ANSYS超弹性、粘超弹性模拟
- 格式:pdf
- 大小:1.20 MB
- 文档页数:21
ANSYS主要功能与模块(2012-12-24 13:37:26)转载▼标签:ansys功能分类:ansysansys模块杂谈ANSYS是世界上著名的大型通用有限元计算软件,它包括热、电、磁、流体和结构等诸多模块,具有强大的求解器和前、后处理功能,为我们解决复杂、庞大的工程项目和致力于高水平的科研攻关提供了一个优良的工作环境,更使我们从繁琐、单调的常规有限元编程中解脱出来。
ANSYS本身不仅具有较为完善的分析功能,同时也为用户自己进行二次开发提供了友好的开发环境。
ANSYS程序自身有着较为强大三维建模能力,仅靠ANSYS的GUI(图形界面)就可建立各种复杂的几何模型;此外,ANSYS还提供较为灵活的图形接口及数据接口。
因而,利用这些功能,可以实现不同分析软件之间的模型转换。
1. 结构分析1)静力分析 - 用于静态载荷. 可以考虑结构的线性及非线性行为。
●线性结构静力分析●非线性结构静力分析♦几何非线性:大变形、大应变、应力强化、旋转软化♦材料非线性:塑性、粘弹性、粘塑性、超弹性、多线性弹性、蠕变、肿胀等♦接触非线性:面面/点面/点点接触、柔体/柔体刚体接触、热接触♦单元非线性:死/活单元、钢筋混凝土单元、非线性阻尼/弹簧元、预紧力单元等2)模态分析 - 计算线性结构的自振频率及振形. 谱分析是模态分析的扩展,用于计算由于随机振动引起的结构应力和应变 (也叫作响应谱或PSD).3)谐响应分析 - 确定线性结构对随时间按正弦曲线变化的载荷的响应.4)瞬态动力学分析 - 确定结构对随时间任意变化的载荷的响应. 可以考虑与静力分析相同的结构非线性行为.5)谱分析6)随机振动分析等7)特征屈曲分析 - 用于计算线性屈曲载荷并确定屈曲模态形状. (结合瞬态动力学分析可以实现非线性屈曲分析.)8)专项分析: 断裂分析, 复合材料分析,疲劳分析2. 高度非线性瞬态动力分析(ANSYS/LS-DYNA)●全自动接触分析,四十多种接触类型●任意拉格郎日-欧拉(ALE)分析●多物质欧拉、单物质欧拉● 适应网格、网格重划分、重启动● 100多种非线性材料模式●多物理场耦合分析:结构、热、流体、声学●爆炸模拟,起爆效果及应力波的传播分析●侵彻穿甲仿真,鸟撞及叶片包容性分析,跌落分析●失效分析,裂纹扩展分析●刚体运动、刚体-柔体运动分析●实时声场分析● BEM边界元方法,边界元、有限元耦合分析●光顺质点流体动力(SPH)算法3. 热分析●稳态、瞬态温度场分析●热传导、热对流、热辐射分析●相变分析●材料性质、边界条件随温度变化4. 电磁分析●静磁场分析-计算直流电(DC)或永磁体产生的磁场●交变磁场分析-计算由于交流电(AC)产生的磁场●瞬态磁场分析-计算随时间随机变化的电流或外界引起的磁场●电场分析-用于计算电阻或电容系统的电场. 典型的物理量有电流密度、电荷密度、电场及电阻热等。
从半空间无限域取一4X2的矩形平面结构,顶部中间一定范围内受随时间变化的均布荷载,荷载如下p(t)=t 当0< DIV>p(t)=2-t 当1<=t<=2时p(t)=0 当t>2时材料弹性模量E=2.5,泊松比0.25,密度1网格尺寸0.1X0.1,在网格边界上所有结点加法向和切向combin14号单元用以模拟粘弹性人工边界(有关理论可参考刘晶波老师的相关文章)。
combine14单元的两个结点,其中一个与实体单元相连,另一个结点固定。
网格图如图1所示时程分析的时间步长为0.02秒,共计算16秒。
计算得到四个控制点位移时程图如图2所示,控制点坐标A(0,2)、B(0,1)、C(0,0)、D(2,2).计算所用命令流如下:/PREP7L=4 !水平长度H=2 !竖起深度E=2.5 !弹性模量density=1 !密度nu=0.25 !泊松比dxyz=0.1 !网格尺寸G = E/(2.*(1.+nu)) !剪切模量alfa = E*(1-nu)/((1.+nu)*(1.-2.*nu)) !若计算平面应力,此式需要修改Cp=sqrt(alfa/density) !压缩波速Cs=sqrt(g/density) !剪切波速R=sqrt(L*L/4.+H*H/4.) !波源到边界点等效长度KbT=0.5*G/R*dxyzKbN=1.0*G/R*dxyzCbT=density*Cs*dxyzCbN=density*Cp*dxyzET, 1, plane42,,,2 !按平面应变计算et, 2, combin14, ,, 2 !切向et, 3, combin14, ,, 2 !法向r, 2, KbT, CbTr, 3, KbN, CbNMP, EX, 1, EMP, PRXY, 1, nuMP, DENS, 1, densityrectng,-L/2.,L/2,0.,Hasel, allaesize, all, dxyzmshape,0,2Dmshkey,1amesh, all!以下建立底边界法向和切向弹簧阻尼单元nsel,s,loc,y,0.*get,np,node,,count !得到选中的结点数,存入np*get,npmax,node,,num,maxd !得到已经定义的最大结点数,存入npmax*do,ip,1,npnpnum=node((ip-1)*dxyz-L/2.,0.,0.)x=nx(npnum)y=ny(npnum)z=nz(npnum)npmax=npmax+1n,npmax,x.,y-dxyz/2,z !定义底边界法向结点以便与边界点形成法向单元type,3real,3e,npnum,npmaxd,npmax,all,0. !约束新生成的点npmax=npmax+1n,npmax,x-dxyz/2.,y,z !定义底边界切向结点以便与边界点形成切向单元type,2real,2e,npnum,npmaxd,npmax,all,0. !约束新生成的点*enddo!以下建立左边界法向和切向弹簧阻尼单元nsel,s,loc,x,-L/2*get,np,node,,count !得到选中的结点数,存入np*get,npmax,node,,num,maxd !得到已经定义的最大结点数,存入npmax*do,ip,2,np !侧边界最下面一个点按底边界上处理npnum=node(-L/2,(ip-1)*dxyz,0.)x=nx(npnum)y=ny(npnum)z=nz(npnum)npmax=npmax+1n,npmax,x-dxyz/2.,y,z !定义左边界法向结点以便与边界点形成法向单元type,3real,3e,npnum,npmaxd,npmax,all,0. !约束新生成的点npmax=npmax+1n,npmax,x,y-dxyz/2.,z !定义左边界切向结点以便与边界点形成切向单元type,2real,2e,npnum,npmaxd,npmax,all,0. !约束新生成的点*enddo!以下建立右边界法向和切向弹簧阻尼单元nsel,s,loc,x,L/2*get,np,node,,count !得到选中的结点数,存入np*get,npmax,node,,num,maxd !得到已经定义的最大结点数,存入npmax*do,ip,2,np !侧边界最下面一个点按底边界上处理npnum=node(L/2,(ip-1)*dxyz,0.)x=nx(npnum)y=ny(npnum)z=nz(npnum)npmax=npmax+1n,npmax,x+dxyz/2.,y,z !定义右边界法向结点以便与边界点形成法向单元type,3real,3e,npnum,npmaxd,npmax,all,0. !约束新生成的点npmax=npmax+1n,npmax,x,y-dxyz/2.,z !定义右边界切向结点以便与边界点形成切向单元type,2real,2e,npnum,npmaxd,npmax,all,0. !约束新生成的点*enddoallsel,all/pnum,type,1/number,1eplotfinish/soluANTYPE,trans!*TRNOPT,FULLLUMPM,0btime=0.02etime=16.00dtime=0.02*DO,itime,btime,etime,dtimeTIME,itimensel,s,loc,y,H !选中需要加荷载的点nsel,r,loc,x,-L/4,L/4*if,itime,lt,1.,thenf,all,fy,1*itime*elseif,itime,ge,1.0,and,itime,le,2.0f,all,fy,1*(2-itime)*elsef,all,fy,0.0*endifallsel,allSOLVE*ENDDO另外,还用自己编写的有限元程序计算了一下这个例子,并与ANSYS得到的结果进行了比较,结果非常吻合,这里给出A点的比较结果。
4.1 材料非线性概述许多与材料有关的参数可以使结构刚度在分析期间改变。
塑性、非线性弹性、超弹性材料、混凝土材料的非线性应力—应变关系,可以使结构刚度在不同载荷水平下(以及在不同温度下)改变.蠕变、粘塑性和粘弹性可以引起与时间、率、温度和应力相关的非线性.膨胀可以引起作为温度、时间、中子流水平(或其他类似量)函数的应变.ANSYS程序应可以考虑多种材料非线性特性:1.率不相关塑性指材料中产生的不可恢复的即时应变。
2.率相关塑性也可称之为粘塑性,材料的塑性应变大小将是加载速度与时间的函数。
3.材料的蠕变行为也是率相关的,产生随时间变化的不可恢复应变,但蠕变的时间尺度要比率相关塑性大的多。
4.非线性弹性允许材料的非线性应力应变关系,但应变是可以恢复的。
5.超弹性材料应力应变关系由一个应变能密度势函数定义,用于模拟橡胶、泡沫类材料,变形是可以恢复的。
6.粘弹性是一种率相关的材料特性,这种材料应变中包含了弹性应变和粘性应变。
7.混凝土材料具有模拟断裂和压碎的能力.8.膨胀是指材料在中子流作用下的体积扩大效应。
4。
2 塑性分析4。
2。
1 塑性理论简介许多常用的工程材料,在应力水平低于比例极限时,应力—应变关系为线性的。
超过这一极限后,应力—应变关系变成非线性,但却不一定是非弹性的。
以不可恢复的应变为特征的塑性,则在应力超过屈服点后开始出现。
由于屈服极限与比例极限相差很小,ANSYS程序在塑性分析中,假设这二个点相同,见图4—1。
图4—1 弹塑性应力—应变曲线塑性是一种非保守的(不可逆的),与路径相关的现象.换句话说,荷载施加的顺序,以及什么时候发生塑性响应,影响最终求解结果。
如果用户预计在分析中会出现塑性响应,则应把荷载处理成一系列的小增量荷载步或时间步,以使模型尽可能附合荷载—响应路径。
最大塑性应变是在输出(Jobname.OUT)文件的子步信息中打印的。
在一个子步中,如果执行了大量的平衡迭代,或得到大于15%的塑性应变增量,则塑性将激活自动时间步选项[AUTOTS](GUI:Main Menu>Solution〉Sol”n Control:Basic Tab 或Main Menu〉Solution〉Unabridged Menu> Time /Frequenc>Time and Substps).如果取了太大的时间步,则程序将二分时间步,并重新求解。
Ansys求解剪切锁定超弹性梁问题目的:比较关于剪切锁定的不同单元公式。
目标:使用三种单元公式求解梁的非线性分析: B-Bar、URI 和增强应变。
模型描述:二维平面应变 PLANE182 单元,300mmx10mm 悬臂梁 (3 个).使用非线性超弹材料 (2 项Mooney-Rivlin)1. :选 PLANE182 (四边形 4 节点)在 Option 中有三个梁单元模型,与 3 个不同单元公式对应(B-Bar, URI 和增强应变)。
Main Menu →Preprocessor →Element Type →Add/Edit/Delete …→选择“Type 1 PLANE182”→点击[Options] →验证单元选项, 然后点击[OK]→对单元类型 2 和 3 重复操作→选择[Close]提示:单元类型 1 应选择“Full Integration”, 即 B-Bar 方法。
单元类型 2 应选择“Reduced Integr”, 即 URI 公式。
单元类型 3 应选择“Enhanced Strain”公式。
2.Main Menu →Preprocessor →Material Props →Material Models …→选择“Structural →Nonlinear→Elastic →Hyperelastic → Mooney-Rivlin → 2 parameters”→“C10”输入“8”→“C01”输入“2”→“d”输入“2e-4”→点击 [OK]→选择“Material → Exit”提示:将比较使用超弹性材料特性的三种单元公式。
3.建立几何体并划分网格建三个个矩形:Width=0.3m,Height=0.01m 划分网格:沿 x 方向,划分数=40,沿 y 方向,划分数=5划分网格这里需要注意,给每个几何面分配不同的单元类型Main Menu: Preprocessor →Meshing → Mesh Tool → Element Attribute → Areas → Set → 选取相应的几何面 → OK → TYPE →分别选择不同的单元类型1/2/3Main Menu: Preprocessor →Meshing → Mesh Tool → Size controls → Lines → Set,分别选中上边和左边,OK,NDIV填40或5,OK,mesh,完成。
第1章ANSYS Workbench 14.0概述本章从总体上对ANSYS Workbench 14.0自带软件包括结构力学模块、流体力学模块等进行概述,同时对ANSYS Workbench 14.0最新整合的其他模块进行简单介绍,其中包括低频电磁场分析模块Ansoft Maxwell、多领域机电系统设计与仿真分析模块Ansoft Simplorer、疲劳分析模块nCode及复合材料建模与后处理模块ACP等。
同时,本章还以SolidWorks 软件为例,介绍Workbench 14.0与常见的CAD软件进行集成的步骤及方法。
学习目标:(1)了解ANSYS Workbench软件各模块的功能;(2)掌握ANSYS Workbench软件与SolidWorks软件的集成设置;(3)掌握ANSYS Workbench平台的常规设置,包括单位设置、外观颜色设置等。
1.1 ANSYS软件简介ANSYS提供广泛的工程仿真解决方案,这些方案可以对设计过程要求的任何场进行工程虚拟仿真。
全球的诸多组织都相信ANSYS为它们的工程仿真软件投资带来最好的价值。
ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。
由世界上最大的有限元分析软件公司之一、美国ANSYS公司开发,它能与多数CAD 软件接口,实现数据的共享和交换。
软件主要包括3个部分:前处理模块,分析计算模块和后处理模块。
(1)前处理模块提供了一个强大的实体建模及网格划分工具,用户可以方便地构造有限元模型。
(2)分析计算模块包括结构分析(线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力。
(3)后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示(可看到结构内部)等图形方式显示出来,也可将计算结果以图表、曲线形式显示或输出。
ANSYS弹性及塑性(详细、全⾯)1讲解⽬录什么是塑性 (1)路径相关性 (1)率相关性 (1)⼯程应⼒、应变与真实应⼒、应变 (1)什么是激活塑性 (2)塑性理论介绍 (2)屈服准则 (2)流动准则 (3)强化准则 (3)塑性选项 (5)怎样使⽤塑性 (6)ANSYS输⼊ (7)输出量 (7)程序使⽤中的⼀些基本原则 (8)加强收敛性的⽅法 (8)查看结果 (9)塑性分析实例(GUI⽅法) (9)塑性分析实例(命令流⽅法) (14)弹塑性分析在这⼀册中,我们将详细地介绍由于塑性变性引起的⾮线性问题--弹塑性分析,我们的介绍⼈为以下⼏个⽅⾯:什么是塑性塑性理论简介ANSYS程序中所⽤的性选项怎样使⽤塑性塑性分析练习题什么是塑性塑性是⼀种在某种给定载荷下,材料产⽣永久变形的材料特性,对⼤多的⼯程材料来说,当其应⼒低于⽐例极限时,应⼒⼀应变关系是线性的。
另外,⼤多数材料在其应⼒低于屈服点时,表现为弹性⾏为,也就是说,当移⾛载荷时,其应变也完全消失。
由于屈服点和⽐例极限相差很⼩,因此在ANSYS程序中,假定它们相同。
在应⼒⼀应变的曲线中,低于屈服点的叫作弹性部分,超过屈服点的叫作塑性部分,也叫作应变强化部分。
塑性分析中考虑了塑性区域的材料特性。
路径相关性:即然塑性是不可恢复的,那么这种问题的就与加载历史有关,这类⾮线性问题叫作与路径相关的或⾮保守的⾮线性。
路径相关性是指对⼀种给定的边界条件,可能有多个正确的解—内部的应⼒,应变分布—存在,为了得到真正正确的结果,我们必须按照系统真正经历的加载过程加载。
率相关性:塑性应变的⼤⼩可能是加载速度快慢的函数,如果塑性应变的⼤⼩与时间有关,这种塑性叫作率⽆关性塑性,相反,与应变率有关的性叫作率相关的塑性。
⼤多的材料都有某种程度上的率相关性,但在⼤多数静⼒分析所经历的应变率范围,两者的应⼒-应变曲线差别不⼤,所以在⼀般的分析中,我们变为是与率⽆关的。
⼯程应⼒,应变与真实的应⼒、应变:塑性材料的数据⼀般以拉伸的应⼒—应变曲线形式给出。
PLANE183单元性质:2维8节点实体结构单元MP ME ST<><><><><><>PP EDPLANE183单元说明PLANE183是一个高阶2维8节点单元。
PLANE183具有二次位移函数,能够很好地适应不规则模型的分网(例如由不同CAD/CAM所产生的模型)。
本单元有8个节点,每个节点有2个自由度,分别为x和y方向的平移。
本单元既可用作平面单元(平面应力、平面应变和广义平面应变),也可用作轴对称单元。
本单元具有塑性、蠕变、应力刚度、大变形及大应变的能力。
并具有力-位移混合公式的能力,可以模拟接近不可压缩的弹塑性材料的变形。
支持初应力选项。
有多种打印输出选项可用。
关于本单元的更多细节见ANSYS公司理论手册中的PLANE183。
图183.1PLANE183单元几何PLANE183输入数据在图183.1:"PLANE183单元几何"中给出了本单元的几何形状,节点位置和坐标系。
单元输入数据包括4个节点,一个厚度(仅当KEYOPT(3)=3时)以及正交异性材料特性。
正交异性材料的方向与单元坐标系方向一致,单元坐标系的方向在"坐标系"中说明。
将节点K,L和O定义为相同的节点可以形成三角形单元。
PLANE2是一个类似的但6个节点的三角形单元。
除节点外,单元输入数据还包括:一个厚度(仅对平面应力选项)和正交异性材料特性。
正交异性材料的方向与单元坐标系方向一致。
单元坐标系的方向在坐标系中说明。
单元载荷在"节点和单元载荷"中说明。
压力可以作为单元边界上的面载荷输入,如图183.1:"PLANE183单元几何"中带圆圈数字所示。
正压力指向单元内部。
可以输入温度作为单元节点处的体载荷。
节点I处的温度T(I)默认为TUNIF。
如果不给出其它节点处的温度,则默认等于T(I)。
ANSYS中粘弹性材料的参数意义:我用的材料知道时温等效方程(W.L.F.方程),ANSYS 中的本构模型用MAXWELL模型表示。
1.活化能与理想气体常数的比值(Tool-Narayanaswamy Shift Function)或者时温方程的第一个常数。
2.一个常数当用Tool-Narayanaswamy Shift Function的方程描述,或者是时温方程第2个常数3.定义体积衰减函数的MAXWELL单元数(在时温方程中用不到)4.时温方程的参考温度5.决定1、2、3、4参数的值6-15定义体积衰减函数的系数,16-25定义fictive temperature的松弛时间这20个数最终用来定义fictive temperature(在理论手册中介绍,不用在时温方程中)26-30和31-35分别定义了材料在不同物理状态时的热扩散系数36-45用来定义fictive temperature的fictive temperature的一些插值一类的数值,时温方程也用不到46剪切模量开始松弛的值47松弛时间无穷大的剪切模量的值48体积模量开始松弛的值49松弛时间无穷大的体积模量的值50描述剪切松弛模量的MAXWELL模型的单元数51-60拟合剪切松弛模量的prony级数的系数值61-70拟合剪切松弛模量的prony级数的指数系数值(形式参看理论手册)71描述体积松弛模量的MAXWELL模型的单元数76-85拟合体积松弛模量的prony级数的系数值85-95拟合体积松弛模量的prony级数的指数系数值(形式参看理论手册)进入ansys非线性粘弹性材料有两项:(1)maxwell(麦克斯韦)模型最多可以输入95个常数(2)prony(普朗尼)模型这个模型下面又有三项:(a)shear Responsea1: 即理论中的C1-Relative modulus: 相对剪切模量t1: 即理论中的C2-Relative time: 相对时间(b)V olumetric Response(容积响应)a1: 即理论中的C1-Relative modulus: 相对弹性模量t1: 即理论中的C2-Relative time: 相对时间(c)Shift function (转换函数)有三项可以选择:(I)William-Landel, ferry: 时温等效方程Tref: 即理论中的C1-Relative temperature: 相对温度(对应《粘弹性理论》中的时温等效方程(WFL方程)应该是玻璃化转变温度)C1,C2: 没有什么好说的了,就是WFL方程的常量,与材料有关;(II)Tool-Narayanaswamy 方程Tref: 即理论中的C1-Relative temperature: 相对温度(应该是玻璃化转变温度)C1: 没有什么好说的了,就是TN常量;(III)用户定义Tref: 即理论中的C1-Relative temperature: 相对温度(应该是玻璃化转变温度)C1: 没有什么好说的了,就是方程的常量;-------------------------------------------------------------------------《粘弹性理论》TB, Lab, MAT, NTEMP, NPTS, TBOPT, EOSOPT如果Lab:MATMaterial reference number (defaults to 1; maximum equals 100,000).NTEMP:Number of temperatures for which data will be provided. Default = 1; Max = 6.NPTS:Number of pairs of Prony series. Default = 1 pair; Max = 6 pairs.TBOPT:Defines the relaxation behavior for viscoelasticity.1--(or SHEAR) relaxation behavior of the shear response.2--(or BULK) relaxation behavior of the volumetric response.如果Lab:SHIFTNTEMP:Allows one temperature for which data will be provided.NPTS:Number of material constants to be entered as determined by the shift function specified by3--for TBOPT = WLF2--TBOPT = TNTBOPT:Defines the shift function1--( or WLF) William-Landel-Ferry shift function.2--(or TN) Tool-Narayanaswamy shift function.100--(or USER) User-defined shift function。
把收集到得ANSYS单元类型向大家交流下。
初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。
单元类型的选择,跟你要解决的问题本身密切相关。
在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。
1.该选杆单元(Link)还是梁单元(Beam)?这个比较容易理解。
杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。
梁单元则既可以承受拉,压,还可以承受弯矩。
如果你的结构中要承受弯矩,肯定不能选杆单元。
对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于:1)beam3是2D的梁单元,只能解决2维的问题。
2)beam4是3D的梁单元,可以解决3维的空间梁问题。
3)beam188是3D梁单元,可以根据需要自定义梁的截面形状。
2.对于薄壁结构,是选实体单元还是壳单元?对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。
而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。
实际工程中常用的shell单元有shell63,shell93。
shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。
对于一般的问题,选用shell63就足够了。
第四章材料非线性分析4。
1 材料非线性概述许多与材料有关的参数可以使结构刚度在分析期间改变。
塑性、非线性弹性、超弹性材料、混凝土材料的非线性应力—应变关系,可以使结构刚度在不同载荷水平下(以及在不同温度下)改变。
蠕变、粘塑性和粘弹性可以引起与时间、率、温度和应力相关的非线性。
膨胀可以引起作为温度、时间、中子流水平(或其他类似量)函数的应变。
ANSYS程序应可以考虑多种材料非线性特性:1.率不相关塑性指材料中产生的不可恢复的即时应变。
2.率相关塑性也可称之为粘塑性,材料的塑性应变大小将是加载速度与时间的函数.3.材料的蠕变行为也是率相关的,产生随时间变化的不可恢复应变,但蠕变的时间尺度要比率相关塑性大的多。
4.非线性弹性允许材料的非线性应力应变关系,但应变是可以恢复的。
5.超弹性材料应力应变关系由一个应变能密度势函数定义,用于模拟橡胶、泡沫类材料,变形是可以恢复的。
6.粘弹性是一种率相关的材料特性,这种材料应变中包含了弹性应变和粘性应变。
7.混凝土材料具有模拟断裂和压碎的能力.8.膨胀是指材料在中子流作用下的体积扩大效应。
4。
2 塑性分析4。
2。
1 塑性理论简介许多常用的工程材料,在应力水平低于比例极限时,应力—应变关系为线性的。
超过这一极限后,应力—应变关系变成非线性,但却不一定是非弹性的。
以不可恢复的应变为特征的塑性,则在应力超过屈服点后开始出现.由于屈服极限与比例极限相差很小,ANSYS程序在塑性分析中,假设这二个点相同,见图4—1。
图4-1 弹塑性应力—应变曲线塑性是一种非保守的(不可逆的),与路径相关的现象.换句话说,荷载施加的顺序,以及什么时候发生塑性响应,影响最终求解结果。
如果用户预计在分析中会出现塑性响应,则应把荷载处理成一系列的小增量荷载步或时间步,以使模型尽可能附合荷载-响应路径.最大塑性应变是在输出(Jobname.OUT)文件的子步信息中打印的。
在一个子步中,如果执行了大量的平衡迭代,或得到大于15%的塑性应变增量,则塑性将激活自动时间步选项[AUTOTS ](GUI :Main Menu 〉Solution 〉 Sol'n Control :Basic Tab 或 Main Menu 〉Solution 〉Unabridged Menu> Time /Frequenc 〉Time and Substps)。