β2肾上腺素受体研究进展
- 格式:pdf
- 大小:212.19 KB
- 文档页数:3
β3肾上腺素能受体应用的研究进展安慧玲;杨君;陈枚洁【摘要】β3肾上腺素能受体(β3-AR)是继β1-AR、β2-AR后发现的又一β肾上腺素受体.β3-AR广泛分布于脂肪组织、心脏、血管、消化系统、泌尿生殖系统和脑组织等.β3-AR属G蛋白偶联家族,可通过结合Gi和Gs发挥生理、病理作用.在脂肪组织中,β3-AR介导脂肪分解、促进能量代谢及产热效应;而在心血管系统中,β3-AR可介导心肌负性变力效应及血管平滑肌舒张作用.目前,对于β3-AR在人体不同组织器官的生理病理过程开展了广泛的研究,但仍有许多问题尚未解决.【期刊名称】《医学综述》【年(卷),期】2013(019)019【总页数】5页(P3470-3474)【关键词】β3肾上腺素能受体;信号转导;一氧化氮合酶;脂肪组织;心力衰竭【作者】安慧玲;杨君;陈枚洁【作者单位】首都医科大学附属北京朝阳医院综合科,北京,100020;首都医科大学附属北京朝阳医院综合科,北京,100020;首都医科大学附属北京朝阳医院第三临床医学院基地班,北京,100020【正文语种】中文【中图分类】R59自主神经系统包括交感神经和副交感神经,分布至内脏、心血管和腺体,并调节这些器官的功能。
副交感神经通过去甲肾上腺素(norepinephrine,NE)与α、β肾上腺素受体结合发挥作用。
β3肾上腺素能受体(β3-adrenoceptor,β3-AR)是继β1-AR、β2-AR 后发现的又一β肾上腺素受体。
1989年,Emorine等[1]最先在人类脂肪细胞中克隆出β3-AR基因,并于豚鼠和猫心脏中发现β3-AR。
1996年,Gauthier等[2]通过反转录-聚合酶链反应(reverse transcription polymerase chain reaction,RT-PCR)对心脏移植者心内膜活检,首次在人体心脏组织内发现了β3-AR的mRNA。
迄今,研究者对β3-AR的分子结构、信号转导途径等方面进行了研究,对β3-AR在人体各组织器官病理生理状态下发挥的功能作用也进行了深入的探讨。
膜蛋白结构及功能研究进展膜蛋白是一类广泛存在于细胞膜上的蛋白质,它们在维持细胞内外环境平衡、传递信号和调节细胞的功能上起着至关重要的作用。
随着科学技术的不断发展,对膜蛋白结构及功能的研究也取得了重要进展。
本文将介绍膜蛋白结构的研究方法、重要的结构发现和膜蛋白功能的进一步探索。
关于膜蛋白结构的研究,传统的方法主要包括X射线晶体学和NMR。
X射线晶体学通过获得膜蛋白晶体的X射线衍射图像来确定其结构,但很多膜蛋白由于难以获得高质量的晶体而难以进行研究。
而NMR则可以在溶液状态下研究膜蛋白结构,但对于大分子膜蛋白来说,其结构的解析相对困难。
近年来,随着冷冻电镜技术的发展,其在膜蛋白结构研究中的应用越来越普遍,尤其是应用于解析大分子膜蛋白结构。
冷冻电镜通过将膜蛋白样品在液氮温度下快速冷冻,然后获取高分辨率的电镜图像,通过图像处理可以重建出膜蛋白的三维结构。
这种方法已经被应用于多个大分子膜蛋白的结构解析,为膜蛋白研究提供了新的突破口。
在膜蛋白结构的研究中,也发现了一些具有重要意义的结构。
例如,G蛋白偶联受体(GPCR)是一类广泛存在于细胞膜上的膜蛋白,对于许多重要的生理过程起着调节作用。
最近,科学家们成功地利用冷冻电镜解析了β2肾上腺素能受体的结构,这是GPCR家族中的一种具有广泛研究重要性的受体。
通过该结构的解析,我们可以更好地理解膜蛋白的激活机制,为药物设计和治疗相关疾病提供了新的思路。
此外,膜蛋白的功能也是目前研究的热点之一。
膜蛋白作为细胞的大门,参与物质的跨膜转运、细胞信号传导等重要功能过程。
近年来,一些研究揭示了膜蛋白的结构与功能之间的关系。
例如,研究人员在GABA受体结构中发现了一种自由空间的腔室结构,通过该腔室,离子可以跨过细胞膜进行通道传导。
这一发现为我们理解膜蛋白的离子转运提供了新的线索。
另外一个重要的研究方向是膜蛋白与药物的相互作用。
膜蛋白作为许多药物的靶点,药物与膜蛋白之间的相互作用对于药物的疗效和副作用具有重要影响。
兽药肾上腺素的药理及应用肾上腺素,又称为肾上腺素、肾上腺激素或肾上腺素,是一种重要的内源性激素,也是一种重要的兽用药物。
肾上腺素主要由肾上腺髓质细胞合成,并且在猪、牛等动物体内也会存在。
它对机体的心血管、代谢等系统起着至关重要的作用。
本文将从药理学及应用两个方面对兽用肾上腺素进行详细的介绍。
一、药理学1. 药理作用肾上腺素是一种能够刺激β受体的激素,主要通过对β受体的刺激发挥作用。
在心血管系统中,肾上腺素能够通过刺激β1受体而增加心脏的收缩力和心率,提高心输出量,同时也能通过扩张冠状动脉,增加冠脉血流量。
在代谢系统中,肾上腺素能够通过刺激β2受体而促进葡萄糖的释放,提高血糖水平,同时也能促进脂肪的分解,提高血脂水平。
肾上腺素还能够通过刺激α受体而导致血管收缩,提高外周阻力。
肾上腺素主要的作用靶点是β受体和α受体。
在心血管系统中,β1受体是其主要的作用靶点,而在代谢系统中,β2受体是其主要的作用靶点。
二、应用1. 临床应用在临床上,肾上腺素主要用于治疗心血管系统的紧急情况,如心跳骤停、心肌梗死、休克等。
它能够通过增加心脏收缩力和心率来提高心输出量,增加冠脉血流量,从而迅速地恢复心血管系统的功能。
肾上腺素还可以作为控制严重过敏反应和哮喘发作的药物使用。
它能够通过扩张气道、促进灌注和提高血氧饱和度来缓解症状,使患者迅速得到缓解。
2. 兽医应用在兽医领域中,肾上腺素也是一种常用的药物。
它主要用于治疗动物的心跳骤停、休克、哮喘等紧急情况。
在牲畜或宠物出现紧急情况时,可以通过注射肾上腺素来迅速地提高心血管功能,从而挽救生命。
3. 药物配伍肾上腺素在临床和兽医应用中常常与其他药物进行配伍使用,以增强疗效或减少不良反应。
在临床应用中,肾上腺素常与心肌糖苷类药物、肾上腺素受体激动剂等药物一同使用,以增强心血管功能。
而在兽医应用中,肾上腺素也可以与其他抗休克药物、抗过敏药物等进行联合使用,以增强治疗效果。
肾上腺素是一种重要的兽用药物,它具有显著的药理作用和广泛的应用价值。
综 述?自主神经系统在肺癌发生发展中作用的研究进展蔡锶敏1,王现青2,郑黎晖3,姚 焰3Researchprogressontheroleofautonomicnervoussystemintheoccurrenceanddevel opmentoflungcancerCAISimin1,WANGXianqing2,ZHENGLihui3,YAOYan31CenterofArrhythmia,HuazhongFuwaiHospital,HeartCenter,HenanProvincialPeople'sHospital,ThePeople'sHospitalofZhengzhouU niversity,HenanZhengzhou450000,China;2CenterofArrhythmia,HuazhongFuwaiHospital,HeartCenter,HenanProvincialPeople'sHospital,HenanZhengzhou450000,China;3CenterofArrhythmia,FuwaiHospital,NationalCenterforCardiovascularDiseases,ChineseAcademyofMedicalSciencesandPekingUnionMedicalCollege,Beijing100037,China.【Abstract】LungcanceristhemostcommonreasonforcancerdeathinChinaandtheworld.Theimbalanceoftheautonomicnervoussystemplaysanimportantroleintheoccurrenceanddevelopmentofmalignanttumors.Thesympatheticnervesignalstheadrenergicreceptorstoregulatetheprocessesofangiogenesisandimmuneescapeinthetumormicroenvironment,thenpromotetumorprogression.Theparasympatheticnerveinfluencesthetumorgrowthandmetastasisvialocalcholinergiccircuitandsystemicanti-inflammatorypathway,butthefinaleffectsofthetwomechanismsaredifferent.Detectionofautonomicnervousfunctionisanimportantmethodoflungcancer-relatedresearch,whichhelpstoelucidatetheroleoftheautonomicnervoussysteminthedevelopmentandprogressionoflungcancer,thusunderstandingthepathogenesisoflungcancerandprovidingnewideasforcancertreatment.【Keywords】lungcancer,autonomicnervoussystem,heartratevariability,cancertherapyModernOncology2022,30(08):1483-1487【指示性摘要】肺癌在我国和世界范围内均为癌症死亡的最主要原因。
2023慢性术后疼痛机制的研究进展慢性术后疼痛( chronic post surgical pain,CPSP)是手术后并发的一类疼痛综合征,可发生于各种类型手术后,CPSP 给患者带来巨大的身心痛苦,延迟患者回归正常生活的时间,使患者术后生活质量下降。
目前,国内外存在众多关于CPSP 危险因素、发病机制、预测模型的探讨对于CPSP 的研究也已进入临床医师的视野。
1 定义1999年国际疼痛协会首次提出 CPSP 的概念:由手术引起、持续时间超过2个月的疼痛,并排除其他引起疼痛的原因。
之后CPSP 的定义不断被完善。
《国际疾病分类》第11次修订本中定义 CPSP 为外科手术后在手术区域内原发的或强度增加的疼痛,持续超过愈合时程(即疼痛持续至少3个月),并不能被其他原因所解释(如感染、恶性肿瘤或先前存在的疼痛状况)。
2021年中国专家共识指出CPSP 的诊断需要以下5个标准:①外科手术后出现;②持续至少3个月;③术后急性疼痛或延迟性疼痛的持续;④位于但不限于受影响神经的手术区和(或)神经支配区;⑤排除其他原因(如慢性感染、恶性肿瘤复发等)。
2 流行病学手术后有至少10%的患者经历CPSP 不同发病率的报道与该研究中CPSP的定义(时限、是否包括术前的疼痛、是否包括肿瘤的复发)和收集方法(单/多中心、手术类型、回顾性/前瞻性研究、研究国家或地区)有关。
值得注意的是,目前尚无针对CPSP 的国际标准化问卷,针对某一国家或地区、某一手术类型的统一化问卷也十分缺乏。
大量的临床研究提示,CPSP 多发生在胸外科手术、乳腺手术、腰椎和髋/膝关节置换术后。
临床表现与原发病和手术类型密切相关。
其中,开胸手术和乳腺癌术后由于神经损伤可能出现类似神经病理性疼痛的症状(麻木、痛觉过敏、异常性疼痛等);骨科手术、腹股沟疝术后由于神经炎症、肌肉牵拉呈现触觉异常性疼痛以及运动时疼痛。
迁延不愈的CPSP 会引起社会心理问题,使患者的焦虑抑郁评分增加,情绪不稳定,睡眠质量下降,生活和工作均受到影响。
肾上腺素的作用机制肾上腺素是一种重要的神经递质和激素,它在人体内发挥着广泛的作用。
肾上腺素的作用机制主要涉及两个方面:α-肾上腺素能受体(α-Adrenergic Receptor)的激活和β-肾上腺素能受体(β-Adrenergic Receptor)的激活。
首先,肾上腺素通过激活α-肾上腺素能受体来发挥作用。
α-肾上腺素能受体主要分为α1受体和α2受体。
α1受体激活后,可以通过磷脂酰肌醇信号通路(Phospholipase C pathway)和蛋白激酶C激活(Protein Kinase C activation),引起细胞内钙离子浓度的增加和血管收缩等效应。
α2受体激活后,通过抑制腺苷酸环化酶(Adenylate Cyclase)而减少细胞内环磷酸腺苷(cAMP)水平,导致细胞内蛋白激酶A(Protein Kinase A)的活性降低,从而引起血管收缩、抑制神经递质释放等效应。
其次,肾上腺素通过激活β-肾上腺素能受体来发挥作用。
β-肾上腺素能受体主要分为β1受体、β2受体和β3受体。
β1受体激活后,可以通过激活腺苷酸环化酶和增加细胞内cAMP水平,从而激活蛋白激酶A,引起心肌收缩力和心脏的加快等效应。
β2受体激活后,通过激活腺苷酸环化酶和增加细胞内cAMP水平,引起平滑肌松弛、支气管扩张等效应。
β3受体激活后则主要参与脂肪细胞的脂肪分解。
此外,肾上腺素还可能通过直接与细胞膜蛋白质或离子通道结合,改变其构象或功能,从而发挥作用。
例如,肾上腺素通过与浓钾离子通道(Na+-K+ channel)结合,在高钾负荷的情况下抵消细胞内的去极化;另外,肾上腺素还可以激活蛋白酶C,引起胰岛B细胞内胰岛素分泌的增加。
综上所述,肾上腺素主要通过激活α-肾上腺素能受体和β-肾上腺素能受体,以及通过直接影响细胞膜蛋白质或离子通道等机制发挥作用。
肾上腺素的作用机制在维持机体内稳态、应激反应、调节心血管、支气管、胰岛等器官的功能中起着重要的作用。