一种二自由度PID控制器参数整定方法(1)
- 格式:pdf
- 大小:536.75 KB
- 文档页数:5
工业控制中的PID控制器参数整定方法介绍在工业控制领域中,PID控制器是一种常用的控制策略,它被广泛应用于各种自动化系统中。
PID控制器通过调节控制对象的输出,使其保持在期望的目标值附近。
为了达到良好的控制效果,关键是合理设置PID控制器的参数。
本文将介绍几种常用的PID控制器参数整定方法。
一、移动曲线法移动曲线法是一种常用的经验参数整定方法,适用于一些比较简单的控制系统。
该方法基于试验的数据,通过观察系统的响应曲线来调整PID控制器的参数。
首先,将控制系统的控制对象设置为一个步跃信号输入,观察系统的输出响应曲线。
根据响应曲线的形状,可以得到一些关键信息,如峰值时间(Tp)、峰值响应(M)以及延迟时间(L)。
根据这些信息,可以使用以下规则来选择PID控制器的参数:1. 比例系数Kp:如果系统的响应曲线具有较大的超调和震荡,需要增大Kp,但不要过大,以免引起系统的不稳定性。
2. 积分时间Ti:根据延迟时间L来选择Ti的大小。
一般来说,延迟时间越大,积分时间越小。
3. 微分时间Td:根据峰值时间Tp来选择Td的大小。
如果峰值时间较长,则需要适当增大Td。
通过不断的试验和调整,直到系统的响应曲线满足要求为止。
二、频率响应法频率响应法是一种较为精确和科学的参数整定方法,通过对系统进行频率特性测试,根据测试结果来确定PID控制器的参数。
首先,在控制系统中添加一个频率变化的输入信号,例如正弦波或方波。
记录并分析系统的输入和输出信号之间的频率特性。
根据频率特性曲线的形状和参数,可以选择合适的PID 控制器参数。
具体来说,可以从频率特性曲线中获得以下重要参数:1. 闭环传递函数的峰值增益(Kp):根据峰值增益来确定比例系数Kp的大小。
峰值增益越大,Kp的取值也应相对较大。
2. 相位裕度(PM)和增益裕度(GM):根据相位裕度和增益裕度来确定积分时间Ti和微分时间Td的取值范围。
相位裕度和增益裕度越小,积分时间Ti和微分时间Td应取得较小。
P I D控制原理与参数整定方法一、概述PID是比例-积分-微分控制的简称,也是一种控制算法,其特点是结构改变灵活、技术成熟、适应性强。
对一个控制系统而言,由于控制对象的精确数学模型难以建立,系统的参数经常发生变化,运用控制理论综合分析要耗费很大的代价,却不能得到预期的效果,所以人们往往采用PID调节器,根据经验在线整定参数,以便得到满意的控制效果。
随着计算机特别是微机技术的发展,PID控制算法已能用微机简单实现,由于软件系统的灵活性,PID算法可以得到修正而更加完善。
我们阳江基地有数以千计的采用PID控制的调节器,用于温度控制、压力控制、流量控制,在塑杯及灌装生产过程中,发挥着重要的作用。
因此,学习PID控制的基本原理,合理的设计PID控制系统,用好、维护好这些调节器,对提高产品质量,降低废品率,节约能源具有十分重要的意义。
本课程从系统的角度,采用多种分析方法,详细讲解经典PID控制的基本原理和PID参数的整定方法,简介现代数字PID控制思想,希望对大家使用PID调节器有所帮助。
二、调节系统的品质和特性一个调节系统的品质可以用静态品质和动态品质来衡量。
所谓静态品质就是系统稳定后,被控参数与给定值间的差值的大小。
偏差愈大则静差愈大,静差愈小静态品质愈好。
当系统受到扰动后或整定在一个新值时需要在较短时间内过渡到稳定,不发生振荡和发散,这便是衡量系统动态特性的指标。
一个好的调节系统应该二个品质都好。
但动静态品质往往是相互矛盾的,要静差小,系统的放大倍数就要大,系统放大倍数愈大则系统愈不稳定,即动态品质不好。
图1-1收敛型1 图1-2收敛型2 图1-3发散型落图1-4振荡型图1-1至1-4是几种典型的控制曲线,只有图1-1表示动静态品质都好。
一般的调节系统都具有惯性和滞后两种特性,只是大小不同而已。
这两个特性应从控制对象,控制作用这两个方面去理解。
弄懂以上关于调节系统的几个基本概念,对于理解PID控制的原理有很大的帮助。
PID参数整定方法就是确定调节器的比例带PB、积分时间Ti和和微分时间Td。
一般可以通过理论计算来确定,但误差太大。
目前,应用最多的还是工程整定法:如经验法、衰减曲线法、临界比例带法和反应曲线法。
各种方法的大体过程如下:(1)经验法又叫现场凑试法,即先确定一个调节器的参数值PB和Ti,通过改变给定值对控制系统施加一个扰动,现场观察判断控制曲线形状。
若曲线不够理想,可改变PB或Ti,再画控制过程曲线,经反复凑试直到控制系统符合动态过程品质要求为止,这时的PB和Ti 就是最佳值。
如果调节器是PID三作用式,那么要在整定好的PB和Ti的基础上加进微分作用。
由于微分作用有抵制偏差变化的能力,所以确定一个Td值后,可把整定好的PB和Ti值减小一点再进行现场凑试,直到PB、Ti和Td取得最佳值为止。
显然用经验法整定的参数是准确的。
但花时间较多。
为缩短整定时间,应注意以下几点:①根据控制对象特性确定好初始的参数值PB、Ti和Td。
可参照在实际运行中的同类控制系统的参数值,或参照表3-4-1所给的参数值,使确定的初始参数尽量接近整定的理想值。
这样可大大减少现场凑试的次数。
②在凑试过程中,若发现被控量变化缓慢,不能尽快达到稳定值,这是由于PB过大或Ti过长引起的,但两者是有区别的:PB 过大,曲线漂浮较大,变化不规则,Ti 过长,曲线带有振荡分量,接近给定值很缓慢。
这样可根据曲线形状来改变PB或Ti。
③PB 过小,Ti过短,Td太长都会导致振荡衰减得慢,甚至不衰减,其区别是PB过小,振荡周期较短;Ti过短,振荡周期较长;Td太长,振荡周期最短。
④如果在整定过程中出现等幅振荡,并且通过改变调节器参数而不能消除这一现象时,可能是阀门定位器调校不准,调节阀传动部分有间隙(或调节阀尺寸过大)或控制对象受到等幅波动的干扰等,都会使被控量出现等幅振荡。
这时就不能只注意调节器参数的整定,而是要检查与调校其它仪表和环节。
(2)衰减曲线法是以4:1衰减作为整定要求的,先切除调节器的积分和微分作用,用凑试法整定纯比例控制作用的比例带PB(比同时凑试二个或三个参数要简单得多),使之符合4:1衰减比例的要求,记下此时的比例带PBs和振荡周期Ts。
●专家论谈 PID控制参数整定方法清华大学热能系(100084) 刘 镇 姜学智 李东海 过程工业控制中多采用PID控制算法,PID控制器只有在参数得到良好整定的前提下才能达到令人满意的控制效果。
P ID控制器参数整定,是指在控制器的形式已经确定(PI、PID调节规律)的情况下,通过调整控制器参数,达到要求的控制目标。
几十年来人们致力于研究P ID控制器参数的整定方法,提出了各种各样的方法。
按应用条件分为在线整定算法、离线整定算法;按计算方式分为一次算法、反复迭代算法;本文将整定方法分为基于被控对象特性的整定方法和不依赖于对象动态特性的整定方法两大类。
1 基于被控对象特性的整定方法控制参数整定的目标是使得由控制对象、控制器等组成的控制回路的动态特性满足性能指标要求,因此,若能得到被控对象的动态特性,就可通过各种手段来整定控制器参数。
被控对象的特性可用不同的模型表征,常用的是对象的参数模型(如微分方程、传递函数)、非参数模型(如阶跃响应曲线)、输出响应特征值。
1.1 基于对象参数模型的整定方法基于被控对象参数模型的整定方法是利用辨识算法得出对象的数学模型,在此基础上用整定算法对控制器参数进行整定。
对象参数模型辨识方法(亦称现代的辨识方法)是在假定一种模型结构的基础上,通过极小化模型与过程之间的误差准则函数来确定模型的参数,比较常用的方法有最小二乘法、梯度校正法、极大似然法。
若模型结构无法事先确定,则必须利用结构辨识方法先确定模型的结构参数(如阶次、纯迟延等)。
在辨识得到对象的参数模型后,可用的参数整定方法有:极点配置整定法、相消原理法、内模控制法(IM C)、增益、相角裕量法(G PM)、基于二次型性能指标(I T A E/ IT E/ISE)的参数优化方法。
这类方法对特性分明的被控对象的控制参数整定是十分有效的,但这种方法比较复杂,要得到精确的数学模型,需要较复杂的试验手段和数学手段,并且这种方法对被控过程模型有较强的限制,因而对不能或难以用精确数学模型描述的复杂过程难以奏效。
PID控制器参数整定设计方案PID控制器是一种常用的控制算法,能够根据反馈信号对控制系统进行自动校正。
PID控制器的参数整定是指确定其比例增益Kp、积分时间Ti和微分时间Td的过程,以达到系统稳定、快速响应和抗干扰能力强的目标。
参数整定的设计方案可以分为经验法、试验法和数学优化法。
其中经验法是基于经验公式或规则进行参数选择,简单易行;试验法是通过实际系统的频率响应或阶跃响应进行参数优化;数学优化法是通过数学模型和数学方法进行参数优化,可以充分利用系统信息,但计算复杂度较高。
一、经验法:1.负载法:保持系统稳定工作,逐步增大比例增益Kp,观察系统是否出现超调或振荡现象,选择合适的Kp值。
2.相位裕量法:通过观察系统频率响应曲线,选取合适的相位裕量来确定Kp和Ti的初值。
3. Ziegler-Nichols法:通过输出曲线中的时间常数和周期来确定Kp和Ti的初值。
二、试验法:1.阶跃响应法:对系统进行单位阶跃输入,观察输出响应曲线,根据超调量和上升时间来确定参数。
2.频率法:通过改变系统输入信号的频率,观察输出幅频特性曲线,选取合适的增益裕量来确定参数。
3.周响应法:对系统进行周期性输入,观察输出响应曲线,根据周期和振幅的变化来确定参数。
三、数学优化法:1.差分演化算法:通过仿真模型进行参数优化,在一定迭代次数内找到使系统性能最优的参数组合。
2.遗传算法:通过模拟自然中的优胜劣汰和基因传递机制,生成一组符合条件的参数,并通过交叉和突变进行进一步优化。
在实际应用中,可以综合使用以上不同的参数整定方法,根据系统特点和需求来确定参数。
同时,还可以考虑使用自适应控制算法,如模糊PID、自适应PID等,根据系统响应实时调整参数,提高控制效果。
需要注意的是,参数整定过程中需要考虑系统的稳定性、稳态误差、响应速度和抗干扰能力等多个指标,并进行合理的权衡。
此外,实际系统中可能存在不确定性或变动性因素,要做好参数调整的适应性和鲁棒性设计。
介绍几种PID参数的整定PID调节规律对于很多工程技术人员已经耳熟能详,它是在经典控制理论基础上发展出来的。
但是,我们发现,在实际的过程控制中,很多工程技术人员对于如何正确整定这些参数往往会束手无策,甚至无从下手,本文尝试介绍几种常用的方法,以期望对大家的工作有所帮助。
控制器的参数与系统所处的稳态工况有关。
一旦工况改变了,也就是过程对象的“特性”改变了,那么控制器参数的“最佳”值也就随着改变。
这就意味着需要随时整定控制器的参数,以满足控制系统满足过程控制对象的快速性、准确性和稳定性要求。
以下所作介绍,都是从理论书籍中来,欢迎批评指正,交流提高。
PID其控制图如下图1所示:实时控制一般要求被控过程是稳定的,对给定量的变化能够迅速响应,超调量要小(满足一定的指标要求)且有一定的抗干扰能力。
同时满足上述要求似乎是很困难的,尤其在实际应用中。
但主要指标必须要满足。
参数的选择可以即通过实验确定,也可以通过试凑法或者经验数据法得到。
以下为这主要集中参数整定方法。
1.经验数据法PID控制器的参数整定在大量的工程实践中,逐渐被广大工程技术人员经过大量的经验积累找到了一种快捷的整定方法,就是我们现在介绍的所谓“经验法”。
实际上比例、积分和微分三部分作用是相互影响的,应用经验法可避免一些重复工作,节省调试时间,尤其是在缺少一些资料和试验数据的时候。
从应用的角度看,只要被控对象主要指标达到设计要求,能满足现场要求即可。
长期的实践经验发现,各种不同被控对象的PID的参数都是有一定规律的,也就是说有一定的数据范围。
这样就为现场调试提供了一个大致基准,可方便依据此基准迅速查找。
表1给出了几种常见被控量PID参数的经验数据,可供参考。
2.试凑法顾名思义,试凑法就是根据过渡过程中被调参数变化的情况进行再调整PID参数的方法。
此法边观察过程曲线(过过程变量变化情况),边修改参数,直到满意为止。
大家都知道,增大比例系数Kp会加快系统的响应速度,提高系统的快速性。
PID控制原理与PID参数的整定方法PID控制是一种经典的自动控制方法,它通过测量被控对象的输出和参考输入之间的差异,计算出一个控制信号,通过调节被控对象的输入达到控制目标。
PID控制器由比例(P),积分(I)和微分(D)三个部分组成,分别对应于控制信号的比例、积分和微分作用。
比例控制(P)通过使用被控对象输出和参考输入之间的差异进行比例放大,并将放大的信号作为控制信号。
当比例增益增加时,控制器对误差的响应速度加快,但过大的增益会导致震荡。
积分控制(I)通过积分误差的累计值生成控制信号。
积分控制可以消除偏差,并提高系统稳定性。
然而,过大的积分增益可能导致系统的超调和振荡。
微分控制(D)通过测量误差变化的速率来生成控制信号,以预测误差的未来变化趋势。
微分控制可以提高系统的响应速度和稳定性,但过大的微分增益会导致噪声放大。
PID参数整定方法:PID参数整定是为了使控制系统实现快速响应、高稳定性和低超调。
下面介绍几种常用的PID参数整定方法。
1.经验法经验法是最简单直观的方法,通过试错和经验进行参数的调整。
根据系统的特点,调整比例、积分和微分增益,直至系统达到所需的响应速度和稳定性。
2. Ziegler-Nichols 方法Ziegler-Nichols 方法是一种基于系统响应曲线的经验整定方法。
首先,将增益参数设为零,逐渐增加比例增益直到系统开始震荡,这个值称为临界增益(Kc)。
然后,根据临界增益来确定比例、积分和微分增益。
-P控制:Kp=0.5*Kc-PI控制:Kp=0.45*Kc,Ti=Tc/1.2-PID控制:Kp=0.6*Kc,Ti=Tc/2,Td=Tc/83. Chien-Hrones-Reswick 方法Chien-Hrones-Reswick 方法是一种基于频域分析的整定方法。
它首先通过频率响应曲线的曲线变化形态来确定系统的参数。
然后,根据系统的动态响应特性来调整比例、积分和微分增益。
PID控制与参数整定方法PID控制是一种常用的控制算法,广泛应用于各个领域的自动控制系统中。
PID控制通过反馈调节系统的输出,使得系统的输出与期望值尽可能接近。
PID控制器由比例控制、积分控制和微分控制三部分组成,每个部分都有相应的参数需要进行整定。
在PID控制器中,比例控制部分根据当前误差的大小决定输出的大小,即输出与误差成正比。
比例控制的参数是比例增益,通过调节比例增益可以改变系统的响应速度和稳定性。
当比例增益较大时,系统的响应速度快,但可能会引起超调;当比例增益较小时,系统的响应速度慢,但稳定性好。
积分控制部分根据误差的累积量进行输出修正,用于消除系统的静态误差。
积分控制的参数是积分增益,通过调节积分增益可以改变系统的响应速度和对静态误差的准确性。
当积分增益较大时,系统能较快地消除静态误差,但可能会引起超调;当积分增益较小时,系统较难完全消除静态误差,但稳定性好。
微分控制部分根据误差的变化率进行输出修正,用于抑制系统响应的超调。
微分控制的参数是微分增益,通过调节微分增益可以改变系统的稳定性和抑制超调的效果。
当微分增益较大时,系统的稳定性好,但可能引起振荡;当微分增益较小时,系统的稳定性较差,但抑制超调的效果好。
参数整定是指选择合适的参数值使得PID控制系统能够满足控制要求。
主要有几种常用的整定方法:1.经验法:根据经验和实际应用中的常见规律来选择参数值。
这种方法适用于已有类似系统的参数可以作为参考的情况。
但是,由于每个系统的特性不同,经验法的参数选取往往需要经过多次试验和调整才能得到满意的控制效果。
2. Ziegler-Nichols 方法:该方法主要通过系统的临界时刻和临界增益来选择参数。
首先,通过增大比例增益直到系统开始振荡,并记录振荡的周期。
然后,根据周期计算出比例增益、积分增益和微分增益的初值。
这种方法在实践中比较常用,但是对于非线性和时变系统效果可能有限。
3.调试法:通过实际的调试过程来选择参数。
PID控制器及PID参数整定PID控制器(Proportional-Integral-Derivative Controller)是一种常用的控制器,在工业自动化系统中广泛应用。
PID控制器的基本原理是根据被控对象的反馈信号与设定值之间的偏差,通过一定的算法和参数调节输出信号,以使被控对象的输出尽可能接近设定值。
比例控制部分通过按比例增大或减小输出信号,以消除偏差。
比例增大时,输出信号变化速度快,但容易产生超调;比例减小时,输出信号变化速度慢,但容易产生稳态误差。
积分控制部分通过累积偏差的总和,使输出信号随时间逐渐增大或减小。
积分控制可消除稳态误差,但增加系统的响应时间和抗干扰能力,如果积分时间过长会导致系统不稳定。
微分控制部分根据偏差的变化率调整输出信号,用于抑制超调和稳定系统。
微分控制对快速变化的偏差具有较好的调节效果,但会增加系统对噪声的敏感性。
PID参数整定是指确定PID控制器的比例系数、积分时间和微分时间等参数的过程,目的是使控制器具有良好的稳态和动态性能。
常用的PID参数整定方法有经验法、试探法、频域法、遗传算法和自整定法等。
经验法基于经验公式确定PID参数,适用于简单的控制系统。
例如,比例系数可由反馈增益除以传递函数极点;积分时间和微分时间可根据系统的响应速度和稳定时间通过试错法确定。
试探法是通过试探不同的PID参数组合,并根据系统的响应性能进行调整。
常用的试探法有Ziegler–Nichols法和相位裕度法。
频域法利用频率响应的特性来确定PID参数。
常用的频域法有Nyquist曲线法、Bode图法和根轨迹法。
遗传算法是通过模拟生物进化过程确定PID参数,适用于复杂的非线性系统。
自整定法是利用现代控制理论和技术进行PID参数整定。
例如,自整定法可以利用系统的数学模型进行参数估计,并根据指定的性能指标进行参数调整,实现自动调节。
综上所述,PID控制器是一种常用的控制器,通过调整比例、积分和微分参数,实现对被控对象的精确控制。
PID参数自整定的方法及实现PID控制器是一种常见的控制器类型,可以用于许多自动控制系统中。
PID控制器的性能很大程度上取决于参数的选择,因此需要进行参数自整定来提高系统的稳定性和响应速度。
常见的PID参数自整定方法包括Ziegler-Nichols方法、Chien-Hrones-Reswick方法、频率响应法、模糊PID控制方法等。
其中,Ziegler-Nichols方法是最常用和简单的方法之一、该方法通过实验来确定系统的临界增益和周期,从而确定参数。
具体步骤如下:1.首先将系统的输出作为输入,增大控制器的增益直到系统开始发生振荡,即系统的曲线变为震荡波形。
2.记下此时的控制器增益,称为临界增益(Ku)。
3.记下系统振荡的周期,称为临界周期(Tu)。
根据Ziegler-Nichols方法得到的临界增益和临界周期,可以计算得到PID参数的初值:-比例增益参数(Kp)=0.6*Ku-积分时间参数(Ti)=0.5*Tu-微分时间参数(Td)=0.125*Tu然后,通过实际调试和测试来对这些初值进行微调,以获得更好的控制效果。
微调的方法包括手动试错法、自适应控制法等。
此外,Chien-Hrones-Reswick方法是另一种常见的PID参数自整定方法,它基于频域响应的分析。
该方法需要对系统的传递函数进行频率响应的测试,然后根据响应曲线的特性来确定参数。
通过分析频率响应曲线,可以得到PID参数的初值,并进行微调。
模糊PID控制法是一种基于模糊逻辑的参数整定方法,它通过模糊控制器来实现PID参数的在线调整。
模糊PID控制法的优点在于可以根据系统的实时性能来动态地调整参数,适用于复杂的非线性系统。
实现PID参数自整定的方法有多种途径,可以通过MATLAB等数学建模软件进行模拟实验和参数分析,也可以通过控制器硬件进行实际调试。
对于一些特定类型的系统,还可以通过系统辨识的方法来推导出传递函数,从而进行参数的精确计算。
PID参数如何设定调节内容:PID参数如何设定调节PID就是比例微积分调节,具体你可以参照自动控制课程里有详细介绍!正作用与反作用在温控里就是当正作用时是加热,反作用是制冷控制。
PID控制简介目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。
同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。
智能控制的典型实例是模糊全自动洗衣机等。
自动控制系统可分为开环控制系统和闭环控制系统。
一个控控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。
控制器的输出经过输出接口﹑执行机构﹐加到被控系统上﹔控制系统的被控量﹐经过传感器﹐变送器﹐通过输入接口送到控制器。
不同的控制系统﹐其传感器﹑变送器﹑执行机构是不一样的。
比如压力控制系统要采用压力传感器。
电加热控制系统的传感器是温度传感器。
目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。
有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。
可编程控制器(PLC)是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。
还有可以实现PID 控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。
1、开环控制系统开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。
在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。
PID控制原理及参数整定方法PID控制是一种经典的控制策略,广泛应用于各种工业自动化系统。
其通过比较设定值与实际输出值,根据误差及其变化趋势,实时调整控制器的参数,以达到期望的控制效果。
本文将详细介绍PID控制原理及参数整定方法,旨在帮助读者更好地理解和应用PID控制。
PID控制模型是由比例(P)、积分(I)和微分(D)三个环节组成的。
在工业自动化中,PID控制器作为一种核心组件,用于维持系统输出值与设定值之间的误差为最小。
PID控制器具有结构简单、稳定性好、易于实现等优点,因此被广泛应用于各种工业控制系统中。
PID控制原理基于控制系统的稳态误差,通过比例、积分和微分三个环节的作用,达到减小误差的目的。
比例环节根据误差信号的大小,产生相应的控制输出;积分环节根据误差信号的变化率,进一步调整控制输出;微分环节则根据误差信号的变化趋势,提前进行控制调整,以迅速消除误差。
PID参数整定的目的是选择合适的控制器参数,以满足系统的动态性能和稳态性能要求。
整定过程中,需要合理调整比例系数、积分时间和微分增益等参数。
其中,比例系数主要影响系统的稳态误差;积分时间用于控制积分环节的灵敏度;微分增益则决定了微分环节的作用强度。
针对不同的控制对象和系统要求,需要灵活调整这些参数,以获得最佳的控制效果。
以某化工生产线的液位控制为例,说明PID控制原理及参数整定的应用。
在此案例中,液位控制器通过比较设定值与实际液位值的误差,实时调整进料泵的转速,以维持液位稳定。
选择一个合适的比例系数Kp,使得系统具有较快的响应速度;调整积分时间Ti,以避免系统出现稳态误差;适当微分增益Kd的设定,可以改善系统的动态性能。
通过合理的参数整定,液位控制系统可以取得良好的控制效果。
然而,若比例系数过大,系统可能会出现振荡现象;若积分时间过长,系统可能无法达到预期的稳态性能;若微分增益过强,系统可能会对噪声产生过度反应。
因此,在参数整定过程中,需要根据实际情况进行反复调整,以达到最佳的控制效果。
PID参数调节原理和整定方法PID控制器是一种常用的闭环控制系统,其控制器的输出值由三部分组成:比例项(P)、积分项(I)和微分项(D)。
PID控制器通过不断地调节这三个参数,来实现对被控对象的控制。
PID控制器通过不断比较被控对象的输出值和设定值之间的差异(称为误差),来决定控制器的输出值。
PID控制器的输出值可以表达为:输出值=Kp*(比例项)+Ki*(积分项)+Kd*(微分项)其中,Kp、Ki和Kd分别为PID控制器的参数,需要根据实际系统进行调整。
当被控对象的输出值与设定值相差较大时,比例项可以起到快速调节的作用,使得控制器的输出值快速地接近设定值。
积分项可以消除系统存在的静差,提高系统的稳定性。
微分项可以防止系统过冲或震荡,提高系统的响应速度。
PID控制器的参数整定是一个复杂且经验性的过程,需要根据具体的被控对象、控制要求和系统特性进行调整。
下面介绍几种常用的参数整定方法:1. 经验法:根据经验公式,设置参数的初始值,并对系统进行试控,根据实际效果进行逐步调整。
常用的经验公式有Ziegler-Nichols方法、Chien-Hrones-Reswick方法等。
2.约束实验法:通过对系统施加一定的约束实验,如阶跃响应法、频率响应法等,从实验数据中提取系统的模型参数,并根据提取的模型参数进行参数整定。
3.数值方法:通过数值计算方法,如根据系统的传递函数进行数值求解,得到系统的频率特性响应,再根据一定的准则进行参数整定。
4.自整定方法:根据控制系统的自整定能力,通过在线或离线的自整定算法,自动寻找最优参数。
常见的自整定方法有遗传算法、模糊逻辑控制、神经网络等。
在实际的参数整定过程中,需要根据实际情况选择合适的方法,并进行反复测试和调整,直到达到满意的控制效果。
总结:PID参数调节原理是通过比例、积分和微分三项的组合来控制被控对象。
参数整定方法可以采用经验法、约束实验法、数值方法和自整定方法。
PID调节原理与PID参数整定方法PID调节原理与参数整定方法是自动控制系统中常用的调节算法和方法之一、PID调节器是一种反馈调节控制器,利用当前的偏差值、偏差累积值和偏差变化率来产生控制输出,进而改变被控对象的状态,使其尽可能地满足设定值。
PID调节器由三个部分组成:比例(P)调节器、积分(I)调节器和微分(D)调节器。
P调节器根据偏差值来产生控制信号;I调节器根据偏差累积值来产生控制信号;D调节器根据偏差变化率来产生控制信号。
这三个调节器的输出都与偏差成比例,然后将它们相加得到最终的控制输出。
PID控制器的数学表达式为:u(t) = Kp * e(t) + Ki * ∫e(t)dt + Kd * de(t)/dt其中,u(t)是控制输出,Kp、Ki和Kd是调节器的增益参数,e(t)是偏差,t是时间。
参数整定是指选择合适的PID控制参数以实现系统良好性能。
对于PID参数整定,常用的方法有以下几种:1.经验法:根据经验和实际应用中相似系统的参数进行估计和调整。
这种方法简单易行,但对于不同系统的参数整定效果不一致。
2. Ziegler-Nichols方法:此方法通过实验获取系统的临界增益(Kcr)和临界周期(Pcr),然后根据不同的整定规则选择PID参数。
常用的整定规则有:P控制器(Kp = 0.5 * Kcr)、PI控制器(Kp = 0.45* Kcr,Ki = 1.2 / Pcr)和PID控制器(Kp = 0.6 * Kcr,Ki = 2 / Pcr,Kd = 8 / Pcr)。
3.最小二乘法:通过最小化系统的输出与设定值之间的误差,来确定合适的PID参数。
这种方法需要进行大量的计算,适用于精确调节和要求高性能的系统。
4.频响法:通过系统的频率响应曲线来进行参数整定。
此方法需要对系统进行频率扫描,可以获得系统的幅频特性和相频特性,然后根据相应的调节规则选择PID参数。
总结来说,PID调节原理是利用当前的偏差值、偏差累积值和偏差变化率来产生控制输出;而PID参数整定方法可以通过经验法、Ziegler-Nichols方法、最小二乘法和频响法等多种方法来选择合适的参数,以实现系统的稳定性和性能要求。
摘要PID控制器现在仍然是应用最广泛的工业控制器,其关键在于对PID参数的优化整定,而采用常规的手工整定方法已经难以满足要求,目前需要解决对PID 参数的高效优化问题。
本论文首先介绍了PID控制方法和常规PID参数整定方法,编程实现了数字PID控制器和基于遗传算法的参数自整定程序,然后将遗传算法用于不同的被控对象进行PID参数的整定及优化,为了对比控制效果,应用MATLAB 软件进行了仿真验证,并用仿真曲线进行直观的对比。
结果表明遗传算法能够在对所求解问题一无所知的情况下,快速从全局搜索出优化的控制参数,是一种高效的PID参数整定方法。
关键词:遗传算法;PID控制器;参数整定;仿真中国石油大学(华东)本科毕业设计(论文)、Hn1.1PID 控制发展概况 ................. 1.2PID 参数整定方法概述 ............. 第2章 PID 控制算法及参数整定 ............2.1 PID 控制算法 ...................... 2.1.1 PID 控制器的基本原理 ......... 2.1.2数字PID 控制器 ............... 2.2常规PID 参数整定方法 ............. 2.2.1 Ziegler-Nichols 整定方法 ........ 2.2.2改进的Ziegler-Nichols 整定方法 2.2.3 ISTE 最优设定方法的经验公式 • 2.2.4 Haalman 法的计算公式 ........ 2.2.5 KT 整定法 .................... 第3章 基于遗传算法的PID 参数寻优 .......3.1遗传算法概述 ..................... 3.2标准遗传算法操作 ................ 3.2.1编码方式 ..................... 3.2.2初始种群的设定 ................ 3.2.3适应度函数 ....................3.2.4遗传操作 ...................... 3.2.5收敛性 ....................... 3.2.6遗传算法中关键参数的确定 …… 3.3遗传算法的主要步骤 .............. 3.3.1准备工作 ..................... 3.3.2基本遗传算法的步骤 ........... 3.4遗传算法PID 参数整定的编程实现 • 3.4.1初始群体 ...................... 3.4.2编码 ......................... 3.4.3基本操作算子 …… 3.4.4目标函数 ......... 3.4.5画图 ............. 第4章 PID 整定方法的仿真应用 4.1 一阶对象 .............. 4.2二阶对象 .............. 4.3三阶对象 .............. 第5章结论 ................... 致谢 ......................... 参考文献 ....................附录错误!未定义书签 错误!未定义书签错误!未定义书签 111333466789033456672233444569011247 -d d d d d d d d 222222222233333 3 .......o o O ・第1章~~前~~言1.1 PID控制发展概况PID控制是最早发展起来的控制策略之一,是迄今为止最通用的控制方法,大多数反馈回路用该方法或其较小的变形来控制。