医用高分子材料的结构与性能
- 格式:doc
- 大小:89.00 KB
- 文档页数:15
医用高分子膜-概述说明以及解释1.引言1.1 概述医用高分子膜是指将高分子材料制成薄膜状,在医学领域应用的一种材料。
随着医学技术的不断发展,医用高分子膜的应用越来越广泛。
它具有良好的生物相容性、可调控性以及优异的物理化学性能,在生物医学领域具有重要的意义。
医用高分子膜的制备材料多样,常见的有聚乙烯醇(PVA)、聚乙烯、聚甲基丙烯酸甲酯(PMMA)等。
这些材料可以经过特定的制备工艺,在适当的条件下形成膜状结构。
医用高分子膜可以被应用于创面敷料、组织工程、人工器官等方面。
其特点在于具有良好的透水性、氧气渗透性和生物相容性,在促进伤口愈合、充当组织模板等方面有着广泛的应用前景。
随着医药科学的不断发展,医用高分子膜在创伤治疗、药物缓释、组织工程和再生医学等领域也取得了重要的突破。
特别是在组织工程方面,通过制备具有特定结构和功能的医用高分子膜,可以模拟人体组织的微环境,促进细胞的黏附和增殖,从而实现组织修复和再生的目的。
此外,医用高分子膜的应用还涉及药物缓释。
通过将药物载载于膜结构中或将膜作为药物的包裹材料,可以实现药物的控释功能,延长药物在体内的作用时间,提高治疗效果,减少药物的副作用。
综上所述,医用高分子膜在医学领域具有广泛的应用前景。
其独特的物理化学性能和可调控性使得其在生物医学领域发挥着重要的作用。
未来,随着科技的不断进步,医用高分子膜将在组织工程、再生医学和药物缓释等方面发挥更大的作用,为医学领域的发展做出更大的贡献。
文章结构部分的内容如下:1.2 文章结构本文将分为以下几个部分来探讨医用高分子膜的定义、特点、应用领域,以及其优势、潜力、发展趋势和前景。
第一部分是引言部分,首先将概述医用高分子膜的背景和重要性,介绍医用高分子膜的研究意义和应用价值。
接着会给出本文的整体结构和目的,引导读者更好地理解和阅读后续内容。
第二部分是文章的正文部分,主要包括两个小节。
首先,会详细介绍高分子膜的定义和特点,包括高分子膜的基本概念、结构特点、物理化学性质等内容。
高分子材料的分子结构与物理性质高分子材料作为一种重要的工业原料,在各个行业都有广泛的应用。
它可以用于制造塑料、橡胶、纤维等产品,具有很好的物理性能和机械性能,同时还能够通过改变分子结构来改变其特性。
本文将从高分子材料的分子结构和物理性质两个方面进行讨论。
一、高分子材料的分子结构高分子是由单体分子通过聚合反应组成的。
他们通常由大量的重复单元组成,有一条或多条聚合主链,辅助链和横向连接等支链。
高分子的分子结构对其物理性质有着重要的影响。
1.聚合度和分子量聚合度和分子量是高分子材料分子结构最基本也是最重要的参数。
聚合度通常指的是单个聚合物中单体数量的总和,分子量则是聚合物中所有单体分子的相对分子质量。
分子量越大,聚合物的物理性质越好,强度越高,同时也容易受到热量的影响。
2.分子结构高分子材料的分子结构通常包括线性、支化和交联三种形式。
线性分子结构的高分子只有一条主链,分子量较小,物理性能一般。
支化分子结构的高聚物具有分子链的分支结构,分子量较大,物理性能好,但热稳定性较差。
交联分子结构的高分子具有大量交联点,具有非常强的物理性能和热稳定性,但是也往往是刚性的。
3.结晶度结晶度是聚合物分子结构的另一个重要参数,这个参数直接决定了材料的物理性质。
结晶度高的高聚物材料具有优异的刚性和强度,但是也比较易于碎裂,结晶度并不高的高聚物材料则更具有一定的难燃性和柔韧性。
二、高分子材料的物理性质高分子材料的物理性质涵盖了它的各个领域,包括机械性能、热性能、电性能、光学性能和界面性能等方面。
下面我们将逐一介绍。
1.机械性能高分子材料的机械性能是评价其物理性质的关键指标之一。
高聚物材料的受力性能和耐磨性都较好,但是吸水性和腐蚀性较强。
与金属材料相比,高分子材料的刚性和强度略微逊色,但是也有不同领域的应用。
2.热性能高分子材料的热性能是由其聚合度和分子结构所决定的。
不同的聚合物材料具有不同的熔点和滑动温度,其热形变温度和热稳定性也会影响其应用范围和适用场景。
医药用高分子材料——聚乳酸聚乳酸(PAL)也称为聚丙交酯,属于聚酯家族。
它是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。
聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。
聚乳酸作为一种新型的高分子聚合材料有良好的生物相容性和生物降解性,是FDA认可的一类生物降解材料,最终降解产物是二氧化碳和水,对人体无毒、无刺激,因此聚乳酸及其共聚物已经成为生物医用材料中最受重视的材料之一。
20世纪50年代,由丙交酯(LA)开环聚合制得了高分子量的聚乳酸,但由于这类脂肪族聚酯对热和水比较敏感,长时间未引起人们的足够重视。
直到20世纪60年代,科学工作者重新研究PAL对水敏感这一特征时,发现聚乳酸适合作为可降解手术缝合线材料。
1966年,Kulkami等提出低分子量的PAL能够在体内降解,最终的代谢产物是CO2和H2O,中间产物乳酸也是体内正常代谢的产物,不会在体内积累,因此PAL在生物体内降解后不会对生物产生不良影响。
随后报道了高分子量的PAL也能在人体内降解,由此引发了以这类材料作为生物医用材料的开端。
1 聚乳酸及其共聚物在缓释药物中的作用缓释、控释制剂又称为缓释控释给药系统(sustained and controlled release drug delivery system),不需要频繁给药,能够在较长时间内维持体内有效的药物浓度,从而可以大大提高药效和降低毒副作用[4]。
聚乳酸及其共聚物被用作一些半衰期短、稳定性差、易降解及毒副作用大的药物控释制剂的载体,有效的拓宽了给药的途径,减少了给药的次数和给药量,提高了药物的生物利用度,最大限度的减少药物对全身特别是肝、肾的毒副作用。
高相对分子量聚乳酸用作缓释药物制剂的载体可分为两种:一是使用聚乳酸制作药物胶囊,可有效抑制吞噬细菌的作用,让药物定量持续释放以保持血药相当平稳;另一种是作为-囊膜材料用于药物酶制剂、生物制品微粒及微球的微型包覆膜,更有效控制药物剂量的平稳释放。
高分子聚合物及其结构与性能关系的三个层次姓名:刘灵芝学号:2011020214 高分子聚合物指由许多相同的、简单的结构单元通过共价键重复连接而成的高分子量(通常可达104~106)化合物。
例如聚氯乙烯分子是由许多氯乙烯分子结构单元—CH2CHCl—重复连接而成,因此—CH2CHCl—又称为结构单元或链节。
由能够形成结构单元的小分子所组成的化合物称为单体,是合成聚合物的原料。
n代表重复单元数,又称聚合度,聚合度是衡量高分子聚合物的重要指标。
聚合度很低的(1~100)的聚合物称为低聚物,只有当分子量高达104~106(如塑料、橡胶、纤维等)才称为高分子聚合物。
由一种单体聚合而成的聚合物称为均聚物,如上述的聚氯乙烯、聚乙烯等。
由两种以上单体共聚而成的聚合物则称为共聚物,如氯乙烯—醋酸乙烯共聚物等。
1. 聚合物的分类聚合物的分类可以从不同的角度对聚合物进行分类,如从单体来源、合成方法、最终用途、加热行为、聚合物结构等。
(1)按分子主链的元素结构,可将聚合物分为碳链、杂链和元素有机三类。
碳链聚合物指大分子主链完全由碳原子组成。
杂链聚合物指大分子主链中除碳原子外,还有氧、氮、硫等杂原子。
元素有机聚合物指大分子主链中没有碳原子,主要由硅、硼、铝和氧、氮、硫、磷等原子组成,但侧基却由有机基团组成,如甲基、乙基、乙烯基等。
有机硅橡胶就是典型的例子。
元素有机又称杂链的半有机高分子,如果主链和侧基均无碳原子,则成为无机高分子。
(2)按材料的性质和用途分类,可将高聚物分为塑料、橡胶和纤维。
橡胶通常是一类线型柔顺高分子聚合物,分子间次价力小,具有典型的高弹性,在很小的作用力下,能产生很大的形变,外力除去后,能恢复原状。
纤维通常是线性结晶聚合物,平均分子量较橡胶和塑料低,纤维不易形变,伸长率小,弹性模量和抗张强度都很高。
塑料通常是以合成或天然聚合物为主要成分,辅以填充剂、增塑剂和其他助剂在一定温度和压力下加工成型的材料或制品。
聚亚安酯结构1. 什么是聚亚安酯?聚亚安酯(Polyurethane)是一种重要的高分子材料,其化学结构中包含了酯键和氨基基团。
它具有优异的物理力学性能、耐候性、耐磨性和化学稳定性,因此被广泛应用于各个领域。
2. 聚亚安酯的结构聚亚安酯的分子结构由两个主要组成部分组成:聚合物链和交联链。
2.1 聚合物链聚合物链由聚酯或聚醚段组成。
其中,聚酯段是通过多元醇与多元羧酸之间的缩合反应形成的,而聚醚段则是通过多元醇与异氰酸脂之间的反应生成。
在聚合过程中,多元醇与异氰酸脂发生缩合反应,形成尿素键和亲水基团。
这些尿素键和亲水基团可以增加材料的强度和耐久性,并使其具有更好的附着力。
2.2 交联链为了提高聚亚安酯的力学性能,通常会引入交联链。
交联链可以通过两种方式引入:物理交联和化学交联。
物理交联是通过在聚合物链之间引入交联剂,如链延长剂或交联剂,形成网络结构。
这种方式可以增加材料的强度和刚度,并提高其耐磨性和耐温性。
化学交联是通过在聚合过程中引入具有多个异氰酸脂基团的化合物来实现的。
这些多异氰酸脂基团可以与多元醇反应,形成三维网络结构。
化学交联可以显著提高材料的力学性能、耐磨性和耐温性。
3. 聚亚安酯的应用由于其优异的性能,聚亚安酯被广泛应用于各个领域。
3.1 纺织品和服装聚亚安酯纤维具有良好的弹性、柔软度和耐磨性,因此广泛用于制作弹力纤维、弹力布料和运动服装等。
此外,聚亚安酯也可用于制作防水涂层、防晒涂层和防静电涂层。
3.2 汽车和交通工具聚亚安酯被广泛用于汽车和交通工具的制造中。
它可以用于制作车身件、座椅垫料、悬挂系统、密封件和涂层等。
聚亚安酯的高强度和降噪性能使其成为汽车行业的理想材料。
3.3 建筑和家居装饰聚亚安酯在建筑和家居装饰中也有广泛应用。
它可以用于制作绝缘材料、隔音材料、地板涂层、墙面涂料和家具等。
聚亚安酯的耐候性和耐久性使其能够在户外环境中长期使用。
3.4 医疗保健聚亚安酯在医疗保健领域有重要应用,如医用敷料、人工器官、手术器械和药物缓释系统等。
第一章(1)何为药用高分子辅料?它在制剂中起什么作用?药用高分子材料(polymers for pharmaceuticals)具有生物相容性、经过安全评价且应用于药物制剂的一类高分子辅料。
(2)为什么说没有良好的药用辅料就没有现代药物制剂?书p3(3)制剂对药用辅料的基本要求是什么?制剂对药用高分子辅料的基本要求:1)不与药物发生相互作用,不干扰药物分析;2)具有适宜的载药能力与释药能力;3)无毒、无抗原性、生物相容性好;4)具有适宜的分子量和良好的加工性能;5)可以消毒(湿热、干热、环氧乙烷、辐射灭菌等)(4)我国药用辅料的现状以及开发新型辅料的途径。
药用辅料现状品种少、规格不全,质量不稳定,特别是用于新型给药系统的辅料较少,制约了新剂型的开发。
药用辅料重点开发方向(1)开发性能优良、国外已批准的药用高分子材料;(2)将天然高分子材料经化学改性制成新的药用辅料;(3)增加现有辅料的规格;(4)开发再加工辅料产品,如多种辅料的微球、微丸、复合辅料等;(5)完善药用高分子辅料的质量标准,试验方法和标准,如可压性、流动性、成型性…。
(6)开发新型辅料(一类)。
第二章(1)高分子化合物具有哪些特点?书P20(2)高分子链结构分为哪几个层次?对材料性质有何影响?链结构:1:近程结构(一级结构):结构单元的化学组成、连接顺序、立体构型,以及支化、交联等,2远程结构(二级结构):高分子链的形态(构象)以及高分子的大小(分子量、分子量分布)聚集态结构(三级结构):晶态、非晶态、取向态、液晶态及织态等近程结构-影响聚合物性质的基础结构远程结构-影响着分子链的刚性聚集态结构-影响着聚合物材料的整体性能织态结构-影响着几种聚合物的混合物的性能(3)影响聚合物结晶过程的因素有哪些?结晶对材料性能有何影响?( 1)链对称性↑、规整性↑→结晶能力↑;对称性、规整性差时不能结晶(2)共聚物结构◎无规共聚→对称性、规整性↓→结晶能力差或丧失;◎两均聚物可结晶,且晶体结构相同时,共聚物也可结晶;◎接枝共聚因支化效应造成结晶能力下降;◎共聚物的组成可影响结晶能力:(3)其它因素◎链柔性好的高聚物有利于晶体的生长;高分子链从无序向有序调整需要分子链有一定柔性(较大的活动能力),分子链刚性过大时(PC、PS)无法结晶。
高分子材料定义
高分子材料是指由大量重复单元组成的大分子化合物,通常由聚合物构成。
这
些聚合物分子通常由碳、氢、氧、氮等元素组成,具有高分子量和长链结构。
高分子材料在工业、医学、日常生活等领域都有着广泛的应用,如塑料制品、橡胶制品、纤维材料等。
高分子材料的特点之一是其分子量很大。
通常情况下,高分子材料的分子量都
在千到百万之间,甚至更高。
这种特殊的分子结构使得高分子材料具有很好的机械性能和物理化学性能,如强度高、耐磨损、耐腐蚀等特点。
另外,高分子材料还具有良好的加工性能。
由于其长链结构和分子间的松散排列,高分子材料可以通过热压、注塑、挤出等方式进行加工成各种形状和结构,从而满足不同领域的需求。
除此之外,高分子材料还具有很好的耐候性和耐老化性能。
在室温下,大部分
高分子材料都能保持良好的物理性能和化学性能,不易发生氧化、分解等现象,因此具有较长的使用寿命。
在应用方面,高分子材料的用途非常广泛。
在工业生产中,塑料制品、橡胶制品、合成纤维等都是高分子材料的代表。
在医学领域,生物医用高分子材料如生物降解材料、人工器官材料等也得到了广泛的应用。
在日常生活中,我们所使用的塑料袋、塑料瓶、橡胶制品等也都是高分子材料的典型代表。
总的来说,高分子材料是一类具有特殊结构和性能的材料,具有很好的机械性能、加工性能、耐候性和耐老化性能,广泛应用于工业、医学、日常生活等领域。
随着科学技术的不断发展,高分子材料的研究和应用也将不断取得新的突破和进展。
医用聚氨酯顾玄烨 051002211【摘要】:医用聚氨酯具有血液相容性和生物相容性,技术含量高,附加值高,能产生很好的经济效益和社会效益。
文章简述了医用聚氨酯材料的性能、结构以及应用进展,并对其广阔的应用前景进行了展望。
【关键词】:医用聚氨酯;研究进展;发展方向引言聚氨酯(PU)是在高分子结构主链上含有许多氨基甲酸酯基团(-NHCOO -)的聚合物,英文名为polyurethane。
聚氨酯自1937年由拜耳公司发明以来,在生物医用材料领域得到了广泛的应用。
聚氨酯具有独特的性能,例如相对优异的生物相容性、化学特性、卓越的力学性能以及加工特性等,成为众多医疗产品原料的理想选择。
[1]自20世纪50年代聚氨酯首次应用于生物医学,至今已有四十多年的历史,在许多人工器官和医疗装置中发挥着至关重要的作用,比如介入导管、人工心脏起搏器和全人工心脏,血液透析膜等。
1.医用聚氨酯的结构医用聚氨酯大多指具有嵌段聚氨酯(SPU)结构特征的聚合物这一类非发泡弹性体。
嵌段聚氨酯由聚醚二元醇、聚酯二元醇、聚硅氧烷二元醇、聚碳酸酯二元醇以及全氟聚醚二元醇等形成的软段和由二异氰酸酯与小分子量二胺或二醇形成的硬段2部分构成。
由于软段和硬段具有热力学不相容的性能,因此多嵌段聚氨酯存在着相分离,并导致微区的形成,其中软段为连续相,硬段聚集成微区分散在连续相中。
典型医用聚氨酯的结构与合成法如图1所示[2]。
2.医用聚氨酯的性能聚氨酯是由软链段和硬链段交替镶嵌组成的含有许多-NHCOO- 基团的极性高聚物,通过选择适当的软、硬链段结构及其比例,就可合成既具有良好的物理机械性能,又具有血液相容性和生物相容性的医用高分子材料。
其主要性能有[3]:①优良的抗凝血性能;②毒性试验结果符合医用要求;③临床应用中生物相容性好,无致畸变作用,无过敏反应,可解决天然胶乳医用制品固有的“蛋白质过敏”和“致癌物亚硝胺析出”两大难题,从而成为许多天然胶乳医用制品的换代材料;④具有优良的韧性和弹性,加工性能好,加工方式多样,是制作各类医用弹性体制品的首选材料;⑤具有优异的耐磨、软触感、耐湿气、耐多种化学药品性能;⑥能采用通常的方法灭菌,暴露在X 射线下性能不变。
高分子材料的表征和性能分析高分子材料是一种复合材料,它具有很高的强度和可塑性。
它们被广泛应用于各种领域,如医疗、汽车和航空航天等。
因此,对高分子材料的表征和性能分析非常重要。
一、高分子材料的表征高分子材料的表征是指对高分子材料进行物理、化学和结构等性质的分析。
这些性质可以通过一系列的技术手段进行分析和测试。
以下是几种常用的高分子材料表征技术。
1. X射线衍射技术X射线衍射技术可以用来分析高分子材料的晶体结构和分子排列。
在X射线衍射技术中,X射线通过材料,并与材料中的原子和电子相互作用。
这些相互作用导致了衍射模式的产生。
该技术可以确定高分子材料的晶体结构和分子排列方式,以及材料的结晶度、晶体大小和形态等重要信息。
2. 热分析技术热分析技术可以用来确定高分子材料的热性质,如玻璃化转变温度、热稳定性和热分解温度等。
这些性质对于高分子材料的应用十分重要。
热分析技术包括差示扫描量热法(DSC)、热重分析法(TGA)和动态机械热分析法(DMA)等。
3. 光谱学技术光谱学技术可以用来分析高分子材料的结构和组成。
其中最常用的技术是傅里叶变换红外光谱技术(FTIR)和拉曼光谱技术。
这些技术可以提供高分子材料的分子结构、官能团和原子组成等信息。
4. 光学显微镜技术光学显微镜技术可以用来观察高分子材料的表面形态和微观结构。
这些技术包括普通光学显微镜(OM)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等。
这些技术可以提供高分子材料的表面形貌、尺寸和形态等信息。
二、高分子材料的性能分析高分子材料的性能分析主要包括力学性能、热性能和电性能等。
这些性能可以通过一系列测试和分析方法来进行评估。
1. 力学性能分析力学性能分析是对高分子材料的强度、刚度、延伸能力和韧性等性能的评估。
其中最常用的技术是拉伸试验、压缩试验、弯曲试验和冲击试验等。
通过这些试验可以确定高分子材料的拉伸模量、弹性模量、断裂强度、断裂伸长和吸收能力等性能。
1.高分子材料:高分子化合物材料。
高分子化合物,简称高分子,是分子量很高的一类化合物。
常用高分子的分子量高达104~106。
2.药用高分子材料:药品生产和制造加工过程中使用的高分子材料,药用高分子材料包括作为药物制剂成分之一的药用辅料与高分子药物,以及与药物接触的包装贮运高分子材料。
药用高分子辅料:指能将药理活性物质制备成药物制剂的各种高聚物。
3药用辅料的作用:在药剂制备过程中有利于成品的加工;加强药剂稳定性,提高生物利用度或病人的顺应性;有助于从外观鉴别药剂;增强药剂在贮藏或应用时的安全和有效。
4.辅料和药用高分子材料的比较:A相同点:辅料与药用高分子辅料都是主药以外的另一种材料,但又是制剂中必不可少的辅助材料。
B不同点:辅料包括制剂中所有用到的气液固材料,含义比药用高分子材料广,但它不具备药理活性;药用高分子材料包括高分子药物,侧重于天然、半天然、合成大分子液体和固体材料应用于现代制剂中。
5.高分子化合物(简称高分子):是指分子量很高的一类化合物。
分子量在104以上.由许多相同的、结构简单的单元(unit)通过共价键(covalent bond)重复键接而成的化合物。
6.单体(monomer):合成聚合物的低分子的原料。
重复单元(repeating unit):大分子链上重复出现的、最小基本单元(分子式中括号内的部分)。
7.结构单元(structural unit):单体在大分子链中形成的单元。
习惯上,将形成结构单元的分子称为单体8 a有机高聚物;碳链高聚物:主链纯为碳原子构成 .杂链高聚物:主链中含有碳原子及氧、氮、硫、磷等原子b 元素有机聚合物:主链结构中不含碳原子,而是由硅、硼、铝、钛等原子和氧原子构成c无机高聚物:主链和侧链结构中均无碳原子,一般呈现规则交联的面型结构或体型结构9.PVC-聚氯乙烯PE-聚乙烯PMMA-聚甲基丙烯酸甲酯PP-聚丙烯PC-聚碳酸酯聚酰胺(尼龙)10.高分子的聚集态有晶态和非晶态之分的晶态比小,高聚物分子的晶态的有序程度差很多,存在着很多缺陷。
医用高分子材料的功能性质和发展前景(2)医用高分子材料的功能性质和发展前景医用高分子材料的应用与发展前景2017-04-07 08:53 | #2楼医用高分子材料是用以制造人体内脏、体外器官、药物剂型及医疗器械的聚合物材料,已经被应用到医学领域的各个方面,近年来得到了很快的发展。
医用高分子材料属于一种特殊的功能高分子材料,通常用于对生物体进行诊断、治疗、以及替换或修复、合成或再生损伤组织和器官具有延长病人生命、提高病人生存质量等作用。
简单地说,医用高分子材料学,是介于现代医学和高分子科学之间,并且涉及到物理、化学、生物学、医学等的一门交叉学科。
目前,医用高分子材料的发展可谓异军突起,医用高分子材料的应用如雨后春笋遍及整个医学领域,其用量也在持续稳定地增长1。
因此探索发现医用高分子材料应用的新领域具有十分重要的意义,必将为造福人类做出更大贡献。
1医用高分子材料的性质医用高分子材料的发展动力来自医学领域的客观需要。
医用高分子材料应用技术在医学领域中占有十分重要的地位,而医学方面对于高分子材料也有严格要求,因此其必须具有必要的特点满足基本要求。
1.1 医用高分子材料的特点同普通高分子材料相比,医用高分子材料对单体及其聚合物的锌、铅、镉、铜、钡、锡等金属离子的残留量及树脂纯度、分子量分布等都有较高要求。
但是在塑料类医疗器械的制备和产业化过程中,决定医疗器械质量和水平的不仅仅是医用塑料本身的性能。
实际上在塑料类医疗器械的制备中,加工工艺和技术装备条件在塑料类医疗器械的质量和水平中起着决定性的作用。
医用高分子材料的特点如下:(1)优良的'热稳定性、化学稳定性及可杀菌消毒;(2)优良的生物体替代性和生物体相容性,不会引起炎症和过敏,不会致癌,具有抗血栓性;(3)长期埋植在体内,不会丧失拉伸强度和弹性模量等物理力学性能; 1(4)易于加工成所需要的复杂的形状2。
1.2医用高分子材料的基本要求大部分医用高分子材料是要用于人体的,它在植入后将会与人体发生一系列的相互作用,为保证其使用的安全性和有效性,目前国内外对所有进入临床应用的医用高分子材料的要求都是十分严格的。
生物医用形状记忆高分子材料摘要:形状记忆聚合物作为一种智能材料,已经在生物医用领域显示出了巨大的应用前景。
基于形状记忆聚合物材料的原理,组成和结构可以设计兼具生物降解性、生物相容性等多种功能的新型智能材料。
本文综述了三种典型的生物降解性形状记忆聚合物材料(聚乳酸、聚己内酯、聚氨酯)的发展,从结构上对三种形状记忆聚合物进行了分类讨论,详细分析了不同种类聚合物形状记忆的机理、形状变化的固定率和回复率、回复速率等,并介绍了一些形状记忆聚合物材料在生物医学中的应用。
最后对医用形状记忆聚合物未来发展进行了展望:双程形状记忆聚合物及体温转变形状记忆材料将会受到研究者的重点关注。
关键词:生物医用;形状记忆聚合物;聚乳酸;聚己内酯;聚氨酯形状记忆聚合物(shape memory polymers)是一类具有刺激-响应的新型智能高分子材料,其能感知外界环境变化,并对外界刺激做出响应,从而自发调节自身状态参数恢复到预先设计的状态[1]。
兼具生物相容性和生物降解性的SMPs已经在微创外科手术[2,3]、血管支架[4,5]、骨组织的固定[6,7]、可控药物缓释[8,9]、血栓移除[10]中得到了应用。
本文详细讨论了聚乳酸基、聚己内酯基和聚氨酯基三种最常见的生物降解形状记忆聚合物的研究状况。
1 聚乳酸基形状记忆聚合物聚乳酸类材料是一种典型的生物医用材料,具有良好的生物相容性和生物降解性,小分子降解产物能通过体内代谢排出体外[11]。
按照形状记忆聚乳酸的分子结构可将其分为聚乳酸共聚物,聚乳酸共混物和聚乳酸基复合材料三类。
1.1 聚乳酸共聚物纯的聚乳酸材料脆而硬,亲水性差,强度高但其韧性较差,极大地限制了其在生物医学领域中的应用[12]。
在聚乳酸基体中引入第二单体形成聚乳酸基共聚物,能显著地改善其性能。
通过调节PLA与其他单体的比例,可以得到韧性好、降解速率可调,力学性能优异的共聚形状记忆聚乳酸材料[13,14]。
聚己内酯(PCL)[15-17]和聚乙醇酸(PGA)[18]是聚乳酸基形状记忆聚合物常用共聚单元,此外对二氧环酮[19,20],乙交酯[19]与PLA的共聚物也能表现出形状记忆性能。
探究医用高分子材料的血液相容性材料一班杨素位101630一、医用高分子材料简介:医用医用高分子材料则是生物医用材料中的重要组成部分,主要用于人工器官、外科修复、理疗康复、诊断检查、患疾治疗等医疗领域。
众所周知,生物体是有机高分子存在的最基本形式,有机高分子是生命的基础。
动物体与植物体组成中最重要的物质——蛋白质、肌肉、纤维素、淀粉、生物酶和果胶等都是高分子化合物。
因此,可以说,生物界是天然高分子的巨大产地。
高分子化合物在生物界的普遍存在,决定了它们在医学领域中的特殊地位。
在各种材料中,高分子材料的分子结构、化学组成和理化性质与生物体组织最为接近,因此最有可能用作医用材料。
医用高分子材料是一类特殊用途的材料。
它们在使用过程中,常需与生物肌体、血液、体液等接触,有些还须长期植入体内。
由于医用高分子与人们的健康密切相关,因此对进入临床使用阶段的医用高分子材料具有严格的要求,要求有十分优良的特性。
归纳起来,一个具备了以下七个方面性能的材料,可以考虑用作医用材料。
(1)化学隋性,不会因与体液接触而发生反应(2)对人体组织不会引起炎症或异物反应(3)不会致癌(4)具有良好的血液相容性(5)长期植入体内不会减小机械强度(6)能经受必要的清洁消毒措施而不产生变性(7)易于加工成需要的复杂形状。
医用高分子材料研发过程中遇到的一个巨大难题是材料的抗血栓问题。
当材料用于人工器官植入体内时,必然要与血液接触。
由于人体的自然保护性反应将产生排异现象,其中之一即为在材料与肌体接触表面产生凝血,即血栓,结果将造成手术失败,严重的还会引起生命危险。
对高分子材料的抗血栓性研制是医用高分子研究中的关键问题,至今尚未完全突破。
将是今后医用高分子材料研究中的首要问题。
所以本文主要就医用高分子材料的血液相容性进行探究。
二、凝血现象的产生原理凝血现象是血液在高分子材料表面上的凝固是材料与血液相互作用的结果。
当血液在以内皮细胞为内壁的血管中正常流动时,一般不出现凝血现象。
聚氨酯的微相分离结构调控、性能和应用一、本文概述聚氨酯(Polyurethane,PU)作为一种重要的高分子材料,以其独特的微相分离结构和优异的性能,在各个领域中都得到了广泛的应用。
本文旨在探讨聚氨酯的微相分离结构调控、性能及其在各种实际应用中的表现。
我们将首先概述聚氨酯的基本结构和微相分离现象,然后深入探讨调控微相分离结构的方法和手段,接着分析这种调控对聚氨酯性能的影响,并最后展望聚氨酯在各种实际应用中的潜力和挑战。
通过本文的阐述,我们期望能够为聚氨酯的进一步研究与应用提供有益的参考和指导。
二、聚氨酯微相分离结构的基础理论聚氨酯(PU)是一种由异氰酸酯与多元醇反应生成的聚合物,因其独特的结构和性能,在多个领域有广泛的应用。
而聚氨酯的微相分离结构,指的是在聚氨酯中,硬段和软段在分子水平上的分离,这种分离不仅影响聚氨酯的宏观性能,还对其应用产生深远影响。
因此,调控聚氨酯的微相分离结构,对于优化其性能,拓展其应用领域具有重要意义。
微相分离结构的基础理论主要基于软硬段的相容性和相互作用。
在聚氨酯中,硬段主要由异氰酸酯和扩链剂组成,具有较高的内聚能和玻璃化转变温度,赋予聚氨酯强度、硬度、模量等物理性能。
而软段则主要由多元醇组成,具有较低的玻璃化转变温度,赋予聚氨酯柔韧性、耐低温性能等。
软硬段的相容性主要取决于其化学结构、分子量、分子链的极性等因素。
当软硬段之间的相容性较差时,聚氨酯在固化过程中会发生微相分离,形成硬段和软段分别聚集的微观结构。
这种微相分离结构可以显著提高聚氨酯的力学性能和耐热性能,但同时也可能影响其耐低温性能和加工性能。
因此,通过调控聚氨酯的合成条件,如原料种类、配比、反应温度、时间等,可以实现对微相分离结构的调控。
例如,改变硬段和软段的比例,可以影响微相分离的程度和形态;选择不同的扩链剂,可以改变硬段的长度和刚性,从而影响微相分离的结构和性能。
聚氨酯的微相分离结构是其性能和应用的重要影响因素。
第一章高分子材料:也称为聚合物材料,是以高分子化合物为基体,再配有其他添加剂(助剂)所构成的材料。
来源:合成和天然高分子材料。
性能:分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。
药用高分子材料:具有生物相容性、经过安全评估且应用于药物制剂的一类高分子敷料。
药用高分子材料学:研究药用高分子材料的合成和改性、结构、物理和化学性质、制剂工艺性能等的理论和应用的药学专业基础课程。
药用辅料的定义和要求:广义上指能将药理活性物质制备成药物制剂的各种添加剂,包括具有高分子特征的辅料。
传统上,把辅料看作是惰性的。
现在认识到,辅料会改变药物从制剂中释放的速度和稳定性,并影响其生物利用度和吸收、分布、代谢和排泄等。
1991年,国际药用辅料协会(International Pharmaceutical Excipients Council, IPEC): 在药物制剂中经过合理的安全评价的不包括活性物质或前药的组分。
药用辅料的目的:制剂制备过程中,有助于成品的加工。
有助于提高制剂稳定性及生物利用度有助于提高病人的顺应性有助于鉴别药物制剂增强药物制剂在储藏或应用时的安全性和有效性前提是安全性药用高分子材料在药剂学中的应用:品种繁多、规格不一。
涉及到注射、局部、眼用、耳用和鼻用等。
因此需要考虑到安全性和功能性。
固体制剂的辅料缓控释制剂的辅料液体或半固体制剂的辅料生物粘附剂材料可生物降解的高分子材料新型给药装置的组件药品包装材料第一、固体制剂的辅料主要指微胶囊和片剂,占市售80%以上。
粘合剂:淀粉及衍生物、聚维酮和纤维素衍生物等稀释剂:微晶纤维素、淀粉和糊精等崩解剂:纤维素衍生物、海藻酸、交联聚维酮等润滑剂:聚乙二醇等包衣材料:肠溶包衣如邻苯二甲酸醋酸纤维素和醋酸羟丙甲纤维素琥珀酸酯等、水溶性包衣如海藻酸钠和明胶和水溶性胶囊剂如明胶和羟丙甲纤维素等第二、缓控释制剂的辅料缓控释机制一般分为5类:扩散、溶解、渗透、离子交换和高分子挂接扩散控制材料:纤维素衍生物、壳聚糖、尼龙,丙烯酸酯类、聚氯乙烯和硅橡胶溶解、溶蚀或生物降解材料及形成水凝胶的材料:微晶纤维素、壳聚糖、明胶、聚乙二醇、聚乙醇酸、聚乳酸和聚己内酯等渗透膜:各类高分子材料离子交换树脂:波拉克林交换树脂第二章高分子的分子量:相对于一般小分子,无严格分界104~106:高聚物分子< 104: 低聚物分子高分子的命名(1)习惯(来源)命名法来源命名法是根据聚合物合成时所用单体进行命名,并不描述聚合物分子的实际结构。
高分子材料的性质与应用高分子材料是一类具有特殊性质和广泛应用的材料,其特点是由大量重复单元构成的长链结构。
本文将对高分子材料的性质进行探讨,并介绍其在不同领域中的应用。
一、高分子材料的性质高分子材料具有以下几个主要性质。
1. 分子量大:高分子材料的分子量通常在几万至上百万之间,分子量越大,其物理性质越优异。
2. 高柔韧性:由于高分子材料的长链结构,使得其具有较高的柔韧性,能够承受较大的拉伸变形。
3. 高吸湿性:高分子材料的分子链中含有大量的极性基团,使其具有吸湿性。
这种性质使得高分子材料在一些特殊应用中具有优势,比如制作吸湿性材料。
4. 耐热性:高分子材料中的键结构稳定,使其在高温条件下能够保持较好的物理性能。
5. 耐化学性:高分子材料在一定程度上能够耐受化学物质的侵蚀,具有一定的耐酸碱性。
二、高分子材料的应用领域1. 塑料制品:高分子材料的一大应用领域就是制造各种塑料制品。
不同种类的高分子材料可以通过调控其化学结构和分子量来制备出不同性能的塑料制品,如聚乙烯、聚氯乙烯等。
2. 纤维材料:高分子材料可以通过纺丝、拉伸等工艺制造出各种纤维材料,具有良好的拉伸性和柔韧性。
这些纤维材料广泛应用于纺织、服装、建筑等领域。
3. 包装材料:高分子材料的耐化学性和吸湿性使其成为理想的包装材料。
用高分子制造的塑料薄膜可以用于食品、药品等包装领域,具有良好的密封性和保鲜效果。
4. 电子材料:高分子材料在电子领域中也有广泛的应用。
例如,聚酰亚胺材料具有优异的电绝缘性能,可用于制造印制线路板等电子元件。
5. 医疗材料:高分子材料在医疗领域中具有很好的应用前景。
生物相容性好、可降解的高分子材料在医疗器械、组织工程等方面有广泛的应用。
6. 高分子复合材料:高分子材料与其他材料的复合可以产生更加优异的性能。
高分子复合材料广泛应用于汽车、航空航天、建筑等领域,用以制造轻量化、高强度的结构材料。
总结:高分子材料具有独特的性质和广泛的应用领域。
目录摘要 (1)1 前言 (2)2 医用高分子材料的分类 (2)2.1 来源 (2)2.2 降解性 (3)2.3 应用方向 (4)2.3.1 人工脏器 (4)2.3.2 人工组织 (4)2.3.3 护理和医疗用具相关的医用材料 (4)2.3.4 药用高分子 (5)3 医用高分子的性质 (5)3.1 生物功能性 (5)3.2 生物相容性 (5)4 医用高分子的表面改性方法 (6)4.1 物理方法 (6)4.1.1 表面涂层 (6)4.1.2 物理共混 (7)4.2 化学方法——表面接枝法 (7)4.2.1 表面接枝改性 (7)4.2.2 等离子体表面改性 (8)4.2.3 光化学固定法 (8)4.3 表面仿生化改性 (9)4.3.1 表面肝素化 (9)4.3.2 表面磷脂化 (9)4.3.3 表面内皮化——内皮细胞固定法 (9)5 总结与展望 (10)参考文献 (11)摘要由于其良好的生物相容性,医用高分子材料是现阶段最为安全的一类医用材料。
同时,合成加工的简便,来源的广泛,使得医用高分子材料的功能性越来越多,应用范围也越来越广泛。
但由于结构的限制,医用高分子材料在人体中的相容性还未达非常理想地到人们要求。
因此,也就产生了以表面改性为主的一系列增进其相容性的改性方法。
本文通过对医用高分子材料的定义、分类、性质以及表面改性方法的介绍,体现了医用高分子材料的优越和不足之处,同时也对医用高分子材料的未来进行了展望。
关键词:医用高分子;生物相容性;表面改性1 前言医用高分子材料(medical polymer)是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的高分子材料,是生物医用材料的重要组成之一[1]。
医用高分子材料需长期与人体体表、血液、体液接触,有的甚至要求永久性植入体内。
因此,这类材料必须具有优良的生物体替代性(力学性能、功能性)和生物相容性[2]。
生物医用高分子材料需要满足的基本条件:在化学上是不活泼的,不会因与体液或血液接触而发生变化;对周围组织不会引起炎症反应;不会产生遗传毒性和致癌;不会产生免疫毒性;长期植入体内也应保持所需的拉伸强度和弹性等物理机械性能,具有良好的血液相容性;能经受必要的灭菌过程而不变形;易于加工成所需要的复杂的形态[3]。
随着近代医学及材料科学的发展,对生物医用高分子材料的需求越来越大。
目前全世界应用的有90多个品种,西方国家消耗的医用高分子材料每年以10%-20%的速度增长。
以美国为例,每年有数以百万计的人患有各种组织、器官的丧失或功能障碍,需进行800万次手术进行修复,年耗资超过400亿美元,器官衰竭和组织缺损所需治疗费占整个医疗费用的一半[4]。
随着人民生活水平的提高和对生命质量的追求,我国对医用高分子材料的需求也会不断增加。
2 医用高分子材料的分类2.1 来源按照来源,可将医用高分子材料分为合成医用高分子材料和天然高分子材料。
常见的合成医用高分子材料包括PE(polyethylene,聚乙烯)、PP (polypropylene,聚丙烯)、PC(polycarbonate,聚碳酸酯)、PLA(polylactic acid,聚乳酸)及其衍生物、有机硅橡胶等。
其优点是工艺成熟,机械性能相对较好,加工性能较好,能够同时表现多种功能性[5]。
常见的天然医用高分子材料包括壳聚糖、明胶、海藻酸盐类、纤维素等。
天然医用高分子材料来源广泛,而且大多无毒无害,与人体的相容性相对较好,因此天然高分子材料逐渐成为医用高分子材料的首选,对其进行的研究也越来越深入[6]。
2.2 降解性按照降解性,可将医用高分子材料分为降解性和非降解性高分子材料。
降解性医用高分子大多为生物高分子材料,表1列举了常见的生物医用高分子及其应用。
同时也有不少合成的高分子材料,如聚乳酸及其衍生物,聚己内酯等具有可降解性。
可降解医用高分子在生物体中能够被降解,降解产物大多为水和二氧化碳,对人体无毒无害,是应用最为广泛的医用高分子材料[7]。
非降解性医用高分子材料则包括聚乙烯、聚丙烯、聚偏氯乙烯、有机硅橡胶等。
非降解性医用高分子材料多为合成材料,有着良好的相容性,同时因为是合成高分子,所以可以根据不同的需要得到不同的性能,加工性能相对更好。
一般来说,非降解性医用高分子的机械性能也较好,故常用于医疗器械或者组织填充物[8]。
表 1 常见的生物医用高分子及其应用聚合物特点应用蛋白质良好的血液相容性静脉注射类药物释放体系胶原良好的生物相容性,可消化吸收性对组织的恢复有促进作用,无异物反应可降解缝线,人造皮肤,伤口敷料,人造腱、血管,硬脑膜代用品,止血剂,眼科治疗装置,取代眼睛玻璃体及药物缓释体系明胶水溶性生物可降解材料药物的微胶囊化及包衣,人造皮肤,防止伤口体液流出和感染多糖优良的生物相容性和降解性手术缝合线,人工皮肤,核聚糖作用载体生物合成聚酯热塑性,良好组织相容性和物理性能骨科材料,药物控释体系2.3 应用方向根据应用方向的不同,医用高分子可以分为以下四类:2.3.1 人工脏器作为软组织材料的一个重要组成部分的人工器官,其应用前景已为人们所看好。
随着人工脏器性能的不断完善,其在临床上的应用必将越来越广泛。
表2列举了一些可以用于人工脏器的医用高分子材料[9]。
表2 用于人工脏器的部分医用高分子材料人工脏器医用高分子材料心脏嵌段聚醚氨酯弹性体、硅橡胶肾脏醋酸纤维,聚甲基丙烯酸甲酯,聚丙烯腈,聚碳酸酯,聚甲基丙烯酸-β-羟乙酯肝脏赛璐玢(cellophane),聚甲基丙烯酸-β-羟乙酯肺硅橡胶,聚丙烯中空纤维,聚烷砜血管聚酯纤维,聚四氟乙烯鼓膜硅橡胶腹膜硅酮,聚乙烯,聚酯纤维2.3.2 人工组织指用于口腔科、五官科、骨科、创伤外科和整型外科等用材料,主要包括:牙科材料(蛀牙填补用树脂和人工齿冠材料等),眼科材料(人工角膜、人工晶状体和人工眼球等),整形外科材料(人工乳房,人工鼻及鞍鼻整形)等。
2.3.3 护理和医疗用具相关的医用材料该分类包括一次性高分子用品(注射器、输血输液袋等)、高分子绷带材料(弹性绷带、高分子代用石膏绷带、防滑脱绷带)、医用缝合线、护理用高分子材料,如:吸水性树脂(尿不湿、卫生巾、弹性冰、防褥疮护理材料)等[10]。
2.3.4 药用高分子药用高分子是医用高分子材料中研究最为广泛的一个分类。
根据药用方向的不同,又分为以下三个小类[11]:1)高分于缓释药物载体:时间控制缓释体系(如康泰克等,理想情形为零级释放)、部位控制缓释体系(脉冲释放方式);2)高分子药物(带有高分子链的药物和具有药效的高分子):抗癌高分子药物(非靶向、靶向)、用于心血管疾病的高分子药物(治疗动脉硬化、抗血栓、凝血)、抗菌和抗病毒高分子药物(抗菌、抗病毒)、抗辐射高分子药物、高分子止血剂;3)药物制剂和包装用高分子材料(这里的包装材料不涉及外包装材料,特指药物在制备过程中需要的高分子材料,它们往往对提高药效、方便药物起作用等方面有一定效果):药物制剂用高分子材料(液状制剂中的高分子增稠剂、稀释剂、分散剂和消泡剂;固体制剂中的高分子粘合剂、包衣剂、膏剂和涂膜剂)、微胶囊等。
3 医用高分子的性质3.1 生物功能性医用高分子的生物功能性是使用的依据,根据不同的使用环境和用途,医用高分子应展现不同的生物功能性。
例如:当羟基磷灰石作为骨组织工程材料时,机械强度是它的功能性[12];壳聚糖作为缓释药物时,缓释性是其生物功能,作为靶向修饰物时,靶向性又是其生物功能[13]。
3.2 生物相容性医用高分子材料的生物相容性包括2个方面:一是材料反应,主要包括材料在生物环境中被腐蚀、吸收、降解、磨损和失效等;二是宿主反应,包括局部和全身反应,如炎症、细胞毒性、凝血、过敏、致畸和免疫反应等。
对于非降解型医用高分子材料,稳定性和相容性是重要的,这些问题包括与细胞组织(包括血液)的相容、水解的稳定性,与药物和药物处理的反应,钙化作用,长期的功能,诱变的或致癌的作用以及无菌性。
对于生物降解型医用高分子材料,关键问题是可吸收性和它的测量及定义界限以及对细胞组织部位的效果,酶和其他活性物质对于高分子材料吸收性的作用,退化产品的吸收作用,消毒对于功能度和退化性能不稳定的释放媒介物渗到高分子材料行为的作用,以及材料对于伤口愈合的效果[14]。
4 医用高分子的表面改性方法材料与生物体的相互作用情况决定了材料组织相容性的程度。
材料对组织相容性的影响包含着两种特征尺度水平上的因素。
一是微观分子水平,这类影响主要表现为材料表面的化学组成、形态结构、电荷性质及其分布等等。
另一个是宏观尺度水平,这类影响包括材料的物理力学性质、材料的宏观形态尺寸等。
生物医用高分子材料与生物体接触时,可能会使生物体发生毒性、致敏、炎症、致癌、血栓等生物反应,材料表面与生物环境的相互作用是影响发生这些反应的最主要因素,而两者的相互作用与生物医用高分子材料表面的结构、成分、形貌、能量状态、亲疏水性、所带电荷、导电特征等有关。
通过物理、化学、生物等方法改善、优化材料的表面性质,可改善和促进材料表面与生物环境的相互作用,大幅度提高生物医用高分子材料与生物体的相容性[15]。
4.1 物理方法4.1.1 表面涂层当异体与血液相接触,其表面很快会吸附一层蛋白质,一些能促进血小板粘附的蛋白质及吸附在异体表面的血纤维蛋白原通过作用将会粘附和活化血小板,致使产生凝血现象。
通过在生物医用高分子材料表面增加抗凝血涂层,钝化敏感的生物材料表面,即血液不会直接接触材料表面,可有效提高生物医用高分子材料表面的抗凝血性。
Lewis[16]等合成了可交联的2-甲基丙烯酰氧基乙基磷酰胆碱、甲基丙烯酸月桂醇酯、甲基丙烯酸羟丙酯和甲基丙烯酸三甲氧基硅丙酯的共聚物抗凝血涂层。
这种涂层与基材表面的粘合力增强,可用于涂层易脱落或发生形变的医疗器件。
表面涂层技术是将生物活性物质涂抹在高分子材料表面,形成生物相容性涂层,涂层与基底材料之间的粘附作用主要依赖氢键、范德华力等物理作用来维系,这也导致涂层与基材表面的粘合力较弱,涂层稳定性较差,特别是一些易脱落、易变形的医疗器件,会使涂层从基材表面脱落。
尽管如此,表面涂层技术以其设备简单、易于操作、均一性好等其他方法所不具备的特点和优势,在生物材料表面改性过程中常被优先考虑[17]。
4.1.2 物理共混将少许的抗凝血添加剂与基材共混得到性能优良的抗凝血材料。
多为两亲性共聚物的抗凝血添加剂,进入基材本体后,为减少界面自由能,会富集在基材的表面。
Ishihara[18]等合成的2-甲基丙烯酰氧基乙基磷酰胆碱—甲基丙烯酸正十二烷基酯和2-甲基丙烯酰氧基乙基磷酰胆碱—甲基丙烯酸正丁酯的共聚物,将其共混于聚砜,可提高聚砜渗析膜的血液相容性。
4.2 化学方法——表面接枝法通过接枝亲水基团或疏水基团来改善血液相容性是提高材料抗凝血性的一个重要途径,通过这种方法获得的表面层与基材结合牢固,不会轻易脱落。