它的电泳迁移率即可在标准曲线上求得分子量。
sds page原理
SDS-PAGE(Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis)是一种常用的蛋白质分离和分析技术。
它的原理基于蛋白质的电荷和分子质量差异。
SDS-PAGE的原理如下:
1. 蛋白质样品:将待分析的蛋白质样品在含有SDS(十二烷基硫酸钠)的缓冲液中加热处理,使蛋白质变性为线性形式,并与SDS以1:1的比例结合。
SDS 能够给蛋白质提供一个负电荷,使蛋白质呈均一的负电荷比例。
2. 准备Gel:制备一个由聚丙烯酰胺和交联剂组成的Gel胶。
在聚丙烯酰胺中添加过氧化物,使其发生聚合反应。
这样形成了一系列大小孔隙的网状结构。
3. Gel电泳:将含有SDS的蛋白质样品通过吸附在Gel上的孔隙中。
加上直流电压,在电场作用下,蛋白质会随着电泳迁移。
负电荷较多的蛋白质迁移较快,负电荷较少的蛋白质迁移较慢,从而实现了蛋白质的分离。
4. 染色和可视化:经过电泳分离后,使用染色剂(如Coomassie蓝)对蛋白质进行染色,目的是使蛋白质能够在胶上可视化。
通过比较样品和标记的分子量标准品的黑色条带,可以测量和估算待测蛋白质的分子量。
总结:SDS-PAGE通过对蛋白质样品中的蛋白质进行处理和分离,使其呈现出
电荷和分子质量的差异性。
这一方法在蛋白质的分子量分析、鉴定和纯化过程中被广泛应用。
在进行SDS-PAGE蛋白凝胶电泳原理的讨论之前,我们首先需要了解蛋白质和电泳技术的基本概念。
蛋白质是生物体内功能最丰富的大分子化合物,它们参与了生命的方方面面,包括结构、酶活性、信号传导等。
而电泳技术则是一种基于电场作用将带电粒子分离的方法,它在生命科学研究中有着广泛的应用。
SDS-PAGE蛋白凝胶电泳原理是一种常用于分离和鉴定蛋白质的技术,其原理基于蛋白质在电场中的迁移速度与其分子质量成反比的关系。
现在让我们深入探讨SDS-PAGE蛋白凝胶电泳的原理和相关细节。
1. SDS-PAGE蛋白凝胶电泳的基本步骤在进行SDS-PAGE蛋白凝胶电泳实验时,首先需要将待测样品中的蛋白质在含有SDS(十二烷基硫酸钠)的缓冲液中进行变性处理,使得蛋白质呈线性结构并且带有负电荷。
之后,将处理过的蛋白样品加载到聚丙烯酰胺凝胶中,并施加电场使得蛋白质开始迁移。
根据蛋白质的分子质量,它们将在凝胶中以不同的速率迁移,最终实现分离。
2. SDS的作用原理SDS是一种带有负电荷的表面活性剂,它的主要作用是使得蛋白质呈线性构象,并且使得蛋白质的带电量与其分子质量成正比。
这样一来,不同分子质量的蛋白质在电场中受到的阻力相对应也会不同,从而实现蛋白质的分离。
3. 凝胶电泳的原理凝胶电泳是利用凝胶作为分离介质的电泳方法。
凝胶可以是聚丙烯酰胺凝胶、琼脂糖凝胶或者琼脂糖琼脂糖凝胶。
在SDS-PAGE蛋白凝胶电泳中,聚丙烯酰胺凝胶是最常用的分离介质。
它的基本原理是利用凝胶的孔隙大小来实现对蛋白质的分离,分子质量较大的蛋白质会受到较大的阻力从而迁移较慢,分子质量较小的蛋白质则会迁移得更快。
4. 电泳条件的影响在进行SDS-PAGE蛋白凝胶电泳实验时,电泳条件的设定对分离结果有着重要影响。
电场强度的大小、电泳时间的长短、凝胶浓度等都会影响蛋白质的迁移速度和分离效果。
总结而言,SDS-PAGE蛋白凝胶电泳原理基于蛋白质在电场中的迁移速度与其分子质量成反比的关系,通过SDS的作用使得蛋白质呈现线性构象并且带有负电荷,再利用凝胶电泳对不同分子质量的蛋白质进行分离。
S D S A G E电泳的基本原理及浓缩胶浓缩样品的原理集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]SDS-PAGE电泳的基本原理及浓缩胶浓缩样品的原理SDS-PAGE(十二烷基硫酸钠-聚丙烯酰胺凝胶电泳)是目前最常用的分离蛋白质的电泳技术SDS-聚丙烯酰胺凝胶电泳,是在聚丙烯酰胺凝胶系统中引进SDS, SDS能断裂分子内和分子间氢键,破坏蛋白质的二级和三级结构,强还原剂能使半胱氨酸之间的二硫键断裂,蛋白质在一定浓度的含有强还原剂的SDS溶液中,与SDS分子按比例结合,形成带负电荷的SDS-蛋白质复合物,这种复合物由于结合大量的SDS,使蛋白质丧失了原有的电荷状态形成仅保持原有分子大小为特征的负离子团块,从而降低或消除了各种蛋白质分子之间天然的电荷差异,由于SDS与蛋白质的结合是按重量成比例的,因此在进行电泳时,蛋白质分子的迁移速度取决于分子大小。
当分子量在15KD到200KD之间时,蛋白质的迁移率和分子量的对数呈线性关系,符合下式:logMW=K-bX,式中:MW为分子量,X为迁移率,k、b均为常数,若将已知分子量的标准蛋白质的迁移率对分子量对数作图,可获得一条标准曲线,未知蛋白质在相同条件下进行电泳,根据它的电泳迁移率即可在标准曲线上求得分子量。
SDS-PAGE电泳成功的关键是什么?①溶液中SDS单体的浓度SDS在水溶液中是以单体和SDS-多肽胶束的混合形式存在,能与蛋白质分子结合的是单体。
为了保证蛋白质与SDS的充分结合,它们的重量比应该为1∶4或1∶3。
②样品缓冲液的离子强度因为SDS结合到蛋白质上的量仅仅取决于平衡时SDS单体的浓度,不是总浓度,而只有在低离子强度的溶液中,SDS单体才具有较高的平衡浓度。
所以,SDS电泳的样品缓冲液离子强度较低,常为10-100 mM。
③二硫键是否完全被还原只有二硫键被完全还原以后,蛋白质分子才能被解聚,SDS才能定量地结合到亚基上从而给出相对迁移率和分子质量对数的线性关系。
sds-page蛋白质电泳的原理和基本操作流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!SDS-PAGE:蛋白质电泳的原理与操作流程引言SDS-PAGE(Sodium Dodecyl Sulfate - Polyacrylamide Gel Electrophoresis)是生物化学和分子生物学中广泛使用的一种技术,主要用于蛋白质的分离和分析。
SDS-PAGE电泳试剂配制SDS-PAGE(聚丙烯酰胺凝胶电泳)是一种常用的蛋白质分离技术,可以将蛋白质按照其分子量大小分离出来。
在这个过程中,需要使用一系列试剂来形成凝胶、还原并变性蛋白质样品、以及进行电泳。
下面我们将介绍SDS-PAGE电泳试剂的配制方法。
聚丙烯酰胺凝胶电泳胶液配制1. 蒸馏水将蒸馏水取2L,通过0.22μm的滤膜过滤3遍来除杂质,备用。
2. 均聚化溶液将40%(w/v)丙烯酰胺10mL,在干燥器中烘干2小时,然后加入蒸馏水固定容积至50mL。
将10%(w/v)N, N’-二甲基亚硫脲5mL加入均聚化溶液中,搅拌30分钟至完全溶解。
3. 凝胶制备将均聚化溶液加入10%(w/v)的三甲基丙烯酰氨基甲基纤维素,搅拌5分钟后加入0.1%TEMED等待至少1小时凝胶化。
4. 等电聚焦凝胶制备将均聚化溶液加入3.33%(w/v)等电聚焦剂,根据需要调节pH值,搅拌5分钟后加入氨基甲酸1mL,搅拌2分钟至完全溶解。
加入TEMED及APS,混合倒入制好的除尘洞中,并插入梳子。
至少1小时后移除梳子,使凝胶完全凝固。
蛋白样品处理试剂配制1. SDS缓冲液将10%SDS 1.25mL加入pH6.8的磷酸盐缓冲液(1M),加入蒸馏水固定容积至100mL,搅拌10分钟至SDS完全溶解,备用。
2. β-巯基乙醇将β-巯基乙醇400μL加入1mL磷酸盐缓冲液(1M),备用。
3. 样品缓冲液将10%SDS 100μL,β-巯基乙醇50μL加入磷酸盐缓冲液1mL中,加入蒸馏水固定容积至10mL,轻轻搅拌即可。
4. 热变性载入缓冲液将4倍浓度的样品缓冲液加入β-巯基乙醇,于100℃水浴中加热5分钟。
冷却至室温,即可使用。
电泳相关试剂配制1. 电泳缓冲液将磷酸盐缓冲液1L加入SDS 10g进行混合后,加入蒸馏水将其固定至2L,备用。
2. Anode buffer将磷酸盐缓冲液1L加入SDS 5g进行混合后,加入蒸馏水将其固定至2L,备用。
SDS-PAGE电泳过程中常见问题以及解决方法几乎所有蛋白质电泳分析都在聚丙烯酰胺凝胶上进行,而所有条件总要确保蛋白质解离成单个多肽亚基并进可能减少其相互间的聚集,最常用的就是SDS-PAGE电泳技术,关于大家在此过程中经常遇到的问题进行一些讨论:Q:SDS-PAGE电泳的基本原理?A:SDS-聚丙烯酰胺凝胶电泳,是在聚丙烯酰胺凝胶系统中引进SDS(十二烷基硫酸钠),SDS 会与变性的多肽,并使蛋白带负电荷,由于多肽结合SDS的量几乎总是与多肽的分子量成正比而与其序列无关,因此SDS多肽复合物在丙稀酰胺凝胶电泳中的迁移率只与多肽的大小有关,在达到饱和的状态下,每克多肽可与1.4g去污剂结合。
当分子量在15KD到200KD之间时,蛋白质的迁移率和分子量的对数呈线性关系,符合下式:logMW=K-bX,式中:MW为分子量,X为迁移率,k、b均为常数,若将已知分子量的标准蛋白质的迁移率对分子量对数作图,可获得一条标准曲线,未知蛋白质在相同条件下进行电泳,根据它的电泳迁移率即可在标准曲线上求得分子量。
Q:配胶缓冲液系统对电泳的影响?A:在SDS-PAGE不连续电泳中,制胶缓冲液使用的是Tris-HCL缓冲系统,浓缩胶是pH6.7,分离胶pH8.9;而电泳缓冲液使用的Tris-甘氨酸缓冲系统。
在浓缩胶中,其pH环境呈弱酸性,因此甘氨酸解离很少,其在电场的作用下,泳动效率低;而CL离子却很高,两者之间形成导电性较低的区带,蛋白分子就介于二者之间泳动。
由于导电性与电场强度成反比,这一区带便形成了较高的电压剃度,压着蛋白质分子聚集到一起,浓缩为一狭窄的区带。
当样品进入分离胶后,由于胶中pH的增加,呈碱性,甘氨酸大量解离,泳动速率增加,直接紧随氯离子之后,同时由于分离胶孔径的缩小,在电场的作用下,蛋白分子根据其固有的带电性和分子大小进行分离。
所以,pH对整个反应体系的影响是至关重要的,实验中在排除其他因素之后仍不能很好解决问题的情况,应首要考虑该因素。
SDS-PAGE电泳的基础原理和实验步骤1.名称:SDS-PAGE(sodium dodecyl sulfate polyacrylamide gel electrophoresis)十二烷基硫酸钠聚丙烯酰胺凝胶电泳2.原理:此项技术的原理,是根据样品中蛋白质分子量大小的不同,使其在电泳胶中分离。
不同的蛋白质在不同的pH值下表现出不同的电荷,同时蛋白质具有不同的大小和形状。
为了使蛋白在电泳中的迁移率只与分子量有关,我们在上样前,通常会进行一些处理。
上样缓冲液由Tris-HCl (pH6.8)、甘油,10%SDS、β-巯基乙醇、0.1%溴酚蓝以及蒸馏水组成。
其各自的作用如下述:SDS 即十二烷基硫酸钠,是一种阴离子表面活性剂,它可以断开分子内和分子间的氢键,破坏蛋白质分子的二级和三级结构;β-巯基乙醇是强还原剂,它可以断开半胱氨酸残基之间的二硫键。
由于SDS和巯基乙醇的作用,蛋白质完全变性和解聚,解离成亚基或者单个肽链,因此测定结果只是亚基或者单个肽链的分子量。
同时,SDS与蛋白质结合引起蛋白质的构象改变,形成长椭圆棒状,不同蛋白质短轴长度都一样,长轴随蛋白分子量不同而不同,这样就消除了性状的影响。
另外,解聚后的氨基酸侧链和SDS结合成蛋白- SDS胶束,所带的负电荷大大超过了蛋白原有的电荷量,这样就消除了不同分子间的电荷差异和结构差异。
甘油用以增大样品液密度,使加样时样品溶液可以快速沉入样品凹槽底部。
样品处理液中通常还加入溴酚蓝染料,用于监控整个电泳过程。
SDS-PAGE一般采用的是不连续缓冲系统,与连续缓冲系统相比,能够有较高的分辨率。
浓缩胶的作用是有堆积作用,凝胶浓度较小,孔径较大,把较稀的样品加在浓缩胶上,经过大孔径凝胶的迁移作用而被浓缩至一个狭窄的区带。
样品液和浓缩胶中Tris-HCl均为pH6.8,上下槽缓冲液含Tris-甘氨酸(pH8.3),分离胶含Tris-HCl(Ph8.8).电泳启动时,蛋白样品处于pH6.8 的上层,pH8.8 的分离胶层在下层,上槽为负极,下槽为正极。
一、实验目的:1.1理解SDS-PAGE测定蛋白质相对分子质量的基本原理。
1.2掌握分子电泳的基本步骤,掌握计算蛋白质相对分子质量的方法。
二、实验内容和原理:2.1电泳(electrophoresis):是指带电颗粒在电场中向着与它电性相反的电极移动的现象。
许多重要的生物分子都含有可电离基团(如氨基酸、多肽、蛋白质、核苷酸、核酸等),在非等电点条件下可解离成带有电荷分子,在电场力的作用下,它们向着与其所带电荷相反的电极移动。
电泳技术就是利用样品中各种分子带电性质、分子大小、形状等的差异,在电场中的迁移速度不同,从而对样品进行分离、纯化和鉴定的一种综合技术。
可用于样品的制备、纯度鉴定、分子量测定等。
2.2影响带电粒子在电场中泳动的因素:①生物分子的性质:待分离生物大分子所带电荷的多少、性质、分子大小和形状都会对电泳产生明显影响。
②缓冲液:缓冲液pH值直接影响生物分子的解离程度和带电性质。
溶液pH值距离等电点愈远,生物分子所带净电荷就越多,电泳时速度就越快。
当缓冲液pH大于等电点时,生物分子带负电荷,电泳时向正极移动;当缓冲液pH小于等电点时,生物分子带正电荷,电泳时向负极移动。
③电场强度:电场强度指每单位介质长度的电位梯度(又称电位差或电位降)。
一般而言,电场强度越大,电泳速度越快。
但随着电场强度的增大会引起通过介质的电流强度增大,从而造成电泳过程产生的热量增多,最终导致介质温度升高。
降低电流强度,可以减少产热,但会延长电泳时间,引起生物分子扩散增加,同样影响分离效果。
所以电泳实验中要选择适当的电场强度。
④电渗:液体在电场中对于固体支持介质的相对移动称为电渗。
由于支持介质表面存在一些带电基团,如滤纸表面含有羧基,琼脂含有硫酸基等。
这些基团电离后使支持介质表面带电,吸附一些带相反电荷的离子在电场作用下向电极方向移动,形成介质表面溶液的流动。
当电渗方向与电泳方向相同时则加快电泳速度;当电渗方向与电泳方向相反时,则降低电泳速度。
sds-page中浓缩胶和分离胶工作原理SDS-PAGE(聚丙烯酰胺凝胶电泳)是一种常用于蛋白质分离和定量的方法。
它通过将蛋白质样品在聚丙烯酰胺凝胶中的电泳来实现蛋白质分离。
SDS-PAGE中的关键步骤包括制备胶液、制备样品和运行凝胶电泳。
其中,浓缩胶和分离胶是SDS-PAGE中的两个关键组分,下面将分别详细介绍它们的工作原理。
浓缩胶是SDS-PAGE中的第一个凝胶。
其主要作用是将样品中的蛋白质浓缩在一个较小的体积中,从而提高蛋白质的负载量。
浓缩胶通常是由较高浓度的聚丙烯酰胺凝胶制成。
制备浓缩胶的步骤如下:1.根据需要的凝胶浓度和厚度,将适量的丙烯酰胺和交联剂加入缓冲液中,得到聚合物化合物。
2.将聚合物化合物倒入凝胶模具中,加入推荐量的TEMED和过硫酸铵(APS),使聚合反应开始。
3.反应后,将浓缩胶从模具中取出,并用缓冲液冲洗浓缩胶,以去除未反应的物质。
浓缩胶的工作原理是通过聚合物网状结构的形成,将蛋白质限制在凝胶中。
聚合物中包含交联剂,能够在聚丙烯酰胺分子之间产生交联反应,形成一个三维的网状结构。
蛋白质样品中的SDS(十二烷基硫酸钠)和化学试剂在电泳过程中会与聚合物发生作用,使蛋白质分子展开并与聚合物的分子结合。
这样,蛋白质就被限制在凝胶内部,无法自由迁移。
分离胶是SDS-PAGE中的第二个凝胶,也是用来实现蛋白质分离的关键步骤。
分离胶的主要作用是根据蛋白质的大小和电荷特性,将蛋白质样品分离成不同的带状条纹。
分离胶通常是由较低浓度的聚丙烯酰胺凝胶制成。
制备分离胶的步骤如下:1.根据需要的凝胶浓度和厚度,将适量的丙烯酰胺和交联剂加入缓冲液中,得到聚合物化合物。
2.将聚合物化合物倒入凝胶模具中,加入推荐量的TEMED和过硫酸铵(APS),使聚合反应开始。
3.反应后,将分离胶从模具中取出,并用缓冲液冲洗分离胶,以去除未反应的物质。
分离胶的工作原理是通过改变凝胶的孔隙结构来实现蛋白质的分离。
在分离胶中,聚丙烯酰胺凝胶网状结构相对较松散,有更多的孔隙。