电气间隙和爬电距离
- 格式:docx
- 大小:41.08 KB
- 文档页数:8
电气间隙与爬电距离关系(最新版)目录1.电气间隙和爬电距离的定义2.电气间隙和爬电距离的计算方法3.电气间隙和爬电距离的关系4.电气间隙和爬电距离在电气设备中的应用5.电气间隙和爬电距离的安全意义正文电气间隙和爬电距离是电气设备设计中非常重要的两个概念。
它们在保证设备的安全运行和防止火灾事故方面具有重要作用。
电气间隙是指在两个导电零部件之间或导电零部件与设备防护界面之间测得的最短空间距离。
这个距离通常以空气绝缘的最短距离来计算。
在保证电气性能稳定和安全的情况下,电气间隙可以通过空气实现绝缘。
爬电距离是指由于导体周围的绝缘材料被电极化,导致绝缘材料呈现带电的现象。
此带电区的半径,即为爬电距离。
爬电距离通常以污秽等级来计算,其中零级污秽的爬电距离为 14.8mm/KV,一级污秽的爬电距离为16mm/KV,二级污秽的爬电距离为 20mm/KV。
电气间隙和爬电距离之间的关系是密切相关的。
电气间隙是保证电气设备安全的基本距离,而爬电距离则是在实际使用中,由于绝缘材料的带电现象而导致的最小安全距离。
在设计电气设备时,必须保证电气间隙大于等于爬电距离,否则设备可能存在安全隐患。
电气间隙和爬电距离在电气设备中的应用非常广泛。
它们可以用于评估设备的安全性能,确定设备的最小尺寸,以及选择合适的绝缘材料。
对于设计人员来说,了解电气间隙和爬电距离的关系,能够有效地提高设备的安全性和可靠性。
电气间隙和爬电距离的安全意义非常重要。
它们可以有效地防止设备间或设备与地之间的打火现象,从而避免火灾事故的发生。
同时,电气间隙和爬电距离也是电气设备安全标准的重要内容,必须得到严格的遵守和执行。
总的来说,电气间隙和爬电距离是电气设备设计中非常重要的两个概念。
它们在保证设备的安全运行和防止火灾事故方面具有重要作用。
电机爬电距离和电气间隙在电机的世界里,有两个小伙伴,一个叫爬电距离,一个叫电气间隙。
说起来,这俩家伙可真是电机里不可或缺的角色,简直就像老鼠与大米,水与火,缺一不可!先说说爬电距离,听起来像是个高深莫测的名词,但实际上它就是指电流在绝缘表面上能走多远。
没错,就是那条电流的“游泳道”,就像你在水池里游泳一样,这条距离越长,电流在表面上滑行的空间就越大,安全性就越高。
想象一下,你有个电机,放在潮湿的环境里,那可是个水灵灵的“风险地带”。
这时候,爬电距离就像是给你电机铺了一条防滑垫,确保电流不会乱跑,避免短路的尴尬。
就像你在大雨天不想让鞋子湿透,得提前选好路径,对吧?爬电距离越大,电机就越不容易出问题,就像我们在马路上开车,开得越稳,出事的概率就越小。
再说说电气间隙,听起来是不是像电机的“个人空间”?哈哈,没错!电气间隙就是指两个带电体之间的直线距离。
这个距离就像人和人之间的社交距离,太近了容易撞上,太远了又不方便。
电机工作的时候,带电的部分和绝缘体之间得保持一定的距离,才能让电流乖乖待在自己的“领地”里,不然一旦不小心“亲密接触”,可就容易出现闪络,那可真是个大麻烦!有些人可能会想,为什么爬电距离和电气间隙这么重要呢?其实这就像家里的电器,你要是随随便便把插头插在不合适的地方,肯定会闹出一些笑话,甚至可能造成短路。
安全永远是第一位的。
设想一下,电机一旦出问题,维修可不是说修就能修的,时间金钱的损失那是小事,更大的问题是可能影响生产,影响工作,这可真是得不偿失!所以在设计电机的时候,这两项参数可得好好考量。
爬电距离和电气间隙的标准可是行业内有章可循的,就像考试时得按照考试大纲来复习,要不然结果可不一定能让你满意。
不同的环境和应用场景对这两者的要求也各不相同。
像在潮湿、高温或者有腐蚀性气体的地方,爬电距离和电气间隙的要求就要提高,给电机“加把锁”,确保它能安安稳稳地工作。
还有一点要注意,爬电距离和电气间隙并不是一成不变的。
爬电距离电气间隙爬电距离与电气间隙概述:在电力系统中,爬电距离和电气间隙都是非常重要的参数。
它们直接影响着设备的安全性能和运行可靠性。
本文将从定义、计算方法、影响因素等方面进行详细介绍。
一、爬电距离1.定义爬电距离是指两个导体之间在空气或其他介质中的最小安全距离,以防止因介质击穿而引起的火花放电。
它通常用于评估设备的安全性能,如开关柜、绝缘子等。
2.计算方法(1)空气介质下的爬电距离:D = K × U^1.2 / F其中,D为爬电距离;K为系数,取决于环境温度和湿度;U为工频交流电压;F为频率。
(2)其他介质下的爬电距离:D = K × U^1.2 / F × k其中,k为介质比值系数。
3.影响因素(1)环境温度和湿度:环境温度越高、湿度越大,导致空气中水分含量增加,从而降低了爬电距离。
(2)介质类型:不同介质的介电常数不同,从而影响爬电距离。
(3)导体形状和表面状态:导体的形状和表面状态会影响放电路径的长度和形状,从而影响爬电距离。
二、电气间隙1.定义电气间隙是指两个导体之间的物理距离,它与爬电距离有所不同。
它通常用于评估设备的可靠性能,如断路器、接触器等。
2.计算方法(1)空气介质下的电气间隙:L = K × U / F其中,L为电气间隙;K为系数,取决于环境温度和湿度;U为工频交流电压;F为频率。
(2)其他介质下的电气间隙:L = K × U / F × k其中,k为介质比值系数。
3.影响因素(1)环境温度和湿度:环境温度越高、湿度越大,导致空气中水分含量增加,从而降低了电气间隙。
(2)导体形状和表面状态:导体的形状和表面状态会影响放电路径的长度和形状,从而影响电气间隙。
(3)介质类型:不同介质的介电常数不同,从而影响电气间隙。
三、爬电距离和电气间隙的比较1.定义上的区别爬电距离是指两个导体之间在空气或其他介质中的最小安全距离,以防止因介质击穿而引起的火花放电。
安全距离包括电气间隙(空间距离),爬电距离(沿面距离)和绝缘穿透距离1、电气间隙:两相邻导体或一个导体与相邻电机壳表面的沿空气测量的最短距离.2、爬电距离:两相邻导体或一个导体与相邻电机壳表面的沿绝绝缘表面测量的最短距离.电气间隙的决定:根据测量的工作电压及绝缘等级,即可决定距离一次侧线路之电气间隙尺寸要求,见表3及表4二次侧线路之电气间隙尺寸要求见表5但通常:一次侧交流部分:保险丝前L—N≥2.5mm,L.N PE(大地)≥2.5mm,保险丝装置之后可不做要求,但尽可能保持一定距离以避免发生短路损坏电源.一次侧交流对直流部分≥2.0mm一次侧直流地对大地≥2.5mm(一次侧浮接地对大地)一次侧部分对二次侧部分≥4.0mm,跨接于一二次侧之间之元器件二次侧部分之电隙间隙≥0.5mm即可二次侧地对大地≥1.0mm即可附注:决定是否符合要求前,内部零件应先施于10N力,外壳施以30N力,以减少其距离,使确认为最糟情况下,空间距离仍符合规定.爬电距离的决定:根据工作电压及绝缘等级,查表6可决定其爬电距离但通常:(1)、一次侧交流部分:保险丝前L—N≥2.5mm,L.N 大地≥2.5mm,保险丝之后可不做要求,但尽量保持一定距离以避免短路损坏电源.(2)、一次侧交流对直流部分≥2.0mm(3)、一次侧直流地对地≥4.0mm如一次侧地对大地(4)、一次侧对二次侧≥6.4mm,如光耦、Y电容等元器零件脚间距≤6.4mm要开槽.(5)、二次侧部分之间≥0.5mm即可(6)、二次侧地对大地≥2.0mm以上(7)、变压器两级间≥8.0mm以上3、绝缘穿透距离:应根据工作电压和绝缘应用场合符合下列规定:——对工作电压不超过50V(71V交流峰值或直流值),无厚度要求;——附加绝缘最小厚度应为0.4mm;——当加强绝缘不承受在正常温度下可能会导致该绝缘材料变形或性能降低的任何机械应力时的,则该加强绝缘的最小厚度应为0.4mm.如果所提供的绝缘是用在设备保护外壳内,而且在操作人员维护时不会受到磕碰或擦伤,并且属于如下任一种情况,则上述要求不适用于不论其厚度如何的薄层绝缘材料;——对附加绝缘,至少使用两层材料,其中的每一层材料能通过对附加绝缘的抗电强度试验;或者:——由三层材料构成的附加绝缘,其中任意两层材料的组合都能通过附加绝缘的抗电强度试验;或者:——对加强绝缘,至少使用两层材料,其中的每一层材料能通过对加强绝缘的抗电强度试验;或者:——由三层绝缘材料构成的加强绝缘,其中任意两层材料的组合都能通过加强绝缘的抗电强度试验.4、有关于布线工艺注意点:如电容等平贴元件,必须平贴,不用点胶如两导体在施以10N力可使距离缩短,小于安规距离要求时,可点胶固定此零件,保证其电气间隙.有的外壳设备内铺PVC胶片时,应注意保证安规距离(注意加工工艺)零件点胶固定注意不可使PCB板上有胶丝等异物.在加工零件时,应不引起绝缘破坏.5、有关于防燃材料要求:热缩套管 V—1或VTM—2以上;PVC套管 V—1或VTM—2以上铁氟龙套管V—1或VTM—2以上;塑胶材质如硅胶片,绝缘胶带V—1或VTM—2以上PCB板94V—1以上6、有关于绝缘等级(1)、工作绝缘:设备正常工作所需的绝缘(2)、基本绝缘:对防电击提供基本保护的绝缘(3)、附加绝缘:除基本绝缘以外另施加的独立绝缘,用以保护在基本绝缘一旦失效时仍能防止电击(4)、双重绝缘:由基本绝缘加上附加绝缘构成的绝缘(5)、加强绝缘:一种单一的绝缘结构,在本标准规定的条件下,其所提供的防电击的保护等级相当于双重绝缘各种绝缘的适用情形如下:A、操作绝缘oprational insulationa、介于两不同电压之零件间b、介于ELV电路(或SELV电路)及接地的导电零件间.B、基本绝缘 basic insulationa、介于具危险电压零件及接地的导电零件之间;b、介于具危险电压及依赖接地的SELV电路之间;c、介于一次侧的电源导体及接地屏蔽物或主电源变压器的铁心之间;d、做为双重绝缘的一部分.C、补充绝缘 supplementary insulationa、一般而言,介于可触及的导体零件及在基本绝缘损坏后有可能带有危险电压的零件之间,如:Ⅰ、介于把手、旋钮,提柄或类似物的外表及其未接地的轴心之间.Ⅱ、介于第二类设备的金属外壳与穿过此外壳的电源线外皮之间.Ⅲ、介于ELV电路及未接地的金属外壳之间.b、做为双重绝缘的一部分D、双重绝缘Double insulation Reinforced insulation一般而言,介于一次侧电路及a、可触及的未接地导电零件之间,或b、浮接(floating)的SELV的电路之间或c、TNV电路之间双重绝缘=基本绝缘+补充绝缘注:ELV线路:特低电压电路在正常工作条件下,在导体之间或任一导体之间的交流峰值不超过42.4V或直流值不超过60V的二次电路.SELV电路:安全特低电压电路.作了适当的设计和保护的二次电路,使得在正常条件下或单一故障条件下,任意两个可触及的零部件之间,以及任意的可触及零部件和设备的保护接地端子(仅对I类设备)之间的电压,均不会超过安全值.TNV:通讯网络电压电路在正常工期作条件下,携带通信信号的电路.举例说明:有一个电气设备的输入端,是用裸露的铜排作为输入导体,这时把这两根铜 排在空间的最短距离称为电气间隙.在输入端子处,它们沿着输入端子的绝缘表面的最短距 离称为爬电距离,象PCB上两根铜箔间边缘的最短距离就称为爬电距离.如果把两根铜箔之 间的PCB挖去,这时就成为爬电距离了.两者的区别就是电气间隙是没有绝缘全作陪衬的,而爬电距离必须与绝缘体在一起.电气间隙和爬电距离的区别爬电距离和电气间隙的正确理解在各电电器产品的国家强制标准里均涉及"爬电距离"和 "电气间隙"两个术语,从概念上讲,爬电距离是"两导电部分之间,或一个导电部件与器具的易触及表面之间沿绝缘材料表面的最短距离".它存在于两个平行的绝缘材料的连接处,它有可能存在于固体或者气体绝缘之间.而电气间隙则是"两导电部件或一个导电部件与器具易触及表面的空间最短距离".不同带电部件之间或带电部件与大地之间,当他们的空气间隙小到一定程度时,在电场的作用下,空气介质将被击穿,绝缘失效或者暂时失效,因些两个导电部件之间的空气应该维持一个使之不会发生击穿的安全距离,这就是电气间隙.爬电距离其实是一个边界平面,这种边界的一个重要特点,就是横跨两种截然不同的额定电气强度(每个单位距离的承受电压值)的材料,因此两个导体之间的距离应该是按照最弱额定电气强度的绝缘材料来决定.因为一般来说空气的额定电气强度是最弱的,所以两个导体间的爬电距离应该按照空间来决定.(ibaby-小草)。
安全距离包括电气间隙(空间距离),爬电距离(表面距离)和绝缘穿透距离。
1.电气间隙:两个相邻导体或一根导体与相邻电动机外壳表面之间沿空气测得的最短距离。
2.爬电距离:沿着两条相邻导体或一条导体与相邻电动机壳体表面之间的绝缘表面测得的最短距离电气间隙的确定:根据测得的工作电压和绝缘水平,要求该电气线路的电气间隙可以确定主要方面。
参见表3和表4。
次级侧线路电气间隙的尺寸要求如表5所示。
通常:初级侧AC部分:保险丝LN≥2.5mm之前,Ln PE(接地)≥2.5mm之后,之后对于保险丝装置,没有要求,但要保持一定距离,以免短路损坏电源。
初级侧AC到DC部分≥2.0mm,初级侧DC到地面≥2.5mm(初级侧浮地接地)如果初级侧部分到次级侧部分大于或等于4.0 mm,则间隙一次侧和二次侧之间的距离大于或等于0.5毫米,二次侧和地面之间的距离大于或等于1.0毫米爬电距离的确定:根据工作电压和绝缘等级,爬电距离可参照表6来确定。
但通常:(1)一次侧交流部分:保险丝前LN≥2.5mm,Ln 接地≥2.5mm,保险丝后无要求,但应保持一定距离,以免短路损坏电源。
(2)初级侧的AC到DC部分≥2.0mm(3)例如,如果初级侧到地面的DC接地≥4.0mm,例如初级侧到大地(4),则初级侧到次级侧≥6.4mm,例如光耦合器,y电容器和其他元件,应将脚间距开槽。
(5)二次侧应≥0.5mm1.在质量上有所不同爬电距离:沿着绝缘5261的表面测得的两个导电部分之间的距离4102。
在不同的使用条件下,导体周围的绝缘材料1653带电,这会导致绝缘材料带电区域中的带电现象。
电气间隙:测量两个导电部件之间或导电部件与设备保护接口之间的最短距离。
换句话说,在确保电气性能的稳定性和安全性的前提下,空气可以获得最短的绝缘距离。
2.设置步骤不同电气间隙:(1)确定工作电压的峰值和有效值;(2)确定设备的供电电压和供电设施的类型;(3)设备的暂态过电压根据过电压类别确定;(4)确定设备的污染等级(普通设备的污染等级为2);(5)确定电气间隙交叉的绝缘类型(功能绝缘,基本绝缘,附加绝缘,加强绝缘)。
爬电距离和电气间隙国标摘要:一、爬电距离和电气间隙的定义及区别二、爬电距离和电气间隙在电力设备中的应用三、我国相关标准规定及举例四、爬电距离和电气间隙的重要性五、总结正文:众所周知,爬电距离和电气间隙在电力系统和电气设备中具有至关重要的作用。
它们是确保设备安全、稳定运行的关键因素。
那么,究竟什么是爬电距离和电气间隙?它们有哪些区别?在电力设备中如何应用?我国又有哪些相关规定呢?一、爬电距离和电气间隙的定义及区别爬电距离是指沿绝缘表面测得的两个导电零部件之间或导电零部件与设备防护界面之间的最短路径。
它是为了防止电极化导致的绝缘材料带电现象而提出的。
电气间隙则是指在两个导电零部件之间或导电零部件与设备防护界面之间测得的最短空间距离。
它是在保证电气性能稳定和安全的情况下,通过空气能实现绝缘的最短距离。
简单来说,爬电距离关注的是绝缘材料,而电气间隙关注的是空间距离。
在实际应用中,它们有着不同的侧重,但都是为了确保设备的安全运行。
二、爬电距离和电气间隙在电力设备中的应用在电力设备中,爬电距离和电气间隙起着至关重要的作用。
例如,在设计带灭弧的隔离开关时,固定螺丝之间的距离、触头之间的距离,以及灭弧罩之间的距离都需要根据爬电距离和电气间隙的要求来合理设置。
这是因为距离太大了会浪费材料,使产品尺寸变大;距离太小了则不能满足标准要求。
三、我国相关标准规定及举例我国关于爬电距离和电气间隙的标准规定如下:1.0.4kv电压等级下,电气间隙应大于或等于20mm;2.1-3kv电压等级下,电气间隙应大于或等于75mm;3.6kv电压等级下,电气间隙应大于或等于100mm;4.10kv电压等级下,电气间隙应大于或等于125mm;5.15kv电压等级下,电气间隙应大于或等于150mm;6.20kv电压等级下,电气间隙应大于或等于180mm;7.35kv电压等级下,电气间隙应大于或等于300mm。
此外,爬电距离的计算则需根据污秽等级来确定。
爬电距离电气间隙
【原创实用版】
目录
1.爬电距离与电气间隙的定义
2.爬电距离与电气间隙的关系
3.爬电距离与电气间隙在电气设备中的应用
4.爬电距离与电气间隙的安全标准
5.结论
正文
1.爬电距离与电气间隙的定义
爬电距离是指两个导电部件之间,在正常工作条件下,可以防止电弧闪络或击穿现象发生的最短距离。
电气间隙是指电气设备中两个导电部件之间的空气距离,它能够防止电弧闪络或击穿现象的发生。
2.爬电距离与电气间隙的关系
爬电距离与电气间隙密切相关。
在电气设备的设计与运行过程中,合理的爬电距离能够确保设备的安全可靠。
只有保证电气间隙足够大,才能有效防止电弧闪络或击穿现象,从而避免设备损坏、火灾等事故的发生。
3.爬电距离与电气间隙在电气设备中的应用
在高压电气设备中,爬电距离与电气间隙的设计与选择至关重要。
这些参数的确定需要充分考虑设备的工作环境、负荷能力、散热条件等因素。
合理的爬电距离与电气间隙可以降低设备故障率,提高设备的使用寿命,保障电力系统的稳定运行。
4.爬电距离与电气间隙的安全标准
我国对电气设备的安全标准有严格的规定。
在 GB 50254-2014《低压
配电系统安装工程施工及验收规范》等标准中,对爬电距离与电气间隙的尺寸、设计、检测等方面提出了具体要求。
这些标准旨在保障电气设备的安全可靠,防止事故的发生。
5.结论
爬电距离与电气间隙在电气设备中具有重要意义。
合理的爬电距离与电气间隙可以确保设备的安全可靠、降低故障率、提高使用寿命。
电气间隙与爬电距离关系摘要:一、电气间隙与爬电距离的基本概念1.电气间隙2.爬电距离二、电气间隙与爬电距离的测量与应用1.测量方法2.应用领域三、电气间隙与爬电距离的关系1.相互替代性2.设计原则四、电气间隙与爬电距离在实际工程中的重要性1.保证电气性能稳定2.确保安全防护五、结论正文:一、电气间隙与爬电距离的基本概念1.电气间隙:电气间隙是指在两个导电零部件之间或导电零部件与设备防护界面之间测得的最短空间距离。
即在保证电气性能稳定和安全的情况下,通过空气能实现绝缘的最短距离。
2.爬电距离:沿绝缘表面测得的两个导电零部件之间或导电零部件与设备防护界面之间的最短路径。
即在不同的使用情况下,由于导体周围的绝缘材料被电极化,导致绝缘材料呈现带电现象。
此带电区(导体为圆形时,带电区为环形)的半径,即为爬电距离。
二、电气间隙与爬电距离的测量方法与应用1.测量方法:电气间隙和爬电距离的测量方法主要包括电阻法、电容法、电感法等。
根据不同的应用场景和测量精度要求,选择合适的测量方法。
2.应用领域:电气间隙和爬电距离在电力系统、电气设备、开关电源等领域具有重要应用价值。
它们用于保证设备的安全运行,提高电气性能,降低故障率。
三、电气间隙与爬电距离的关系1.相互替代性:在某些情况下,电气间隙可以替代爬电距离,例如在设计高压输电线路时,通过增加绝缘子的爬电距离来提高其耐压性能。
然而,在另一些情况下,电气间隙和爬电距离不能相互替代,如在低压电气设备中,需要保证足够的电气间隙以防止击穿。
2.设计原则:在设计电气设备时,应根据工作电压、环境条件等因素,合理选择电气间隙和爬电距离。
一般情况下,电气间隙应大于等于爬电距离,以确保绝缘性能稳定和安全。
四、电气间隙与爬电距离在实际工程中的重要性1.保证电气性能稳定:合适的电气间隙和爬电距离可以确保设备的电气性能稳定,降低故障率。
2.确保安全防护:在高压电气设备中,足够的电气间隙和爬电距离可以防止电弧闪络、击穿等事故,保障人身和设备安全。
爬电距离和电气间隙计算爬电距离和电气间隙计算爬电距离和电气间隙是电气设备中重要的安全参数,用于评估设备的绝缘性能和防止电气事故的发生。
本文将详细介绍爬电距离和电气间隙的定义、计算方法以及其在不同领域的应用。
一、爬电距离的定义和计算方法1. 定义:爬电距离是指两个不带电触点之间在规定的环境条件下,绝缘介质上必须具有足够的绝缘距离,以防电流沿着绝缘表面或表面污秽物导电而产生电弧放电。
2. 计算方法:爬电距离的计算需要考虑以下几个因素:a. 环境条件:包括海拔、温度、湿度等环境因素对爬电距离的影响。
b. 额定电压:根据设备的额定电压确定合适的爬电距离。
c. 材料特性:包括绝缘材料的特性、污染度、表面状态等对爬电距离的影响。
d. 设备类别:不同设备类别的爬电距离标准可能有所不同。
爬电距离可以通过以下计算公式进行估算:爬电距离= (U / k) × (K × F / P)其中,U为电压等级,k为修正系数,K为环境条件系数,F为绝缘材料因数,P为设备类别系数。
根据具体情况,可以参考相关标准(如国际电工委员会(IEC)的IEC 60060标准)提供的表格或计算方法确定修正系数、环境条件系数、绝缘材料因数和设备类别系数的值。
二、电气间隙的定义和计算方法1. 定义:电气间隙是指两个不同电位部件之间的最小距离,它用来限制电气设备中的电弧放电和绝缘击穿的可能性。
2. 计算方法:电气间隙的计算需要考虑以下几个因素:a. 额定电压:根据设备的额定电压确定合适的电气间隙。
b. 材料特性:包括不同材料之间的介电常数、厚度等特性。
电气间隙可以通过以下计算公式进行估算:电气间隙= (U × D / K)其中,U为电压等级,D为介电常数,K为电气间隙系数。
根据具体情况,可以参考相关标准(如IEC 60071标准)提供的表格或计算方法确定介电常数和电气间隙系数的值。
三、应用领域爬电距离和电气间隙的计算在各个电气设备中都有重要的应用,包括高压开关设备、变压器、电力电缆、电容器等。
一、对电气间隙和爬电距离概念的理解
1、电气间隙 不同电位的两个导电部件间最短的空间直线距离。
2、爬电距离 不同电位的两个导电部件之间沿绝缘材料表面的最短距离。
爬电距离与电气间隙是考核电器产品安全的重要指标 不同带电部件之间或带电部件
与金属外壳之间 当他们之间的空气间隙小到一定程度时 在电场的作用下 空气介质将被
击穿 绝缘会失效或者暂时失效 因此这之间的气隙应维持在一个使之不会发生击穿的安全
距离 这就是电气间隙。
爬电距离其实是一个边界平面 这种边界的一个重要特点就是横跨
两种截然不同的额定电气强度3每个单位距离的承受电压值4的材料 因此两个
导电部件
之间的距离应该是按照最弱额定电气强度的绝材料来决定。
空气是一种普通、可靠、便宜的
电气绝缘介质 通常情况下 对1mm的空气间隙 低于1200v 有效值的电压能够维持其
绝缘性能 当电压升到2900v有效值以上时 空气不再是绝缘材料了。
而与空气绝缘不同
的是 固体绝缘材料是一种不可恢复的绝缘介质 电场强度、热、潮湿等不利因素会造成绝
缘材料的不断老化 绝缘性能的下降。
因此也可以说 空气中的隔离空间就是“电气间隙”
爬电距离是用来减少7防止8漏电起痕或电弧放电的 显然电压越低 爬电距离和电气间
隙数值可以相应减小。
另一方面电器的长期使用 还会使电气绝缘属性的减小 如灰尘、其
它导电微粒会积累污染绝缘材料表面 引起漏电起痕甚至电气导通 大气中的
固体颗粒 尘
埃和水能够桥接小的电气间隙。
因此 电气间隙和爬电距离的值还与电器的工作环境 污染
等级有关。
电气间隙和爬电距离
电气间隙是在两个导电零部件之间或导电零部件与设备防护界面之间测得的最短空间距离。
即在保证电气性能稳定和安全的情况下,通过空气能实现绝缘的最短距离。
电气间隙的大小和老化现象无关。
电气间隙能承受很高的过电压,但当过电压值超过某一临界值后,此电压很快就引起电击穿,因此在确认电气间隙大小的时候必须以设备可能会出现的最大的内部和外部过电压(脉冲耐受电压为依据)。
在不同场合使用同一电气设备或运用过电压保护器时所出现的过电压大小各不相同。
因此根据不同的使用场合将过电压分为Ⅰ至Ⅳ四个等级。
爬电距离:沿绝缘表面测得的两个导电零部件之间或导电零部件与设备防护界面之间的最短路径。
即在不同的使用情况下,由于导体周围的绝缘材料被电极化,导致绝缘材料呈现带电现象。
此带电区(导体为圆形时,带电区为环形)的半径,即为爬电距离。
在绝缘材料表面会形成泄漏电流路径。
若这些泄漏电流路径构成一条导电通路,则出现表面闪络或击穿现象。
绝缘材料的这种变化需要一定的时间,它是由长时间加在器件上的工作电压所引起的,器件周围环境的污染能加速这一变化。
因此在确定端子爬电距离时要考虑工作电压的大小、污染等级及所运用的绝缘材料的抗爬电特性。
根据基准电压、污染等级及绝缘材料组别来选择爬电距离。
基准电压值是从供电电网的额定电压值推导出来的。
随着科学技术的迅猛发展,人们的生活水平的不断提高,越来越多的电子产品进入我们的家庭,为保证使用者的人身安全,世界各国均有相关法规以约束电器产品对人身造成的各种伤害。
因此,安全性设计在产品的整个设计过程中有着至关重要的作用,其中安全距离是在产品设计中最重要的部分之一。
在电气间隙、爬电距离实际测量中往往有不同的结果差异、本篇结合自身实际工作,就电气间隙,爬电距离的安全标准要求做一下概括总结,谈谈以下几点理解。
1
名词解释
1、安全距离包括电气间隙(空间距离),爬电距离(沿面距离)和绝缘穿透距离。
2、电气间隙:两相邻导体或一个导体与相邻电机壳表面的沿空气测量的最短距离。
3、爬电距离:两相邻导体或一个导体与相邻电机壳表面的沿绝绝缘表面测量的最短距离。
2
从GB4943-2011中2.10条款定义理解
在GB4943;2.10条款中指出电气间隙的尺寸应使得进入设备的瞬态过电压和设备内部产生的峰值电压不能使其击穿。
爬电距离的的尺寸应使得绝缘在给定的工作电压和污染等级下不会产生闪络或击穿(起痕)。
由此可以看出,电气间隙和爬电距离的防范对象和考核目的不同。
电气间隙防范的是瞬态过电压或峰值电压;而爬电距离是考核绝缘在给定的工作电压和污染等级下的耐受能力。
从对一次电路二次电路的名词定义可以看出,二次电路可能是安全可触及的,也可能是危险带电的;一个设备内可能同时存在一次电路和二次电路,例如预定与电网电源直接相连使用的电源适配器;一个设备也可能本身就是二次电路,例如采用一台发电机或电池供电的设备。
在理解和区分一次电路和二次电路的基础上,也就理解标准中为什么二次电路中也有对基本绝缘、附加绝缘、加强绝缘等的电气间隙的要求。
具体测量步骤步骤如下:
一)电气间隙的测量步骤
确定工作电压峰值和有效值;
确定设备的供电电压和供电设施类别;
根据过电压类别来确定进入设备的瞬态过电压大小;
确定设备的污染等级(一般设备为污染等级2);
确定电气间隙跨接的绝缘类型(功能绝缘、基本绝缘、附加绝缘、加强绝缘)。
二)确定爬电距离步骤
确定工作电压的有效值或直流值;
确定材料组别(根据相比漏电起痕指数,其划分为:Ⅰ组材料,Ⅱ组材料,Ⅲa 组材料, Ⅲb组材料。
注:如不知道材料组别,假定材料为Ⅲb组)确定污染等级;确定绝缘类型(功能绝缘、基本绝缘、附加绝缘、加强绝缘)电气间隙、爬电距离的要求值:电气间隙根据测量的工作电压及绝缘等级,查表(GB4943:2H 和2J和2K,60065-2001表:表8和表9和表10)检索所需的电气间隙即可决定距离;作为电气间隙替代的方法,4943使用附录G替换,60065-2001使用附录J替换。
3
从GB8898-2011中13条款定义理解
爬电距离根据工作电压、绝缘等级及材料组别,查表(GB4943为表2L,65-2001中为表11)确定爬电距离数值,如工作电压数值在表两个电压范围之间时,需要使用内差法计算其爬电距离。
*GB4943中只有功能绝缘的电气间隙和爬电距离可以减小,但必须满足标准5.3.4规定的高压或短路试验。
在GB8898-001中13条款中电气间隙考虑的主要因素是工作电压,查图9来确定。
(对和电压有效值在220-250V范围内的电网电源导电连接的零部件,这些数值等于354V峰值电压所对应的那些数值:基本绝缘3.0mm,加强绝缘6.0mm)。
GB8898-2001其判定数值等于电气间隙,如满足下列三个条件,电气间隙和爬电距离加强绝缘可减少2mm,基本绝缘可减少1mm。
1、这些爬电距离和电气间隙会受外力而减小,但它们不处在外壳的可触及导电零部件与危险带电零部件之间;
2、它们靠刚性结构保持不变;
3、它们的绝缘特性不会因设备内部产生的灰尘而受到严重影响。
*注意:但直接与电网电源连接的不同极性的零部件间的绝缘,爬电距离和电气间隙不允许减小。
基本绝缘和附加绝缘即使不满足爬电距离和电气间隙的要求,只要短路该绝缘,设备仍满足标准要求,则是可以接受的(8898中4.3.1条)。
4
关于GB19212.1-2016中26条款的理解
GB19212.5-2011、GB19212.7-2012、GB19212.18-2006,GB19212.1-2016作为通用要求和试验,在26 条款中电气间隙爬电距离的主要考虑因素为电压类别、污秽等级,绝缘材料组别。
对于采用浸渍、灌封或者使用粘结胶带覆盖绕组来进行隔离的变压器,如果能满足GB/T16935.1-2008 的4.1.1.2.1的试验,爬电距离可有有相应的减小值,但应当按适用的情况进行附加的试验(见26.2 条中a),b),能通过相应的介电强度试验。
5
关于GB15092.1-2010中20条款的理解
电气间隙的测量主要考虑因素额定电压、电压类别和污染等级,对基本绝缘、工作绝缘、附加绝缘、加强绝缘、三种断开状态分别加以说明,另外对于基本绝缘及附加绝缘有必要时可进行附录M脉冲电压试验以验证电气间隙经得起规定的瞬时过电压。
爬电距离的测量主要考虑因素为正常使用中预期会出现的电压、污
染等级、材料组别。
对基本绝缘、工作绝缘、附加绝缘、加强绝缘、三种断开状态也分别加以说明。
6
四份标准对测量路径的考虑
一)X值的选取
1)、GB4943,GB19212.1,GB15092.1中从污染等级的角度规定了的X宽度是相同的。
污染等级X宽度
1 0.25mm
2 1.0mm
3 1.5mm
注:如果涉及到的电气间隙小于3mm,则沟槽宽度X最小可减小到该距离的1/3。
2)、GB8898对直接与电网电源连接的,X值规定为1.0mm。
对不直接与电网电源连接的,且经过防灰尘和潮气侵入的封闭、包封或气密密封的设备、组件或元器件,X值规定为0.25mm。
如果涉及到的电气间隙(伴有相关的爬电距离)的要求小于3mm,则沟槽宽度X最小可减小到该距离的1/3,但不小于0.2mm。
二)电气间隙爬电距离的测量路径
a)、所考虑的路径包括一个具有任一深度而宽度≧Xmm的平行边沟槽。
b)、所考虑的V形沟槽路径在GB4943,GB8898,GB19212.1包括内角角度,而宽度大于Xmm。
在GB15092.1开关中路径包括宽度大于Xmm,对角度没有作出相关要求。
c)、所考虑的路径包括肋。
d)、所考虑的路径包括两边沟槽宽度≧Xmm的一个非粘合接缝。
e)、所考虑的路径包括一个扩展边的沟槽。
f)、在螺钉头与槽壁之间的空隙太窄<xmm,可不予考虑。
< span="">
7
结束语
在日常测量电气间隙爬电距离不同的人往往结论有差异,首先要注意是否引入了过多的人为误差,包括测试手段,测量时,一般使用卡尺\千分尺\塞规等,更进一步的手段有读数显微镜\投影法,甚至极精细情况下,有电镜等手段。
根据以上四份标准的对比,还可以看出不同的标准对测量电气间隙,爬电距离考核角度、测量要求是有差异的。
针对具体产品选用恰当的标准,具体情况具体分析这样才能保证结论的准确性。