烟气余热回收
- 格式:pdf
- 大小:268.95 KB
- 文档页数:22
燃煤锅炉烟气余热回收利用研究摘要:在我国社会经济和科学技术不断提升的大环境下,我国坚持走可持续发展道路,然而电力企业开发了一种从燃煤锅炉烟气中提取部分水蒸气及其潜热的先进余热回收技术。
回收水质量高并且不含矿物质,可以用作几乎所有工业过程的补充水。
该技术进一步发展成为两设计阶段,适用于火力发电厂的烟气应用。
关键词:燃煤锅炉;烟气余热;燃烧效率引言火力发电厂锅炉主要是为人们日常生活、生产等提供稳定的电力,并且在强调节能减排的情况下,火力发电厂锅炉生产尚未完成该目标,这样也阻碍其发展进程。
基于此,如何将烟气余热利用技术应用到火力发电厂锅炉尾部烟气中,成为重点解决和研究的一项内容,根据实际情况,选择合适技术方案,以此有效提升企业节能减排的效果,提升火力发电厂锅炉生产的效益,更为后期的发展,提供了坚实的基础。
1TMC工程技术原理废气在纳米多孔陶瓷膜管的一侧流动,另一边是冷锅炉补给水流动反流。
烟气中的水蒸气通过内部分离膜层(60~80Å空隙大小),然后通过中间层(500Å空隙大小),最后通过基板(孔径0.4nm)。
烟气中的其他气体成分被冷凝液阻止通过烟膜。
凝结水及其潜热与冷锅炉补给水结合,帮助在进入锅炉给水箱或除氧器之前提高其温度。
在TMC单元的水边保持一个小的真空空间,以防止由于液体压力头引起的水回流,并为水通过膜提供额外的驱动力。
然而,需要一些改进来降低模块成本、安装成本,提高可维护性,能够满足企业的经济性,特别是对于利润丰厚的改造锅炉市场,需要更加紧凑和用户友好的设计。
对于现场实际应用的TMC设计考虑了以下关键因素:更高容量的模块化设计减少了每单位烟气流量所需的模块数量,从而可以扩展到更大的回收处理系统。
采用通过利用向上的废气流和向下的水流来降低占地面积要求的设计。
这种设计允许将TMC直接安装在锅炉顶部,从而也降低了管道系统和安装成本。
改进管束设计,以便更有效地利用膜表面,从而减少所需的管子数量。
低温烟气余热深度回收装备在食品加工行业的应用研究随着环境污染和能源紧缺的问题日益严重,低温烟气余热的回收利用成为了行业关注的焦点。
在食品加工行业中,大量的低温烟气产生于烟囱或热处理设备的排放过程中,其内蕴含着巨大的能量资源。
本文将探讨低温烟气余热深度回收装备在食品加工行业的应用研究。
一、低温烟气余热的特点低温烟气余热是指在食品加工过程中,产生的烟气温度较低且具有一定的热能,但其温度不足以满足传统排放标准,需要经过处理才能排放入大气。
由于烟气温度较低,传统的余热回收装备(如热交换器)往往效果不佳,无法有效回收热能。
因此,需要一种专门的装备,能够对低温烟气进行深度回收利用。
二、低温烟气余热深度回收装备的工作原理低温烟气余热深度回收装备主要由以下几个部分组成:换热器、蓄热设备、废气净化设备和余热回收系统。
其工作原理如下:1. 换热器:低温烟气经过换热器与新鲜空气或其他工艺流体进行热交换,使低温烟气释放出的热能被吸收。
2. 蓄热设备:将换热器中吸收的热能存储起来,通过蓄热材料的吸热和放热过程,实现热量的平稳供应。
3. 废气净化设备:将低温烟气中的有害物质进行净化处理,以保证回收后的热能不会对环境造成污染。
4. 余热回收系统:将经过净化处理后的低温烟气中的热能回收利用,供应给食品加工过程中的热源或其他需要热能的设备。
三、1. 应用范围及意义低温烟气余热深度回收装备在食品加工行业的应用范围较广,主要适用于蒸煮、烘干、灭菌等加热工艺环节。
在食品加工行业中,传统的加热设备(如油热炉、蒸汽锅炉等)存在能源消耗大、烟气排放问题,而低温烟气余热的回收利用能够有效减少能源消耗,同时减少环境污染,具有重要的经济和环境意义。
2. 适用技术与案例低温烟气余热深度回收装备的适用技术主要包括热泵技术、蓄热技术和换热技术等。
以热泵技术为例,通过热泵系统将低温烟气中的热能提取出来,并传递给加热设备,实现热能的高效利用。
目前在食品加工行业中已经广泛应用了低温烟气余热深度回收装备。
一、锅炉烟气余热回收简介:工业燃油、燃气、燃煤锅炉设计制造时,为了防止锅炉尾部受热面腐蚀和堵灰,标准状态排烟温度一般不低于180℃,最高可达250℃,高温烟气排放不但造成大量热能浪费,同时也污染环境。
热管余热回收器可将烟气热量回收,回收的热量根据需要加热水用作锅炉补水和生活用水,或加热空气用作锅炉助燃风或干燥物料。
节省燃料费用,降低生产成本,减少废气排放,节能环保一举两得。
改造投资3-10个回收,经济效益显著。
(一)气—气式热管换热器(1)热管空气预热器系列应用场合:从烟气中吸收余热,加热助燃空气,以降低燃料消耗,改善燃烧工况,从而达到节能的目的;也可从烟气中吸收余热,用于加热其他气体介质如煤气等。
设备优点:*因为属气/气换热,两侧皆用翅片管,传热效率高,为普通空预器的5-8倍;*因为烟气在管外换热,有利于除灰;*因每支热管都是独立的传热元件,拆卸方便,且允许自由膨胀;*通过设计,可调节壁温,有利于避开露点腐蚀结构型式:有两种常用的结构型式,即:热管垂直放置型,烟气和空气反向水平流动,见图1;热管倾斜放置型,烟气和空气反向垂直上下流动,见图2。
(二)气—液式热管换热器应用场合:从烟气中吸收热量,用来加热给水,被加热后的水可以返回锅炉(作为省煤器),也可单独使用(作为热水器),从而提高能源利用率,达到节能的目的。
设备优点:*烟气侧为翅片管,水侧为光管,传热效率高;*通过合理设计,可提高壁温,避开露点腐蚀;*可有效防止因管壁损坏而造成冷热流体的掺混;结构型式:根据水侧加热方式的不同,有两种常用的结构型式:水箱整体加热式(多采用热管立式放置)和水套对流加热式(多采用热管倾斜放置),如图3所示(三)气—汽式热管换热器应用场合:应用热管作为传热元件,吸收较高温度的烟气余热用来产生蒸汽,所产生的蒸汽可以并倂入蒸汽管网(需达到管网压力),也可用于发电(汽量较大且热源稳定)或其他目的。
对钢厂,石化厂及工业窑炉而言,这是一种最受欢迎的余热利用形式。
浅论锅炉烟气余热回收的意义及技术措施我国能源利用率较低,大部分企业产生的能量,尤其是热量被浪费。
锅炉烟气余热回收工作,就是把锅炉燃烧后释放出来的烟气余热和水蒸气进行回收再利用,进一步减少二氧化碳等碳氧化物的排放,从而实现节能减排的目的。
本文简述了锅炉烟气余热回收的意义及主要技术措施,并进一步分析了当前锅炉烟气余热回收的发展建议。
标签:锅炉烟气;余热回收;技术措施;发展建议一、烟气回收的意义(一)烟气回收提高了资源利用率改造过的燃气锅炉,其排烟温度降低,锅炉热效率得以提高,每年可节约燃气,减少氮氧化物排放。
简而言之,烟气余热回收工作,就是把锅炉燃烧后释放出来的烟气余热进行回收再利用,从而实现节能减排的目的。
锅炉排烟温度较多,通过烟气余热回收装置后,温度降低,这意味着中间所产生的热量已被回收利用。
说得简单一些,就是尽可能地“变废为宝”。
回收烟气余热,可以提高水温,换成热水,用于锅炉补水、取暖、洗浴等,达到降低排烟温度,节能减排降耗,提高锅炉热效率,节约能源的目的。
也可以换成热风,用于烘干,或者暖风,在生产线直接利用。
(二)烟气回收减少了污染物的排放烟气中往往含有大量的灰粉和粉尘,比如燃煤、生物质锅炉中,大量的粉尘随着烟气进入烟气余热回收装置,有时每立方米烟气中粉尘含量很高,甚至最高能达到200克,粉尘覆盖我们的余热回收装置后,导致我们的余热回收效率降低,烟气排出阻力加大。
燃气烟气余热是工业余热中的一种。
烟气余热回收,是提高余热资源利用率、挖掘节能潜能的一个新途径。
天然气的主要成分是甲烷(CH4),燃烧后排出的烟气中含有大量水蒸气,占排放烟气比例的18%。
燃气锅炉没改造前,大部分烟气被排放到空气中,水蒸气遇室外冷空气后凝结,随着烟气排放,形成“白烟”。
烟气回收技术减少了烟气中NOx、SO2等污染物排放。
二、技术措施为了利用燃气锅炉的烟气余热,国内外科研单位进行了研究。
目前,针对燃气锅炉烟气余热回收的技术,主要集中在采用加装冷凝换热器和空气预热器来降低排烟温度,并对余热加以利用。
焦炉上升管余热回收方式一、引言焦炉是钢铁生产过程中不可或缺的设备,但同时也是能源消耗最大的设备之一。
在焦炉生产过程中,大量的余热被排放到大气中,造成了能源的浪费和环境的污染。
因此,如何有效地回收焦炉余热,成为了钢铁企业节能减排的重要课题。
二、焦炉余热回收方式1. 烟气余热回收焦炉烟气中含有大量的余热,通过烟气余热回收技术,可以将烟气中的余热回收利用,用于加热水或蒸汽等。
目前,常用的烟气余热回收技术有烟气余热锅炉、烟气余热换热器等。
2. 焦炉上升管余热回收焦炉上升管是焦炉生产过程中的一个重要组成部分,其中也含有大量的余热。
通过焦炉上升管余热回收技术,可以将上升管中的余热回收利用,用于加热水或蒸汽等。
目前,常用的焦炉上升管余热回收技术有水膜式余热回收、蒸汽回收等。
三、水膜式余热回收技术水膜式余热回收技术是一种常用的焦炉上升管余热回收技术。
该技术通过在焦炉上升管内部设置水膜,将上升管中的余热传递给水膜,使水膜中的水被加热,从而实现余热回收利用。
该技术具有回收效率高、操作简单、维护方便等优点。
四、蒸汽回收技术蒸汽回收技术是另一种常用的焦炉上升管余热回收技术。
该技术通过在焦炉上升管内部设置蒸汽发生器,将上升管中的余热传递给蒸汽发生器,使蒸汽发生器中的水被加热,从而实现余热回收利用。
该技术具有回收效率高、能够产生蒸汽等优点。
五、结论焦炉余热回收是钢铁企业节能减排的重要措施之一。
目前,常用的焦炉余热回收技术有烟气余热回收、焦炉上升管余热回收等。
水膜式余热回收技术和蒸汽回收技术是常用的焦炉上升管余热回收技术,具有回收效率高、操作简单、维护方便等优点。
在今后的钢铁生产中,应该进一步加强焦炉余热回收技术的研究和应用,实现能源的节约和环境的保护。
烧结环冷余热回收工艺
烧结环冷余热回收工艺是指在烧结过程中,通过对热风炉烟气进行余热回收,将其转化为可利用的热能的技术方法。
该工艺的主要步骤包括:
1. 烟气冷却:将烟气通过烟气冷却器进行冷却,使其温度降低至合适的回收温度。
2. 烟气预处理:烟气中的颗粒物、中微颗粒和硫化物等污染物通过除尘、除硫等预处理设备进行去除。
3. 烟气余热回收:通过烟气热交换器,将烟气中的热能传递给工艺用水或工艺用气,实现能量转化。
4. 冷凝处理:对回收到的烟气中所含的水蒸气进行冷凝处理,将其转化为液态水并回收。
5. 热能利用:利用热交换器传递给工艺用水或工艺用气的余热,用于加热或蒸汽发生等工艺过程,提高能源利用效率。
烧结环冷余热回收工艺可以显著提高烧结过程中热能的利用率,降低燃料消耗,减少对环境的污染,达到节能环保的目的。
同时,该工艺还可以减少烧结过程中热能损失,提高产品质量,降低生产成本,具有较高的经济效益和社会效益。
余热回收利用措施引言在许多工业和能源领域,大量的余热被浪费掉。
然而,通过采用适当的余热回收和利用措施,可以实现能源的节约和环境的改善。
本文将重点介绍几种常见的余热回收利用措施,并讨论它们的工作原理和应用场景。
1. 废热锅炉废热锅炉是一种常见的余热回收设备。
它利用废烟气中的余热来加热水或产生蒸汽。
废热锅炉的工作原理是通过将废烟气和水或蒸汽进行传热来回收热能。
废热锅炉广泛应用于许多工业领域,如钢铁、化工和纸浆等。
2. 热交换器热交换器是另一种常见的余热回收设备。
它能够将热能从一个流体传递给另一个流体,从而实现余热的回收。
热交换器的工作原理基于两种流体之间的热对流和传导。
在许多工业过程中,热交换器可以用于回收废水、废气和废泥中的余热,并将其转化为可用的热能。
3. 蓄热系统蓄热系统是一种将余热储存起来并在需要时释放的设备。
它通常由热储存单元和热交换器组成。
蓄热系统的工作原理是在低负荷时将余热存储起来,然后在高负荷时释放出来供应热能。
蓄热系统可以应用于许多领域,如建筑、工业生产和区域供热等。
4. 废热发电废热发电是利用余热产生电能的一种方式。
它通常通过废热锅炉或热交换器将余热转化为蒸汽,并利用蒸汽驱动涡轮发电机来产生电能。
废热发电可以广泛应用于许多工业过程中,如钢铁、化工和发电厂等。
5. 废热制冷废热制冷是一种利用余热产生制冷效果的技术。
它通过将废热转化为制冷剂的热源来驱动制冷循环。
废热制冷通常适用于需要制冷的环境,如冷链物流、食品加工和冷库等。
它不仅可以回收余热,还可以提供制冷服务,实现能源的双重利用。
6. 废热回用废热回用是将余热直接利用于生产过程中的一种方式。
例如,在冶金行业中,废热可以用于加热炉料或再燃烧中,从而减少能源消耗。
废热回用也可以应用于其他行业,如纸浆造纸、石油化工和水泥制造等。
7. 废热热源废热热源是指将余热作为热能的供应源。
它可以与传统的热源(如锅炉和电热器)结合使用,并在需要时自动切换。
一、锅炉烟气余热回收简介:工业燃油、燃气、燃煤锅炉设计制造时,为了防止锅炉尾部受热面腐蚀和堵灰,标准状态排烟温度一般不低于180℃,最高可达250℃,高温烟气排放不但造成大量热能浪费,同时也污染环境。
热管余热回收器可将烟气热量回收,回收的热量根据需要加热水用作锅炉补水和生活用水,或加热空气用作锅炉助燃风或干燥物料。
节省燃料费用,降低生产成本,减少废气排放,节能环保一举两得。
改造投资3-10个回收,经济效益显著.(一)气—气式热管换热器(1)热管空气预热器系列应用场合:从烟气中吸收余热,加热助燃空气,以降低燃料消耗,改善燃烧工况,从而达到节能的目的;也可从烟气中吸收余热,用于加热其他气体介质如煤气等。
设备优点:*因为属气/气换热,两侧皆用翅片管,传热效率高,为普通空预器的5-8倍;*因为烟气在管外换热,有利于除灰;*因每支热管都是独立的传热元件,拆卸方便,且允许自由膨胀;*通过设计,可调节壁温,有利于避开露点腐蚀结构型式:有两种常用的结构型式,即:热管垂直放置型,烟气和空气反向水平流动,见图1;热管倾斜放置型,烟气和空气反向垂直上下流动,见图2。
(二)气—液式热管换热器应用场合:从烟气中吸收热量,用来加热给水,被加热后的水可以返回锅炉(作为省煤器),也可单独使用(作为热水器),从而提高能源利用率,达到节能的目的。
设备优点:*烟气侧为翅片管,水侧为光管,传热效率高;*通过合理设计,可提高壁温,避开露点腐蚀;*可有效防止因管壁损坏而造成冷热流体的掺混;结构型式:根据水侧加热方式的不同,有两种常用的结构型式:水箱整体加热式(多采用热管立式放置)和水套对流加热式(多采用热管倾斜放置),如图3所示(三)气—汽式热管换热器应用场合:应用热管作为传热元件,吸收较高温度的烟气余热用来产生蒸汽,所产生的蒸汽可以并倂入蒸汽管网(需达到管网压力),也可用于发电(汽量较大且热源稳定)或其他目的。
对钢厂,石化厂及工业窑炉而言,这是一种最受欢迎的余热利用形式.设备优点:每支热管都是一个独立的传热单元,可根据不同的温度水平而设计;*根据需要可选择易拆卸的热管结构,使检修和安装更方便;*热管彻底隔离了热源和冷源,不会产生冷热流体的掺混;*烟气侧为管外换热,除灰容易。
垃圾焚烧发电烟气余热利用成绩成果
垃圾焚烧发电是一种综合利用垃圾资源的环保能源技术,通过将垃圾燃烧产生的热能转化为电能。
然而,在垃圾焚烧过程中会产生大量的烟气,其中含有大量的热能。
烟气的热能可以通过余热利用设备进行回收利用,提高发电厂的能效。
垃圾焚烧发电厂烟气余热利用的主要成果包括以下几个方面:
1. 蒸汽发生器:通过将烟气中的热能传导给水,产生蒸汽用于发电或供热。
蒸汽发生器可分为直接式和间接式两种。
直接式蒸汽发生器将烟气直接传导给水,而间接式蒸汽发生器则通过热交换器将烟气中的热能传递给水。
2. 烟囱余热回收装置:通过在烟囱中安装余热回收设备,将烟气中的热能回收利用。
常见的烟囱余热回收装置包括烟气换热器、烟囱蓄热器等。
3. 烟气脱硫装置:在烟气中加入脱硫剂,使烟气中的二氧化硫与脱硫剂发生反应生成硫酸盐,从而减少烟气对环境的污染。
脱硫装置中的吸收液再经过脱水、脱硫剂再生等过程,实现烟气中硫酸盐的回收利用。
4. 烟气净化装置:通过除尘器、脱酸装置等设备,去除烟气中的颗粒物、酸性气体等有害物质,减少烟气对周围环境和空气质量的影响。
这些垃圾焚烧发电烟气余热利用的成果,可以提高发电厂的热
能利用效率,减少烟气对环境的污染,同时增加发电厂的经济效益。
垃圾焚烧发电烟气余热利用成果的推广应用,有助于提升垃圾焚烧发电技术的可持续发展水平。
烧结机大烟道余热回收项目设计总结烧结机大烟道余热回收项目设计总结一、引言随着工业化进程的加快,能源消耗成为制约可持续发展的重要因素之一。
对于钢铁行业来说,烧结机大烟道产生的废热是一种值得回收利用的高温能源。
本项目旨在设计一套科学高效的烧结机大烟道余热回收系统,以降低能耗,减少环境污染,提高能源利用率。
二、项目概述本项目针对某钢铁企业的烧结机大烟道进行余热回收设计。
通过在烟道上设置余热回收装置,将高温烟气中的余热转化为其它形式的能源,如热水或蒸汽,用于企业内部的供热和供电。
该项目具有较高的技术难度和经济价值,可有效减少环境污染和能源消耗。
三、设计思路3.1 烟道热源分析:通过对烧结机大烟道的烟气温度、烟气流量和烟气组分等进行测试分析,确定烟道的热源条件和参数。
3.2 余热回收方式选择:根据烟道特点和热源参数,选择合适的余热回收方式。
本项目采用了烟尘热交换器和燃气锅炉两种方式,分别回收烟气中的热量。
3.3 设备选型和布置:根据热源参数和回收方式,对烟尘热交换器和燃气锅炉进行选型和布置设计。
同时,考虑到设备之间的热能耦合和烟气清洁处理,合理设置管道和控制装置。
3.4 系统集成与自动控制:将烟道余热回收系统与原有的供热和供电系统进行集成,实现自动化控制和优化运行。
通过构建数据监测和分析系统,实时监测余热回收效果,调整系统参数,提高能源利用效率。
四、技术难点4.1 热源分析准确性问题:烟道热源参数的准确测量是技术难点之一。
通过使用高精度仪器和仪表,对烟气温度、流量和组分进行准确测量,解决了该问题。
4.2 烟尘热交换器结构设计问题:烟尘热交换器的结构设计需要兼顾换热效果和清洁处理的要求。
通过优化换热器的内部结构,增加清洁设备,有效解决了烟尘的问题。
5、技术经济性分析本项目采用了先进的烟尘热交换技术和燃气锅炉技术,成功实现烟道余热的有效回收利用,起到了显著的节能减排效果。
根据经济分析和效益评估,该项目在短期内即可收回投资成本,并可长期稳定运行,实现可持续发展。
烟气余热用氟塑料换热器烟气余热回收系统主要是利用换热设备将烟气携带热量转换成可利用的热量,起到了“节能减排的效果”。
传统的锅炉省煤器(金属材料省煤器),余热未能充分回收利用,导致明显的能源浪费。
氟塑料烟气余热回收系统继承了传统余热回收系统的优点,并进一步开发了该技术女、以使其效率最大化。
在酸露点以下回收热量能最大限度的利用可会好余热,并增大热力输出。
烟气余热用氟塑料换热器(又叫超低温省煤器)是采用美国杜邦和日本大金进口的PFA(氟塑料)材质制造的换热器。
PFA(氟塑料)换热器耐烟气酸露点腐蚀,可回收低温烟气,耐高温(260摄氏度);管束排布方向和烟道方向平行,烟阻很小;氟塑料光束便面光滑,使用时微有震动,不易积灰,且设有清灰装置,以保证换热器正常运行。
我国烟气余热回收系统利用改造现状近几年来,我国逐步开始接受烟气余热回收的理念,并在已有的电厂及部分新建电厂采用烟气余热回收系统,来提高整厂运行效率1%-1.5%,降低煤耗。
目前中国市场有被称为“低温省煤器”的类似系统,,但由于在抗烟气腐蚀的选择上还处于欧洲90年代初中期水平,使得整个系统不能最大限度的回收烟气余热,且系统使用寿命短,很难形成长期稳定的节能、增效。
换热器只能运行在酸露点以上,因此:对烟气温度在160摄氏度左右的电厂,只能回收160-120摄氏度的烟气热量;对烟气温度在120度左右的电厂,无法回收烟气热量。
且无法解决烟气腐蚀问题,满负荷运行下换热管寿命在2-3奶奶,设备投资回收需2-3年,无投资收益期,没有投资价值。
氟塑料换热器无腐蚀问题,因此:对烟气温度在160度的左右的电厂,可最大回收160-80度的烟气热量;对烟气温度在120 度左右的电厂,可最大回收120-80度的烟气热量。
可有效解决烟气腐蚀问题,无腐蚀。
满载负荷运行下换热管寿命在15年,设备投资回收需3-5年,投资收益大于10年,具备很高的投资收益价值。