基因芯片及其最新进展
- 格式:doc
- 大小:119.00 KB
- 文档页数:11
基因芯片技术的原理和发展随着科技的不断发展,人们对于基因的研究也越来越深入,基因芯片技术作为一种迅速发展的生物技术,具有重要的理论意义和实践价值。
基因芯片技术是一种高通量和高标准化的分子生物学技术,可以用于基因表达、基因变异、蛋白质量、DNA甲基化等领域的研究。
1. 基因芯片技术的原理基因芯片技术是将DNA分子、RNA分子或蛋白质分子等多样化的生物大分子分子序列固定在一块小小的玻璃片或硅片上,然后利用微量的核酸或蛋白质的杂交反应来检测样品中这些生物大分子的存在或相对数量。
这些生物大分子的浓度水平可以用来衡量基因的表达情况、基因变异、蛋白质相互作用等生物学过程。
具体操作过程包括:1.1 表达谱芯片表达谱芯片是一种测量运用基因芯片技术研究基因表达的方法。
在表达谱芯片上可以固定多种类型的DNA序列,例如真核细胞DNA片段,互补DNA片段、探针、引物等。
对于鉴定被检测样品的物种,应选择特异而高丰度的探针或引物。
通过部分或大量存储的文献或数据库,研究人员首先确定所需的目标基因,然后通过设计合适的核酸杂交探针,将所需目标基因的序列在探针区域进行固定。
1.2 基因组芯片基因组芯片是一种利用基因芯片技术直接测量基因组中DNA 分子存在量的方法。
基因组芯片和其他一些技术类似,通常分三部分作用:建立样品库,设计并制备基因组芯片,通过基因芯片技术来测量DNA分子的存在量。
2. 基因芯片技术的发展基因芯片技术是一种非常年轻的生物技术,近年来其不断得到完善和发展,具有日益广泛的应用前景。
2.1 应用于生物医学基因芯片技术在生物医学领域得到广泛的应用,其中最具有代表性的应用是基因诊断和基因治疗。
通过基因芯片技术,可以对特定基因的表达情况和蛋白质质量进行分析和检测,为许多临床诊疗和治疗提供了关键方法。
2.2 应用于生态环境基因芯片技术也可以用于生态环境监测,特别是对于环境中的有害生物及其基因信息的监测。
基因芯片技术可以通过绿色监测来减轻生态环境对生物生态的影响。
基因芯片名词解释基因芯片是一种可以同时测量几千到数百万个基因在一个特定生物样本中表达水平的大规模平行检测技术。
基因芯片通常由玻璃片或硅片制成,上面带有数千至数百万个微小的探针,每个探针与一个特定的基因序列或基因组区域相关联。
通过将待测样本中的RNA转录成cDNA,然后与芯片上的探针杂交,基因芯片可以快速、高通量地测量每个基因的表达水平。
基因芯片有许多不同的应用,包括基因表达分析、基因型检测、突变检测和DNA甲基化等。
基因芯片可以帮助科学家们揭示基因与疾病之间的关系,理解生物体内基因的功能和相互作用。
以下是基因芯片中一些常用的名词解释:1. 探针(Probe):探针是芯片上的小片段DNA或RNA序列,用于与待测样本中的RNA或DNA杂交。
通过测量探针与待测样本中的RNA或DNA的配对程度,可以确定基因的表达水平或基因型。
2. 表达水平(Expression Level):基因芯片可以测量基因在生物样本中的表达水平,即该基因的mRNA的相对或绝对数量。
表达水平的高低可以表明该基因在特定生物过程中的重要性。
3. 杂交(Hybridization):基因芯片上的探针与待测样本中的RNA或DNA发生互补配对的过程。
通过杂交,可以测量样本中的RNA或DNA与探针的亲和性,从而确定基因的表达水平或基因型。
4. 基因组学(Genomics):基因组学研究生物体内所有基因的组成、结构和功能。
基因芯片是基因组学研究中最重要的工具之一,可以帮助科学家们理解基因组的组成和调控。
5. 转录组学(Transcriptomics):转录组学研究生物体内所有基因的转录产物,即mRNA的组成、结构和功能。
基因芯片可以帮助科学家们测量转录组的表达水平,从而理解基因在特定生物过程中的调控。
6. 基因型(Genotype):基因型指的是一个生物体内某个基因的具体变种或突变形式。
基因芯片可以通过检测基因组中的多个SNP(单核苷酸多态性)位点,帮助科学家们确定个体的基因型。
生命科学概论论文基因芯片的发展与前景一基因芯片技术研究进展1.基因芯片的制备。
在制备基因芯片时要考虑阵列的密度、再生性、操作的简便性、成本的高低等几方面的因素。
光引导合成法与喷墨打印法、合成点样法相比,最大的优点是:它可以合成密度极高的阵列;但它的最大缺点是耗时、操作复杂,而且为保证在不同位点加上不同的单体,从而在不同的位点合成不同的探针,需要不断更换不同的蔽光膜,对一个含25个碱基的探针的微阵列,一般需更换100个蔽光膜,需1天多的时间才能完成。
合成点样法虽然芯片上探针的密度相对较低,每个样品都要预合成、纯化,在芯片制备前还需妥善保存合成的探针,但是它的最大优点是操作简便。
光纤生物传导芯片最大的优点则是检测快速(<10分钟)、灵敏度高(10 nmol/L)。
2.样品的获得与标记。
由于目前的检测体系还不能检测出未扩增的标记样品,所以待测样品DNA在杂交前一般都要进行聚合酶链反应(PCR),在扩增的过程中,对靶DNA进行标记。
目前DNA样品的扩增一般是通过液相反应来完成,但由于低浓度核酸很难检测到,在溶液中通过PCR反应获得线性扩增也很困难;另外,不同靶DNA对引物的竞争,意味着某一序列的扩增优于其他序列。
为了解决上述问题,一些公司正在研究新的方法。
如固相PCR系统,该系统是将2种引物排列在丙烯酰胺膜上,与DNA 样品、PCR试剂混合,如样品含有靶序列,则开始扩增反应;通过这种固相PCR体系,可避免对引物的竞争,同时也降低了遗留污染。
样品的标记主要是荧光标记。
荧光标记基本分为2种,一种是使用荧光标记的引物,一种是使用荧光标记的三磷酸脱氧核糖核苷酸。
根据扩增产物分离的方法不同,标记的方法也不同:进行单引物标记的,其扩增产物通常由聚丙烯酰胺凝胶电泳分离;对一个引物用生物素标记,另一个引物用荧光素标记的,一般用亲合素偶联的磁珠捕捉其扩增产物,通过变性处理使荧光标记的产物解链。
此外,也有用生物素残基标记引物,将生物素标记的扩增产物与芯片杂交,洗涤后加入亲合素连接的荧光物,通过生物素与亲合素的结合及靶序列与探针的结合产生荧光信号,然后利用荧光检测系统对荧光信号进行检测。
基因芯片技术的应用概述:随着功能基因组学研究的不断深入,迫切需要能同时检测大量靶基因表达的手段,迅速准确地在基因组水平上阐述不同生物组织或细胞中各种转录本的变化规律。
基因芯片(gene chip),又称DNA微列阵(DNA microarray)技术就是在这种情况下应运而生的。
本文介绍基因芯片的历史和应用。
一、认识基因芯片技术(一)基因芯片技术发展历史俄罗斯科学院恩格尔哈得分子生物学研究所和美国阿贡国家实验室(ANL)的科学家们最早在文献中提出了用杂交法测定核酸序列(SBH)新技术的想法。
当时用的是多聚寡核酸探针。
几乎与此同时英国牛津大学生化系的Sourthern等也取得了在载体固定寡核苷酸及杂交法测序的国际专利。
在这些技术储备的基础上,1994年在美国能源部防御研究计划署、俄罗斯科学院和俄罗斯人类基因组计划1000多万美元的资助下研制出了一种生物芯片,并用于检测尽地中海病人血样的基因突变,筛选了一百多个外地中海贫血已知的突变基因。
这种生物芯片的基因译码速度比传统的Sanger和Maxax Gilbert法快1000倍,是一种有希望的快速测序方法。
1996年底,美国旧金山AFFYM ATRIX公司Steven Fodor等充分结合并灵活运用了照相平板印刷、计算机、半导体、激光共聚焦扫描、寡糖苷酸DNA合成、荧光标记探针杂交及分子生物学的其他技术,创造了世界上第一块DNA芯片或DNA列阵(DNA chip or DNA arrays),即基因芯片。
(二)基因芯片技术原理基因芯片是一种小型分析装置,能够快速和精确地研究生物基因组信息。
制作基因芯片时,可用机械臂把大量已知或未知序列的DNA片段点在玻璃片(通常为2cm×2cm)、金属片或尼龙膜上,再经过物理吸附作用达到固定化(cDNA芯片)。
也可以直接在玻璃板或金属表面进行化学合成,从而得到寡聚核苷酸芯片。
将芯片与待研究的cDNA或其他样品杂交,经过计算机扫描和数据处理,便可以观察到成千上万个基因在不同组织或同一组织不同发育时期或不同生理条件下的表达调控情况。
基因芯片研究灸命门穴延缓衰老的分子机制一、内容综述随着科学技术的不断发展,基因芯片技术逐渐走进了人们的视野。
基因芯片研究灸命门穴延缓衰老的分子机制,正是这一技术在中医领域的独特应用。
灸命门穴作为中医养生的重要方法,对于延缓衰老具有一定的疗效。
而基因芯片技术的发展,为揭示灸命门穴延缓衰老的分子机制提供了有力的技术支持。
灸命门穴是人体经络系统中的一个重要穴位,位于腰部具有温肾壮阳、益精填髓、强身健体等作用。
通过灸治命门穴,可以调节人体的内分泌系统,促进新陈代谢,提高机体的抗病能力,从而达到延缓衰老的目的。
然而灸命门穴延缓衰老的具体分子机制尚不明确,这就需要通过基因芯片技术来揭示其中的秘密。
基因芯片技术是一种高通量、高分辨率的生物信息分析技术,可以通过对大量基因进行同时检测和测序,快速准确地揭示基因的功能和相互作用。
通过对灸命门穴相关的基因进行基因芯片测序,科学家们可以发现哪些基因与灸命门穴延缓衰老的作用密切相关,从而为进一步研究提供方向。
目前关于灸命门穴延缓衰老的基因芯片研究已经取得了一定的成果。
研究人员发现,灸命门穴能够影响多种基因的表达,包括与细胞凋亡、细胞增殖、免疫应答等有关的基因。
这些研究成果不仅为我们提供了关于灸命门穴延缓衰老的新认识,也为今后的研究提供了方向。
基因芯片技术的发展为揭示灸命门穴延缓衰老的分子机制提供了有力的技术支持。
随着研究的深入,我们有理由相信,灸命门穴这一传统中医养生方法将在未来发挥更大的作用,为人类的健康事业做出更大的贡献。
1. 研究背景和意义随着人类对健康和长寿的追求,研究延缓衰老的方法变得越来越重要。
基因芯片技术作为一种高通量、高分辨率的技术手段,为揭示生命科学领域的奥秘提供了有力支持。
灸命门穴作为中医养生的重要方法,被认为具有调节人体机能、延缓衰老的作用。
因此研究灸命门穴延缓衰老的分子机制,对于发掘中医药在抗衰老领域的优势,提高人们的生活质量具有重要意义。
基因芯片技术的出现,使得科学家们可以快速、准确地分析大量基因信息,从而揭示基因与生物体之间的相互作用。
基因芯片原理
基因芯片是一种用于检测生物体基因表达水平以及分析基因组信息的技术。
其原理是通过将数以万计的DNA探针固定在芯
片表面上,然后将待测的DNA杂交到芯片上进行互补配对。
通过检测杂交后的信号强度,可以确定基因的表达水平或者基因组的某些特征。
基因芯片的制备过程涉及到两个关键步骤:探针设计和芯片制造。
探针的设计是根据待测基因组的序列信息,通过计算机算法选择最为特异且能够代表该基因的DNA序列。
芯片制造则
是将这些选择好的探针固定在芯片表面。
制备好的基因芯片可以同时检测成千上万个基因。
在实际应用中,基因芯片通常与基因表达实验技术结合使用。
首先,提取待测样品中的RNA,并将其转录成cDNA。
然后,将cDNA标记成荧光探针,再将其加到芯片上与固定的DNA
探针进行杂交反应。
最后,使用荧光探测仪读取芯片上的信号。
信号的强度和颜色反映了基因表达水平的高低。
基因芯片具有高通量、高灵敏度和高重复性等优点,能够快速、全面地检测出基因表达谱以及基因组的变异信息。
它在生物学领域的研究中得到了广泛的应用,如研究基因功能、诊断疾病以及发现新的药物靶点等。
何为基因芯片简述其原理及应用基因芯片(gene chip)是一种在一个固定的芯片上容纳了数千至数百万个特定DNA探针(DNA probe)的生物芯片。
它是通过标记特定DNA序列的方法,用于检测和分析DNA序列的存在和表达。
基因芯片可以帮助科学家了解某个生命体的基因组以及基因在不同条件下的表达情况,进而揭示基因与疾病之间的关联,以及基因与环境之间的相互作用。
基因芯片的原理是利用互补基因的碱基配对原则,通过将一个小小的、可能存在于样品中的DNA片段与芯片上的DNA序列进行杂交,来检测该DNA片段的存在。
基因芯片上的DNA序列由探针构成,探针的选择是根据以往的基因信息和预设的基因库来确定的。
当待测的DNA片段与探针杂交时,这个杂交信号会在芯片上通过荧光或其它信号的形式来探测和分析。
基因芯片的应用非常广泛。
主要应用有以下几方面:1. 基因表达分析:可以通过检测基因芯片上的探针与待测样品中的RNA分子杂交的信号强度来了解不同生物条件下基因的表达水平。
通过比较不同样品的表达谱,可以发现与特定生理和病理状态相关的基因,了解基因在不同组织器官、不同疾病及不同治疗方案下的表达差异。
2. 基因组分析:基因芯片可以用于整个基因组的分析,包括检测基因等位基因的表达和遗传突变等。
通过对不同个体基因组的比较和分析,可以寻找与多种遗传性疾病相关的突变以及基因变异。
基因芯片还可以用于寻找与抗生物药物抗性相关的基因突变,以指导个性化治疗。
3. 疾病诊断和预测:基因芯片可以用于不同疾病的诊断和预测,包括癌症、心脑血管疾病等。
通过检测样品中特定的基因表达谱,可以判断个体是否处于正常状态或疾病状态,以及预测个体患病的风险。
基因芯片还可以用于药物疗效预测,通过分析患者基因表达差异,预测特定药物对患者的疗效,并指导个性化治疗。
4. 细菌和病毒检测:基因芯片可以用于检测和鉴定细菌和病毒等微生物的存在和基因组成。
通过将待测细菌或病毒的DNA与芯片上的特定探针进行杂交,在芯片上检测出杂交信号,可以快速而准确地鉴定细菌或病毒的类型和数量。
国际检验医学杂志2007年12月第28卷第12期Int J Lab Mcd,IYecemher 2007,Vo1.28,No.12 基因芯片在检验医学中的应用进展 张琳琳综述 梁艳 李顺君审校 【摘要】基因芯片技术是伴随人类摹凶组计划的实施而发展起来的一门新兴技术,它将成千上 万个DNA或寡核苷酸片段固定在玻璃、尼龙膜或硅片等载体上,与标记的样品探针杂交,分析样品 中基因表达、基凶序列、基因突变和多态性变化等情况,是…种大规模、高效率的基因组分析技术。随 着该技术日臻成熟,现已有商品化的基因芯片用于临床病原微生物、肿瘤、血液病等的检测,掀起了一 场现代检验医学领域的新技术革命,并有望使“芯片实验室”和床旁检测成为可能。 【关键词】寡核苷酸序列分析; 实验室技术和方法 中图分类号:R446.61 文献标识码:A 文章编号:1673—4130(2007)12—11l 7-03
21世纪是生命科学的时代,伴随基因组测序的顺 利完成,人类将进入后基因组时代。基因芯片技术是 随之产生的一项新技术,它以一次性检查上万个基因 的优势,在医学各领域显示出巨大的发展潜力,作为 生物芯片技术的一种,被誉为是基因功能研究中最伟 大的一项发明,也可以说是基因功能研究领域的一次 革命。现主要对基因芯片技术原理、新技术进展、在 现代检验医学领域应用中的可行性、范围及与传统检 验手段比较等方面作一综述。 基因芯片(gene chip)又称I)NA芯片(DNA chip)、DNA阵列(DNA array)、寡核苷酸微芯片(oli— gonucleotide microchip),它以许多特定的寡核苷酸片 段或基因片段作探针,有规律地排列、固定于支持物 上,然后与待测标记样品按碱基配对原则进行杂交, 再通过激光共聚焦荧光检测系统对芯片进行扫描,并 配以计算机系统对每一探针上的荧光信号进行比较 和检测,从而快速获得所需要的信息。 基因芯片技术综合运用了分子生物学、半导体微 电子技术、激光化学、计算机科学等众多学科领域的 相关技术,其基本原理 是基于体内各基因信息的阅 读、储存、转录、翻译通过核酸分子间碱基配对的原 则,将大量已知核酸片段有序地、高密度地固定在一 张载体上,通过分子杂交后的信号来确定未知序列的 组成、含量及其功能。目前所用的载体较多,常用的 有玻片、硅片、纤维膜;固定的方法也较多,大体可分 为以下2种:(1)原位合成法,是目前制造高集成度芯 片最常用、最成功的方法,主要有光控合成法和原位 标准试剂合成法2种途径。(2)合成后交联即直接点 样法。该方法比较简单,主要利用手工或自动化点样 设备。杂交后信号的检测手段也较多,常用的有荧光 显影法、放射白显影、激光共聚焦扫描及CCD显微照 相技术等。 作者单位:610072成都,四川省人民医院检验科(张琳琳、李顺君) 200025上海,第二军医大学(梁艳) 基因芯片新技术 ・ 1117 ・ ・综述・ 最近,Wisconsin大学Gasson等利用投影电视 中的数控微镜阵列技术制造了一种无需掩模的高密 度芯片原位合成系统MAS(maskless array synthe— sizer),计算机生成虚拟掩模,传送到数字微镜阵列系 统(digital micromirror array system,DMAs),紫外光 源通过数字微镜阵列在玻璃载体上形成虚拟掩模的 光反射图像,载体上光亮的区域脱去保护基,玻璃载 体固定在与DNA合成仪连接的反应池中,启动程序 进行核苷酸偶联;重复上述步骤就可以在玻璃的特定 区域得到合适长度的寡核苷酸。合成时间比光控原 位合成大为减少,合成成本也大为降低。 Incyte Pharmaceuticals及Rosetta Biosystem Inc 2个公司开发了可以在玻璃片上进行原位合成DNA 的设备。根据芯片上不同位点探针序列的需要,将合 成试剂喷印在芯片的特定位置。 此外,还有一种三维芯片,也可以认为是合成后 交联技术的一种,主要是利用官能团化的聚丙酰胺凝 胶块作为基质来固定寡核苷酸。将带有活性基团的 物质或丙烯酰胺衍生物与丙烯酰胺单体在玻璃板上 聚合,机械切割出三维凝胶块,光刻或激光蒸发除去 凝胶块之问的凝胶,再将带活性基团(氨基、醛基等) 的DNA加到胶上进行交联。这种三维芯片具有较为 明显的优点:固定的寡核苷酸量较大,每种探针的量 在3~300 fmol之间,是二维芯片样品量的100倍,被 检测样品DNA可以不带报告分子,杂交反应较快,还 可以显著提高碱基错配识别能力 。
运用基因芯片数据库发掘玉米内参基因第一部分文献综述1.1基因芯片研究进展人类基因组测序完成之后,生物学进入了基因组和蛋白质组时代,研究人员迫切希望找到能实现大规模功能基因挖掘的技术,替以往的电泳、杂交等传统方法。
随着测序技术的不断发展,趟来越多的物种被测序,获得了大量物种的基因组信息。
研究人员所遇到的问题是如何利用生物信息学分析庞大的数据,找到在代谢途径、基因表达调控机制和信号转导途径中起调节作用的基因,并对这些基因进行分析和研究。
通过使用基因芯片技术能够实现高通量筛选差异基因的目的。
基因芯片技术是随着人类基因组计划逐渐发展成熟的,通过基因芯片技术蹄选基因的效率远远高于传统蹄选基因的方法,大大缩短了实验时间和流程,减少了研究人员的工作量,加快了实验进程。
基因芯片技术也为基因组学[3,4]和蛋白质组学[5>6]的研究提供了有力的研究工具,推动了这两个领域的研究进展。
基因组水平上基因的表达水平及变化,能被基因芯片速、高效、高通量的检测到。
能为研究人员基因表达检测、寻找新基因、单核苷酸多态性检测及基因组比较分析[1G]提供帮助,在工业中的药物蹄选和新型药物开发提供帮助⑴,在癌症和艾滋病的检测中也有良好的应用,同时在环境保护、司法鉴定等领域取得了较好的应用。
1.2实时焚光定量技术实时焚光定量PCR的监控是一个实时动态的过程。
整个过程分为3个时期,基线期,指数期,平台期,如图1-2所示。
在基线期,扩增反应产生的焚光信号值与突光背景信号值相当,无法判断产物的变化。
而在平台期,反应体系中的扩增反应达到动态平衡,扩增产物的量与模板的量之间没有线性关系。
只有在指数期,实时焚光定量的理论方程才能成立,产物的对数值与起始模板之间存在线性关系。
在实时焚光定量中,一个重要的概念是a值,是指每个反应管内的突光信号达到所设定的阈值时所要经历的循环数。
Ct值与模板的起始拷贝数的对数存在线性关系,起始拷贝数越多,Ct值越小。
基因芯片及其最新进展5 天前仪器信息网分享:导读近年,基因芯片技术在疾病易感基因发现、疾病分子水平诊断、基因功能确认、多靶位同步超高通量药物筛选以及病原体检测等医学与生物学领域得到广泛应用。
本文对基因芯片及最新进展做了综述。
80年代中期,俄罗斯科学院恩格尔哈得分子生物学研究所和美国阿贡国家实验室(ANL)的科学家们最早在文献中提出了用杂交法测定核酸序列(SBH)新技术的想法。
当时用的是多聚寡核酸探针。
几乎与此同时英国牛津大学生化系的Sourthern等也取得了在载体固定寡核苷酸及杂交法测序的国际专利。
基因芯片利用微电子、微机械、生物化学、分子生物学、新型材料、计算机和统计学等多学科的先进技术,实现了在生命科学研究中样品处理、检测和分析过程的连续化、集成化和微型化。
1997年世界上第一全基因组芯片——含有6166个基因的酵母全基因组芯片在斯坦福大学Brown实验室完成,从而使基因芯片技术在世界上迅速得到应用。
基因芯片技术主要包括四个基本要点:芯片方阵的构建、样品的制备、核酸分子反应和信号的检测。
1、芯片制备,先将玻璃片或硅片进行表面处理,然后使核酸片段按顺序排列在芯片上。
2、样品制备,可将样品进行生物处理,获取其中的DNA、RNA,并且加以标记,以提高检测的灵敏度。
3、生物分子反应,芯片上的生物分子之间的反应是芯片检测的关键一步。
通过选择合适的反应条件使样品中的核酸分子与芯片上的核酸分子反应处于最佳状况中,减少错配比率。
4、芯片信号检测,常用的芯片信号检测方法是将芯片置入芯片扫描仪中,通过扫描以获得有关生物信息。
基因芯片技术发展的最终目标是将从样品制备、杂交反应到信号检测的整个分析过程集成化以获得微型全分析系统(micro total analytical system)或称缩微芯片实验室(laboratory on a chip)。
使用缩微芯片实验室,就可以在一个封闭的系统以很短的时间完成从原始样品到获取所需分析结果的全套操作。
近年,基因芯片技术在疾病易感基因发现、疾病分子水平诊断、基因功能确认、多靶位同步超高通量药物筛选以及病原体检测等医学与生物学领域得到广泛应用。
一、第一代基因芯片第一代基因芯片基片可用材料有玻片、硅片、瓷片、聚丙烯膜、硝酸纤维素膜和尼龙膜,其中以玻片最为常用。
为保证探针稳定固定于载体表面,需要对载体表面进行多聚赖氨酸修饰、醛基修饰、氨基修饰、巯基修饰、琼脂糖包被或丙烯酰胺硅烷化,使载体形成具有生物特异性的亲和表面。
最后将制备好的探针固定到活化基片上,目前有两种方法:原位合成和合成后微点样。
根据芯片所使用的标记物不同,相应信号检测方法有放射性核素法、生物素法和荧光染料法,在以玻片为载体的芯片上目前普遍采用荧光法。
相应荧光检测装置有激光共聚焦显微镜、电荷偶合器( charge coup led devices, CCD)、激光扫描荧光显微镜和激光共聚焦扫描仪等。
其中的激光共聚焦扫描仪已发展为基因芯片的配套检测系统。
经过芯片扫描提取杂交信号之后,在数据分析之前,首先要扣除背景信号,进行数据检查、标化和校正,消除不同实验系统的误差。
对于简单的检测或科学实验,因所需分析基因数量少,故直接观察即可得出结论。
若涉及大量基因尤其是进行表达谱分析时,就需要借助专门的分析软件,运用统计学和生物信息学知识进行深入、系统的分析,如主成分分析、分层聚类分析、判别分析和调控网络分析等。
芯片数据分析结束并不表示芯片实验的完成,由于基因芯片获取的信息量大,要对呈数量级增长的实验数据进行有效管理,需要建立起通行的数据储存和交流平台,将各实验室获得的实验结果集中起来形成共享的基因芯片数据库,以便于数据的交流及结果的评估。
典型如SuperArray公司的功能分类基因芯片:1、引物设计SYBR Green可与所有的双链DNA反应(包括引物二聚体),为了使扩增反应集中于目的基因,避免非特异性扩增,引物设计成为关键因素。
为得到单一特异的扩增产物,避免扩增出序列相似的非特异性产物,采用BLAST或者其他比对方法,检测引物在相应物种(如人,小鼠或大鼠)全基因组中的特异性。
为了保证在相同的PCR条件下(特别是统一的退火温度),不同基因均能扩增出相应的特异性产物,对引物的CG值,解链温度(Tm),以及其他化学和物理的特性都进行了优化调整。
为了获得高扩增效率,对扩增片段的长度也进行了优化,一般为100到200bp,确保在统一的循环反应的时间围,不同基因均能扩增出完整片段。
2、反应体系为避免非特异性扩增,使用化学修饰的热启动Taq酶,只有经过热激步骤,Taq 酶才能发挥扩增活性。
同时,反应体系经过优化,可最大限度减少引物二聚体形成,并且保证较难扩增的片段都得到极高的扩增效率。
3、定量结果可靠在标准的96孔PCR反应仪中进行实时定量PCR实验,为了获得高通量,无法为每个样品单独制备标准曲线。
在完全相同的PCR反应条件下,希望表达量不同的多个基因均获得可靠的结果,需要确保每个基因都有较高的扩增效率,从而可采用简单的△△Ct方法计算基因表达量。
其灵敏度高,样品的使用量低,每芯片使用的总RNA最少可为0.5ng;可观察到的动态线性围超过105,可以同时检测表达量差异较大的基因;Ct值的平均差异只有0.25个循环,可检测超过两倍的基因表达量变化。
因此,第二代功能分类基因芯片是研究特定信号通路或者一组功能相关基因表达量的理想方法。
二、第二代基因芯片尽管基因芯片技术已经取得了长足的发展,但仍然存在着许多难题和不足。
目标分子的标记是重要的限速步骤,如何绕过这一步是人们一直期望解决的问题。
其次是检测灵敏度不高,重复性差,无法检测单碱基错配的基因样品。
再者,待检测的基因样品必须经过PCR扩增技术的处理以获得足够量的待检测样品,使检测过程相对复杂。
我们称具备以上特征的基因芯片技术为第一代基因芯片技术,这些特征充分说明基因芯片技术本身存在着较大的发展空间。
第二代基因芯片包括如下几种:1. 电极阵列型基因芯片:将微电极在衬底上排成阵列,通过对氧化还原指示剂的电流信号的检测实现基因序列的识别;2. 非标记荧光指示基因芯片:利用荧光分子作为杂交指示剂,在不需对靶基因进行荧光标记的前提下,通过对荧光分子的检测实现基因序列的识别;3. 量子点指示基因芯片:利用量子点作为杂交指示剂,在不需对靶基因进行荧光标记的前提下,通过对量子点的扫描实现基因序列的识别;4. 分子灯塔型基因芯片:利用探针DNA片断的发夹结构,获得单碱基突变检测的能力。
三、第三代基因芯片目前,众多的第三代基因芯片现在也推向了市场。
第三代基因芯片代表了测序的最高水平和未来走向。
1、Illumina微珠基因芯片技术这是Illumina公司核心技术之一,博奥生物基于Illumina微珠芯片平台,推出SNP分型检测服务以及定制SNP分型检测服务。
它首先用微机电技术在光纤末端或硅片基质上蚀刻出微孔(深度约为3毫米的相同凹槽),将“微珠池“的微珠“倒”入光纤束微孔,每个微孔恰可容纳一个微珠,在德华力和与微孔壁间流体静力学相互作用下,微珠以“无序自组装”的方式在微孔组装成芯片。
每种类型的微珠平均有30 倍左右的重复。
每一个微珠上都偶联有80万左右拷贝数的探针。
每一个探针由特异的地址序列(对每种微珠进行解码,29mer)和特异序列(代表不同的检测信息,如SNP 位点序列、基因序列等)组成。
用专利的解码技术对芯片上的微珠进行解码,完成对芯片微珠定位信息的收集和确认,也实现芯片生产过程中100%质控。
以四种荧光标记进行16种微珠解码为例,解码过程使用与地址序列互补的且分别标记4种荧光染料的探针进行。
把标记4种荧光的不同地址序列探针进行组合,每次杂交后探针清洗下来进行下一轮杂交,通过多轮杂交达到指数型区分能力。
2、Ion Torrent半导体基因芯片Ion Torrent半导体基因芯片是最新一代的测序技术,它的问世给测序技术的应用带来了激动人心的进展。
它采用了半导体技术和简单的化学试剂进行DNA测序,而不是使用光作为媒介。
在半导体芯片的微孔中固定DNA链,随后依次掺入ATCG。
随着每个碱基的掺入,释放出氢离子,在它们穿过每个孔底部时能被检测到,通过对H+的检测,实时判读碱基。
Ion Torrent个人化操作基因组测序仪(PGMTM)是第一台基于半导体技术的测序仪。
与其他测序技术相比,使用该项技术的测序系统更简单、更快速、及更易升级。
该测序仪与其他高通量测序仪特征互补,可以迅速完成应急服务项目,缩短服务周期,增加服务效率。
3、实时单分子测序基因芯片太平洋生物科学公司(PacBio)实时单分子测序基因芯片是直接测由DNA聚合酶将荧光标记的核苷酸掺入互补测序模板。
该技术的核心是一个零点启动模式的波导(Zero-mode Wavelength,ZMW)纳米结构的密集排列,这一排列阵可以进行单个荧光分子的光学审视。
在过去,零点启动模式波导结构被用于从大量高密度的分子中分辨出单一的荧光分子,还没有被用于大量平行分析的操作。
为使之用于大量平行分析和数据输出通量(测序数据生成能力),太平洋生物科学公司开发出一种方法,能有效地将零点启动模式波导结构排到表面上,他们采用了电子束光刻技术(Electron beam Lithography)和紫外光电子束光刻技术(Ultraviolet Photo lithography) 以及高度平行的共焦成像系统,这样可以对零点启动模式纳米结构中的荧光标记分子进行高灵敏度和高分辨率的探测,并采用了一个沉重的稳定平台来确保良好的光学聚焦效果。
4、纳米球基因芯片全基因组学公司(Complete Genomics)的纳米球基因芯片是以杂交和连接反应为核心的。
当通过杂交和连接进行测序的方法出现以后,全基因组学公司推出了新的样品处理方法和纳米阵列平台。
基因组DNA首先经过超声处理,再加上一些接头,然后模板环化,酶切。
最后产生大约400个碱基的环化的测序片段,每个片段含有4个明确的接头位点。
环化片段用Φ29聚合酶扩增2个数量级。
一个环化片段所产生的扩增产物称为DNA纳米球(DAN nanoball, DNB)。
纳米球被选择性地连接到六甲基二硅氮烷处理的硅芯片上。
5、纳米孔基因芯片技术另外,还在发展中的纳米孔基因芯片技术是很有潜力的第四代技术。
因为这种方法不再需要光学检测和同步的试剂洗脱过程了。
这是一种基于纳米孔(纳米洞)结构的完全不同的测序技术,单个碱基的读取可以靠测定经由纳米级别的孔洞而跨越或透过薄膜的电导率来进行。
纳米孔技术可以广泛地归纳为两类:生物类和固态类。
α溶血素是一种能天然性地连接到细胞膜中继而导致细胞溶解的蛋白质,它第一个被用来做成生物纳米孔模型。