专题训练(三) 三角形三边关系的三种应用-精选教学文档
- 格式:docx
- 大小:16.82 KB
- 文档页数:3
三角形的三边关系教学设计(精选6篇)三角形的三边关系教学设计1教学内容人教版义务教育课程实验教科书数学四年级下册P82页。
教学目标1.让学生通过动手实践、自主探索、合作交流发现三角形任意两边之和大于第三边。
2.能判断给定长度的三条线段是否围成三角形,能运用三角形任意两边之和大于第三边这一知识解决生活中的简单的实际问题,感受到生活中处处有数学。
3.通过学习发展学生的空间观念,使学生体验成功的喜悦,激发学生学习数学的兴趣。
教具、学具准备多媒体课件,不同长度不同颜色的小棒若干根,实验表格。
教学过程一、创设情境,导入新课师:(出示课件)同学们看,图上这些地方你们都熟悉吗?(我们的学校、鼓楼商场还有学校后门的建设银行。
)师:如果把我们学校大门到建行看成一条直路的话,把这三个地方连接起来,就成什么图形?师:老师从学校大门口到建行去取钱,有几条路可走?猜一猜我会走哪条路呢?为什么?师:老师在银行取了钱后,现在要去鼓楼商场购物,又有几条路可走?我会走哪条路?师:老师现在要回学校,我又有几条路可走?我又会选择哪条路呢?师:同学们你们为什么认为在三角形的线路中走其中一条边的线路比走另外两条边组成的线路近呢?把你的想法在小组里交流一下。
师:大多数的同学都是从生活经验中发现走两条边的线路比走另一条边的线路远。
那么,有没有别的办法证明我们的这种判断是正确的呢?(学生困惑,沉默不语.)师:今天我们就用数学的方法来研究一下,看看在三角形中,三边的关系是怎样的?(板书课题:三角形的三边关系)二、设疑激趣,动手探究师:(设疑)用小棒代替线段。
请看,老师这儿有红、蓝、黄色的小棒若干根,任意拿三种颜色的小棒能围成一个三色的三角形吗?(学生会出现能围成和不能围成两种情况。
)师:有两种意见,到底谁的猜测是正确的呢?让我们动手操作后再谈自己的发现。
师:我请一位同学上来任意拿出不同颜色的三根小棒,看看能不能围成三角形?(学生上台演示,其他同学看。
三角形三边关系定理的应用三角形是几何学中的基本图形之一,而三角形的性质和关系也是几何学中的重要内容。
三角形三边关系定理是指三角形三边之间的关系定理,通过这些定理可以解决与三角形三边相关的各种问题。
本文将探讨三角形三边关系定理的应用。
一、勾股定理的应用勾股定理是三角形三边关系定理中最为熟知和常用的定理之一。
它表明在一个直角三角形中,直角边的平方等于两个直角边的平方之和。
根据勾股定理,我们可以判断一个三角形是否为直角三角形,也可以计算它的边长。
例如,已知一个三角形的两条边长分别为3和4,若要求第三边的长度,可以使用勾股定理:3²+4²=5²,因此,第三边的长度为5。
二、余弦定理的应用余弦定理是三角形三边关系定理中的重要定理,它描述了三角形中一个角的余弦与三条边之间的关系。
余弦定理的数学表达式为:c² = a²+ b² - 2abcosC,其中a、b、c分别表示三角形的三边长度,C表示夹角的度数。
通过余弦定理,我们可以解决一些与三角形的边长和角度相关的问题。
例如,已知一个三角形的两边长分别为3和4,而它们夹角的度数为60°,那么可以使用余弦定理来求解第三边的长度c:c² = 3² + 4² -2×3×4cos60°,计算得出c的值为2。
三、正弦定理的应用正弦定理也是三角形三边关系定理中的一项重要定理,它描述了三角形中一个角的正弦与三条边之间的关系。
正弦定理的数学表达式为:a/sinA = b/sinB = c/sinC,其中a、b、c分别表示三角形的三边长度,A、B、C分别表示对应边的夹角。
正弦定理可以用于解决一些与三角形的边长和角度相关的问题。
例如,已知一个三角形的两边长分别为3和4,而它们夹角的度数为60°,那么可以使用正弦定理来求解第三边的长度c:3/sin60° = 4/sinB =c/sinC,通过计算可以得到c的值。
教案:三角形三边关系教学目标:1.理解三角形的定义和特点,掌握三角形的基本概念。
2.掌握三角形的三边关系,能够运用三角形的性质解决相关问题。
3.培养学生的观察、思考和解决问题的能力。
教学重点:1.三角形的定义和特点2.三角形的三边关系教学难点:1.三角形的三边关系在实际问题中的应用教学准备:1.教学课件或黑板2.练习题教学过程:一、导入(5分钟)1.引导学生回顾已学的几何图形,如线段、射线、角等。
2.提问:同学们,你们知道三角形吗?谁能告诉我三角形是什么样的图形?二、新课导入(10分钟)1.讲解三角形的定义:由三条线段首尾相连围成的封闭图形叫做三角形。
2.解释三角形的三个顶点、三条边和三个内角。
3.强调三角形的稳定性:三角形的三边固定,形状和大小也就确定了。
三、探究三角形的三边关系(15分钟)1.引导学生观察不同形状和大小的三角形,让学生发现三角形的三边关系。
2.讲解三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边。
3.通过实例验证三角形的三边关系,如:3+4>5,3+4>6,34<5等。
4.引导学生思考:为什么三角形的三边关系是这样的?四、应用三角形的三边关系(15分钟)1.出示练习题,让学生运用三角形的三边关系解决问题。
2.分析解题思路,引导学生运用三角形的三边关系判断三条线段能否组成三角形。
3.总结解题方法:先判断任意两边之和是否大于第三边,再判断任意两边之差是否小于第三边。
五、课堂小结(5分钟)1.回顾本节课所学内容,让学生复述三角形的三边关系。
2.强调三角形的三边关系在实际问题中的应用。
六、课后作业(5分钟)1.布置练习题,让学生巩固三角形的三边关系。
2.鼓励学生思考:除了三角形的三边关系,还有哪些几何图形的性质可以用来解决问题?教学反思:本节课通过讲解、探究和应用,使学生掌握了三角形的三边关系。
在教学过程中,要注意引导学生观察、思考和总结,培养学生的几何思维。
自学资料一、三角形及其三边关系【知识探索】1.三角形的三边关系:三角形任意两边的和大于第三边.【说明】三角形任意两边的差小于第三边.【错题精练】例1.四根长度分别为3、4、6、x(x为正整数)的木棒,从中任取三根,首尾顺次相接都能组成一个第1页共21页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训三角形,则()A. 组成的三角形中周长最小为9;B. 组成的三角形中周长最小为10;C. 组成的三角形中周长最大为18;D. 组成的三角形中周长最大为16.【答案】D例2.在课题学习时,老师布置画一个三角形ABC,使∠A=30∘,AB=10cm,∠A的对边可以在长为4cm、5cm、6cm、11cm四条线段中任选,这样的三角形可以画个.【答案】4.(AB+BC+CA),请例3.如图,D是ΔABC内任意一点,连接DA、DB、DC,则有DA+DB+DC >12说明理由。
【解答】在ΔABC中, DB+DA>AB,同理,DA+DC>AC,DB+DC>BC三式相加得2(DA+DB+DC)>(AB+BC+CA)AB+BC+CA,即DA+DB+DC >12【答案】见解答例4.(1)请你在△ABC中作出一条线段,把△ABC分成面积相等的两部分。
(2)请你用三种不同方法将△ABC的面积四等份,在图上直接画出即可。
第2页共21页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训【解答】(1)作△ABC的中线AD,线段AD把△ABC分成面积相等的两部分.如下图所示,(2)将△ABC的面积四等份的方法如图所示,(方法见图中说明)【答案】【举一反三】1.用9根同样长的火柴棒在桌面上摆一个三角形(不许将火柴棒折断,并且全部用完),能摆出不同形状的三角形的个数是()A. 1B. 2C. 3D. 4【答案】C2.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值为()D. 10A. 6B. 7C. 8【解答】解:已知4条木棍的四边长为2、3、4、6;①选2+3、4、6作为三角形,则三边长为5、4、6;5﹣4<6<5+4,能构成三角形,此时两个螺丝间的最长距离为6;②选3+4、6、2作为三角形,则三边长为2、7、6;6﹣2<7<6+2,能构成三角形,此时两个螺丝间的最大距离为7;③选4+6、2、3作为三角形,则三边长为10、2、3;2+3<10,不能构成三角形,此种情况不成立;④选6+2、3、4作为三角形,则三边长为8、3、4;而3+4<8,不能构成三角形,此种情况不成立;综上所述,任两螺丝的距离之最大值为7.故选:B.第3页共21页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【答案】B3.在△ABC中,AB=AC,AC上的中线BD把△ABC的周长分别24和18两部分,求三角形三边的长.【解答】【答案】16,16,10和12,12,184.如图所示,已知P是△ABC内一点,试说明PA+PB+PC>(AB+BC+AC).【解答】【答案】略二、三角形的初步知识综合复习【错题精练】例1.如图,在△ABC中,P是BC上的点,作PQ∥AC交AB于点Q,分别作PR⊥AB,PS⊥AC,垂足分别是R,S,若PR=PS,则下面三个结论:①AS=AR;②AQ=PQ;③△PQR≌△CPS;④AC−AQ=2SC,其中正确的是()第4页共21页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训A. ②③④B. ①②C. ①④D. ①②③④【答案】B例2.如图,点I为△ABC角平分线交点,AB=8,AC=6,BC=4,将∠ACB平移使其顶点C与I重合,则图中阴影部分的周长为()A. 9;B. 8;C. 6;D. 4.【答案】B例3.如图,Rt△ABC中,∠ACB=90∘,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D 处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为();A. 35B. 4;5;C. 23D. √3.2【答案】B.第5页共21页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训例4.(1)如图1所示,已知△ABC中,∠ABC、∠ACB的平分线相交于点O,试说明∠BOC=90∘+∠A.(2)如图2所示,在△ABC中,BD、CD分别是∠ABC、∠ACB的外角平分线,试说明∠D=90∘−∠A.(3)如图3,B、C、D在一条直线上,∠PBC=∠ABC,∠PCD=∠ACD,求证∠BPC=∠BAC.【解答】(1)证明:∵在△ABC中,OB、OC分别是∠ABC、∠ACB的平分线,∠A为x∘∴∠OBC+∠OCB=12(180∘−∠A)=12×(180∘−x∘)=90∘−12∠A故∠BOC=180∘−(∠OBC+∠OCB)=180∘−(90∘−12∠A)=90∘+12∠A(2)证明:∵BD、CD为△ABC两外角∠ABC、∠ACB的平分线,∠A为x∘∴∠BCD=12(∠A+∠ABC)、∠DBC=(∠A+∠ACB),由三角形内角和定理得,∠BDC=180∘−∠BCD−∠DBC=180∘−12[∠A+(∠A+∠ABC+∠ACB)]=180∘−12(∠A+180∘)=90∘−12∠A(3)证明:∵BD为△ABC的角平分线,交AC与点ECD为△ABC外角∠ACE的平分线,两角平分线交于点D∴∠1=∠2,∠5=12(∠A+2∠1),∠3=∠4,在△ABE中,∠A=180∘−∠1−∠3∴∠1+∠3=180∘−∠A−−−−①在△CDE中,∠D=180∘−∠4−∠5=180∘−∠3−(∠A+2∠1),即2∠D=360∘−2∠3−∠A−2∠1=360∘−2(∠1+∠3)−∠A−−−−②,把①代入②得:2∠D=∠A.第6页共21页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训【答案】略.例5.如图:∠AEB、∠AFD的平分线相交于O点.(1)求∠EOF,∠A,∠α,∠β之间的关系.(∠DAB+∠BCD).(2)求证∠EOF=12【解答】(1)解:延长EO交AF于点G.∵∠EOF是△OGF的外角,∴∠EOF=∠β+∠EGF,∵∠EGF是△AEG的外角,∴∠EGF=∠A+∠α,∴∠EOF=∠A+∠α+∠β;(2)证明:连接EF.∵∠EOF=180∘−(∠1+∠2)−(∠α+∠β),∠DCB=∠ECF=180∘−(∠1+∠2),∴∠EOF=∠BCD−(∠α+∠β),又∵∠EOF=∠DAB+∠α+∠β,∴∠α+∠β=∠EOF−∠DAB,∴∠EOF=∠BCD−(∠EOF−∠DAB),即∠EOF=∠BCD−∠EOF+∠DAB,∴2∠EOF=∠DAB+∠BCD第7页共21页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训(∠DAB+∠BCD)∴∠EOF=12【答案】略.【举一反三】1.如图,△ABC的三边AB,BC,CA的长分别是100,110,120,其三条角平分线将△ABC分为三个三角形。
专题01 三角形边或角关系的三种模型几何探究类问题一直属于考试压轴题范围,在三角形这一章,压轴题主要考查是证明角的数量关系,或者三角形的三边和差关系等,接来下我们针对这两个版块做出详细分析与梳理。
类型一、燕尾角模型例1.在社会实践手工课上,小茗同学设计了一个形状如图所示的零件,如果52,25A B °°Ð=Ð=,30,35,72C D E °°°Ð=Ð=Ð=,那么F Ð的度数是( ).A .72°B .70°C .65°D .60°【答案】A 【详解】延长BE 交CF 的延长线于O ,连接AO ,如图,∵180,OAB B AOB Ð+Ð+Ð=° ∴180,AOB B OAB Ð=°-Ð-Ð同理得180,AOC OAC C Ð=°-Ð-Ð∵360,AOB AOC BOC Ð+Ð+Ð=°∴360BOC AOB AOC Ð=°-Ð-Ð 360(180)(180)B OAB OAC C =°-°-Ð-Ð-°-Ð-Ð107,B C BAC =Ð+Ð+Ð=°∵72,BED Ð=°∴180108,DEO BED Ð=°-Ð=°∴360DFO D DEO EOF Ð=°-Ð-Ð-Ð 36035108107110,=°-°-°-°=°∴180********DFC DFO Ð=°-Ð=°-°=°,故选:A .【变式训练1】如图,若115EOC Ð=°,则A B C D E F Ð+Ð+Ð+Ð+Ð+Ð=____________.【答案】230°【详解】解:如图∵∠EOC =∠E +∠2=115°,∠2=∠D +∠C , ∴∠E +∠D +∠C =115°,∵∠EOC =∠1+∠F =115°,∠1=∠A +∠B , ∴∠A +∠B +∠F =115°,∴∠A +∠B +∠C +∠D +∠E +∠F =230°, 故答案为:230°.【变式训练2】如右图,∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H =__.【答案】360°【详解】解:由图形可知:∠BNP =∠A +∠B ,∠DPQ =∠C +∠D ,∠FQM =∠E +∠F ,∠HMN =∠G +∠H ,∵∠BNP +∠DPQ +∠FQM +∠HMN =360°,∴∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H =∠BNP +∠DPQ +∠FQM +∠HMN =360°.故答案为:360°.【变式训练3】如图,求∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H +∠I =__.【答案】900°【详解】解:连EF ,GI ,如图,∵6边形ABCDEFK 的内角和=(6-2)×180°=720°,∴∠A +∠B +∠C +∠D +∠E +∠F =720°-(∠1+∠2),即∠A +∠B +∠C +∠D +∠E +∠F +(∠1+∠2)=720°,∵∠1+∠2=∠3+∠4,∠5+∠6+∠H =180°,∴∠A +∠B +∠C +∠D +∠E +∠F ∠H +(∠3+∠4)=900°,∴∠A +∠B +∠C +∠D +∠E +∠F (∠3+∠4)+∠5+∠6+∠H =720°+180°,∴∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H +∠I =900°,故答案为:900°.【变式训练4】模型规律:如图1,延长CO 交AB 于点D ,则1BOC B A C B Ð=Ð+Ð=Ð+Ð+Ð.因为凹四边形ABOC 形似箭头,其四角具有“BOC A B C Ð=Ð+Ð+Д这个规律,所以我们把这个模型叫做“箭头四角形”.模型应用(1)直接应用:①如图2,60,20,30A B C Ð=°Ð=°Ð=°,则BOC Ð=__________°;②如图3,A B C D E F Ð+Ð+Ð+Ð+Ð+Ð=__________°;(2)拓展应用:①如图4,ABO Ð、ACO Ð的2等分线(即角平分线)1BO 、1CO 交于点1O ,已知120BOC Ð=°,50BAC Ð=°,则1BO C Ð=__________°;②如图5,BO 、CO 分别为ABO Ð、ACO Ð的10等分线1,2,3,,(,)89i =¼.它们的交点从上到下依次为1O 、2O 、3O 、…、9O .已知120BOC Ð=°,50BAC Ð=°,则7BO C Ð=__________°;③如图6,ABO Ð、BAC Ð的角平分线BD 、AD 交于点D ,已知120,44BOC C Ð=°Ð=°,则ADB =∠__________°;④如图7,BAC Ð、BOC Ð的角平分线AD 、OD 交于点D ,则B Ð、C Ð、D Ð之同的数量关系为__________.【答案】(1)①110;②260;(2)①85;②110;③142;④∠B -∠C +2∠D =0【详解】解:(1)①∠BOC =∠A +∠B +∠C =60°+20°+30°=110°;②∠A +∠B +∠C +∠D +∠E +∠F =∠BOC +∠DOE =2×130°=260°;(2)①∠BO 1C =∠BOC -∠OBO 1-∠OCO 1=∠BOC -12(∠ABO +∠ACO )=∠BOC -12(∠BOC -∠A )=∠BOC -12(120°-50°)=120°-35°=85°;②∠BO 7C =∠BOC -17(∠BOC -∠A )=120°-17(120°-50°)=120°-10°=110°;③∠ADB =180°-(∠ABD +∠BAD )=180°-12(∠BOC -∠C )=180°-12(120°-44°)=142°;④∠BOD =12∠BOC =∠B +∠D +12∠BAC ,∠BOC =∠B +∠C +∠BAC ,联立得:∠B -∠C +2∠D =0.类型二、折叠模型例1.如图,在ABC V 中,46C Ð=°,将ABC V 沿直线l 折叠,点C 落在点D 的位置,则12Ð-Ð的度数是( ).A .23°B .92°C .46°D .无法确定【答案】B 【详解】解:由折叠的性质得:46D C Ð=Ð=°,根据外角性质得:13C Ð=Ð+Ð,32D Ð=Ð+Ð,则1222292C D C Ð=Ð+Ð+Ð=Ð+Ð=Ð+°,则1292Ð-Ð=°.故选:B .【变式训练1】如图,将△ABC 纸片沿DE 折叠,使点A 落在点A '处,且A 'B 平分∠ABC ,A 'C 平分∠ACB ,若∠BA 'C =120°,则∠1+∠2的度数为( )A .90°B .100°C .110°D .120°【答案】D【详解】解:如图,连接AA',∵A'B平分∠ABC,A'C平分∠ACB,∴∠A'BC=12∠ABC,∠A'CB=12∠ACB,∵∠BA'C=120°,∴∠A'BC+∠A'CB=180°-120°=60°,∴∠ABC+∠ACB=120°,∴∠BAC=180°-120°=60°,∵沿DE折叠,∴∠DAA'=∠DA'A,∠EAA'=∠EA'A,∵∠1=∠DAA'+∠DA'A=2∠DAA',∠2=∠EAA'+∠EA'A=2∠EAA',∴∠1+∠2=2∠DAA'+2∠EAA'=2∠BAC=2×60°=120°,故选:D.【变式训练2】如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=55°,∠1=95°,则∠2的度数为().A.14°B.15°C.28°D.30°【答案】B【详解】解:∵∠A=55°,∴∠AEF+∠AFE=180°-55°=125°,∴∠FEB+∠EFC=360°-125°=235°,由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=235°,∴∠1+∠2=235°-125°=110°,∵∠1=95°,∴∠2=110°-95°=15°,故选:B .【变式训练3】如图,将△ABC 沿着DE 翻折,使B 点与B'点重合,若∠1+∠2=80°,则∠B 的度数为( )A .20°B .30°C .40°D .50°【答案】C 【详解】由折叠的性质可知','BED B ED BDE B DEÐ=ÐÐ=Ð∵1'180,2'180BED B ED BDE B DE Ð+Ð+Ð=°Ð+Ð+Ð=°∴11(36012)(36080)14022BED BDE Ð+Ð=°-Ð-Ð=´°-°=°∴180()18014040B BED BDE Ð=°-Ð+Ð=°-°=°故选C【变式训练4】如图,将矩形纸片ABCD 沿EF 折叠,点C 落在边AB 上的点H 处,点D 落在点G 处,若111GEF Ð=°,则AHG ∠的度数为( ).A .42°B .69°C .44°D .32°【答案】A 【详解】由图形翻折的性质可知,111GEF DEF Ð=Ð=°,180111AEF \Ð=°-°=69°,1116942AEG GEF AEF Ð=Ð-Ð=°-°=°,90A G Ð=Ð=°Q ,利用“8”字模型,42AHG AEG \Ð=Ð=°,故选:A .类型三、“8”字模型例1.如图,BP 平分ABC Ð,交CD 于点F ,DP 平分ADC Ð交AB 于点E ,AB 与CD 相交于点G ,42A Ð=°.(1)若60ADC Ð=°,求AEP Ð的度数;(2)若38C Ð=°,求P Ð的度数.【答案】(1)72°;(2)40°.【详解】解:(1)∵DP 平分∠ADC ,∴∠ADP=∠PDF=12ADC Ð,∵60ADC Ð=°,∴30ADP Ð=°,∴304272AEP ADP A Ð=Ð+Ð=°+°=°;(2)∵BP 平分∠ABC ,DP 平分∠ADC ,∴∠ADP=∠PDF ,∠CBP=∠PBA ,∵∠A+∠ADP=∠P+∠ABP ,∠C+∠CBP=∠P+∠PDF ,∴∠A+∠C=2∠P ,∵∠A=42°,∠C=38°,∴∠P=12(38°+42°)=40°.【变式训练1】如图,求∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H +∠K 的度数.【答案】540°【详解】解:如图所示:由三角形的外角的性质可知:∠A +∠B =∠IJL ,∠C +∠D =∠MLJ ,∠H +∠K =∠GIJ ,∠E +∠F =∠GML ,∴∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H +∠K =∠IJL +∠MLJ +∠GML +∠G +∠GIJ =(5-2)×180°=3×180°=540°.【变式训练2】(1)已知:如图①的图形我们把它称为“8字形”,试说明:A B C D Ð+Ð=Ð+Ð.(2)如图②,AP ,CP 分别平分BAD Ð,BCD Ð,若36ABC Ð=°,16ADC Ð=°,求P Ð的度数.(3)如图(3),直线AP 平分BAD Ð,CP 平分BCD Ð的外角BCE Ð,猜想P Ð与B Ð、D Ð的数量关系是__;(4)如图(4),直线AP 平分BAD Ð的外角FAD Ð,CP 平分BCD Ð的外角BCE Ð,猜想P Ð与B Ð、D Ð的数量关系是________.【答案】(1)见解析;(2)26°;(3)()1902P B D Ð=°+Ð+Ð;(4)()11802P B D Ð=°-Ð+Ð【详解】解:(1)A B AOB Ð+Ð+Ð=Q 180°,C D COD Ð+Ð+Ð=180°,A B AOB C D COD \Ð+Ð+Ð=Ð+Ð+Ð.AOB COD Ð=ÐQ ,A B C D \Ð+Ð=Ð+Ð;(2)AP Q ,CP 分别平分BAD Ð,BCD Ð,设BAP PAD x Ð=Ð=,BCP PCD y Ð=Ð=,则有x ABC y P x P y ADC +Ð=+Ðìí+Ð=+Ðî, ABC P P ADC \Ð-Ð=Ð-Ð,()1122P ABC ADC \Ð=Ð+Ð=(36°+16°)=26°(3)Q 直线AP 平分BAD Ð,CP 平分BCD Ð的外角BCE Ð,1=2PAB PAD BAD \Ð=Ð∠,1=2PCB PCE BCE Ð=ÐÐ,∴2PAB B Ð+Ð=180°-2PCB D Ð+Ð,∴180°()2PAB PCB D B-Ð+Ð+Ð=Ð∵∠P +∠PAD =∠PCD +∠D ,∠BAD +∠B =∠BCD +∠D ,∴=P PAD BAD B PCD BCD Ð+---∠∠∠∠∠,P PAB B PCB \Ð-Ð-Ð=Ð∴P B PAB PCBÐ-=Ð+Ð∠∴180°()2P B D B -Ð-Ð+Ð=Ð,即P Ð=90°()12B D +Ð+Ð.(4)连接PB ,PDQ 直线AP 平分BAD Ð的外角FAD Ð,CP 平分BCD Ð的外角BCE Ð,FAP PAO \Ð=Ð,PCE PCB Ð=Ð,∵APB PBA PAB +Ð+Ð=∠180°,PCB PBC BPC +Ð+Ð=∠180°∴APC ABC PCB PAB Ð+Ð+Ð+=∠360°同理得到:APC ADC PCD PAD Ð+Ð+Ð+=∠360°∴2APC ABC ADC PCB PAB PCD PAD Ð+Ð+Ð+Ð++Ð+=∠∠720°∴2APC ABC ADC PCE PAB PCD PAF Ð+Ð+Ð+Ð++Ð+=∠∠720°∵=PCE PCD Ð+Ð180°,=PAB PAF +∠∠180°∴2APC ABC ADC Ð+Ð+Ð=360°,APC \Ð=180°-()12ABC ADC Ð+Ð。
知识点梳理考点一、三角形1、三角形的定义 : 由不在同一条直线上的三条线段首尾按序相接所构成的图形叫做三角形 .2、三角形的分类 .锐角三角形直角三角形钝角三角形不等边三角形三角形(按边分 )等腰三角形 (等边三角形 )3、三角形的三边关系:三角形随意两边之和大于第三边 , 随意两边之差小于第三边 . 4、三角形的重要线段①三角形的中线:极点与对边中点的连线 , 三条中线交点叫重心②三角形的角均分线:内角均分线与对边订交 , 极点和交点间的线段, 三个角的角均分线的交点叫心里③三角形的高:极点向对边作垂线 , 极点和垂足间的线段 . 三条高的交点叫垂心( 分锐角三角形 , 钝角三角形和直角三角形的交点的地点不一样 )5、三角形拥有稳固性6、三角形的内角和定理及性质定理:三角形的内角和等于 180°. 推论 1:直角三角形的两个锐角互补。
推论 2:三角形的一个外角等于不相邻的两个内角的和。
推论 3:三角形的一个外角大于与它不相邻的任何一个内角。
7、多边形的外角和恒为 360° 8、多边形及多边形的对角线①正多边形:各个角都相等,各条边都相等的多边形叫做正多边形.②凸凹多边形:画出多边形的任何一条边所在的直线,若整个图形都在这条直线的同一侧,这样的多边 形称为凸多边形;,若整个多边形不都在这条直线的同一侧,称这样的多边形为 凹多边形。
③多边形的对角线的条数 :A.从 n 边形的一个极点能够引( n-3)条对角线,将多边形分红( n-2)个三角形。
B.n 边形共有n(n3)条对角线。
29、边形的内角和公式及外角和①多边形的内角和等于( n-2)×180°(n ≥3) 。
②多边形的外角和等于 360°。
10、平面镶嵌及平面镶嵌的条件。
①平面镶嵌:用形状同样或不一样的图形关闭平面,把平面的一部分既无空隙,又不重叠地所有覆盖。
②平面镶嵌的条件:有公共极点、公共边;在一个极点处各多边形的内角和为 360°。
专项训练一:三角形三边关系的巧用名师点金:三角形的三边关系应用广泛,利用三边关系可以判定三条线段能否组成三角形、已知两边求第三边的取值范围、证明线段不等关系、化简绝对值、求解等腰三角形的边长及周长等问题.判断三条线段能否组成三角形1.下列每组数分别表示三根木棒的长度,将它们首尾顺次连结后,不能摆成三角形的一组是()A.4,4,8 B.5,5,1C.3,7,9 D.2,5,42.有四条线段,长度分别为4 cm,8 cm,10 cm,12 cm,选其中三条组成三角形,试问可以组成多少个三角形?求三角形第三边的长或周长的取值范围3.一个三角形的两边长分别为5和3,第三边的长是整数,且周长是偶数,则第三边的长是()A.2或4 B.4或6C.4 D.2或64.如果三角形的两边长分别为3和5,则周长l的取值范围是()A.6<l<15 B.6<l<16C.11<l<13 D.10<l<165.若三角形的三边长是三个连续自然数,其周长m满足10<m<22,则这样的三角形有________个.三角形的三边关系在等腰三角形中的应用6.等腰三角形的一条边长为6,另一条边长为13,则它的周长为() A.25 B.25或32 C.32 D.197.已知,等腰三角形ABC的底边BC=8 cm,|AC-BC|=2 cm,则AC=________.8.若等腰三角形的底边长为4,且周长小于20,则它的腰长b的取值范围是____________.三角形的三边关系在代数中的应用9.已知三角形三边长分别为a,b,c,且|a+b-c|+|a-b-c|=10,求b的值.10.已知a,b,c是△ABC的三边长,b,c满足(b-2)2+|c-3|=0,且a 为方程|x-4|=2的解,求△ABC的周长.利用三角形的三边关系证明边的不等关系11.如图,已知D,E为△ABC内两点,求证:AB+AC>BD+DE+CE.。
三角形的三边关系教学设计一等奖(精选5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、应急预案、演讲致辞、规章制度、合同协议、条据书信、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, work plans, emergency plans, speeches, rules and regulations, contract agreements, document letters, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!三角形的三边关系教学设计一等奖(精选5篇)角形边的关系教案篇1教学目标:1、通过直观操作活动和计算观察,让学生探索并发现三角形任意两边长度的和大于第三边。
专题训练(三)三角形三边关系的三种应用
►应用一判断三条已知线段能否组成三角形
1.2019·安徽六安仁峰实验中学期中现有两根木棒,它们的长度分别为20 cm和30 cm,若不改变木棒的长度,要钉成一个三角形木架,应在下列四根木棒中选取()
A.10 cm的木棒B.20 cm的木棒
C.50 cm的木棒D.60 cm的木棒
2.2019·安徽舒城五校联考如果三条线段长度的比分别为:(1)1∶3∶4;(2)1∶2∶3;
(3)1∶4∶6;(4)3∶3∶6;(5)6∶6∶10;(6)3∶4∶5.其中能构成三角形的有()
A.1个B.2个C.3个D.4个
►应用二已知三角形的两边长,求第三边的长或取值范围
3.2019·安徽庐江期中若三角形的三边长分别为3,4,x-1,则x的取值范围是()
A.0<x<8 B.2<x<8
C.0<x<6 D.2<x<6
4.2019·凤阳三中期中一个三角形的两边长分别为8和10,则它的最短边a的取值范围是________.
5.若三个互不相等的数5,3,a能作为一个三角形的三边长,求a的取值范围.
6.一个三角形的两条边长分别为2和7.
(1)求第三条边的长度x的取值范围;
(2)若第三条边的长度x是一个偶数,求三角形的周长.
►应用三三角形三边关系的综合应用
7.已知:正整数a,b,c,a<b<c,且c最大为6,则是否存在以a,b,c为三边长的三角形?若存在,最多可以组成几个三角形,若不存在,请说明理由.
8.梦雪的爸爸用一段长为30米的破旧渔网围成一个三角形形状的园地,用于种植各类蔬菜.已知第一条边的长为a米,第二条边的长比第一条边长的2倍多2米.
(1)请用a表示第三条边的长;
(2)能否使得围成的三角形园地是等腰三角形?请说明理由;
(3)求出a 的取值范围.
9.“综合与实践”学习活动小组准备制作一组三角形,记这些三角形的三边长分别为a ,b ,c ,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.
(1)用记号(a ,b ,c)(a ≤b ≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形,请列举出所有满足条件的三角形;
(2)用直尺和圆规作出三边满足a <b <c 的三角形(用给定的单位长度,不写作法,保留作图痕迹).
图3-ZT -1
详解详析
1.B 2.B 3.B
4.[答案] 2<a ≤8
[解析] ∵三角形的三边长分别为8,10,a ,且a 是最短边,
∴10-8<a ≤8,即2<a ≤8.
5.解: 因为5,3,a 能作为一个三角形的三边长,所以5-3<a <5+3,解得2<a <8.因为5,3,a 三个数互不相等,所以a ≠3,a ≠5.所以a 的取值范围是2<a <8且a ≠3,a ≠5.
6.解:(1)由题意可得7-2<x <2+7,
即5<x <9.
(2)因为x 为偶数,所以x =6或x =8.
所以三角形的周长为2+7+6=15或2+7+8=17.
7.解:存在符合条件的三角形.
a ,
b ,
c 的值分别为:①2,3,4;②2,4,5;③2,5,6;④3,4,5;⑤3,4,6;⑥3,5,6;⑦4,5,6.所以最多可以构成7个三角形.
8.解:(1)因为第二条边的长为(2a +2)米,
所以第三条边的长为30-a -(2a +2)=(28-3a )米.
(2)能.理由:因为a >0,所以2a +2>a .当2a +2=28-3a 时,a =265
,2a +2=28-3a
=625
. 因为265+625>625
, 所以当第一条边的长为265
米时,能围成等腰三角形园地;当a =28-3a 时,a =7,2a +2=16.因
为7+7<16,所以当第一条边长为7米时,不能围成等腰三角形园地.
综上所述,可知能使得围成的三角形园地是等腰三角形.
(3)由⎩
⎪⎨⎪⎧(2a +2)+a >28-3a ,(2a +2)-a <28-3a , 解得133<a <132
. 即a 的取值范围是133<a <132
. 9.解:(1)共九种:(2,2,2),(2,2,3),(2,3,3),(2,3,4),(2,4,4),(3,3,
3),(3,3,4),(3,4,4),(4,4,4).
(2)只有边长为a =2,b =3,c =4的三角形符合题意,如图所示的△ABC 即为满足条件的三角形.。