论文:细长轴的加工技术方法
- 格式:docx
- 大小:353.91 KB
- 文档页数:11
普通车床细长轴加工工艺研究摘要:针对细长轴零件的加工生产环节来说,因为细长轴自身所存在的特征,一般在进行机械加工期间,特别是在车削加工当中,会导致工件出现变形。
与此同时,在实际加工期间伴随着振动等情况的出现,倘若没有科学控制细长轴的加工过程,那么必然会对产品的加工精度与质量带来影响。
所以,采取有效措施对细长轴零件加工过程的工艺加以完善,对强化该类零件的精度以及减少失误情况发生概率等方面均有着积极的意义。
关键词:普通车床;细长轴;加工工艺引言一般而言,细长轴在实际加工期间通常体现出来的是受力以及受热等形成的变形影响,在具体加工的时候怎样减少这些变形的干扰,能够为细长轴的加工精度控制提供强而有力的技术保证,已然演变成现阶段值得深思的课题。
从细长轴具有的加工工艺特性、细长轴加工精度的影响因素、细长轴加工精度的提升措施为切入点进行研究,在分析普通车床细长轴加工工艺成效发挥影响因素的基础上,通过有效措施强化生产加工质量。
1细长轴具有的加工工艺特性首先,细长轴的长度和直径之比达到25,所以其并不存在着较强的刚度,相关人员在进行零件装夹期间,倘若在卡爪、跟刀架与顶尖三者装夹期间发生不规范情况,在实际加工期间由于零件自由度受到约束,一般在切削力与零件自身重力的干扰下极易出现变形的情况,继而在加工期间造成轴的振动,显然这样必然会直接影响到刀具质量与加工精度,甚至还会对加工水平带来不利影响。
其次,细长轴因为长度较长,所以散热效果并不理想。
在具体切削加工期间,因为刀具和零件在不断作用的时候会形成诸多的热量,并且零件里面的热量无法在第一时间消除,所以此时就会出现热膨胀的情况,并且在顶尖和卡爪的约束下,极易因为挤压作用而出现弯曲变形。
最后,细长轴的装夹时,一定要采取必要手段确保装夹的准确性,尤其要对跟刀架的安装予以高度重视。
在具体操作期间,相关人员需要对以下几点进行适当的调节:一是跟刀架的两个下支撑滚轮;二是上压紧轮的预紧力,这样做的目的是为了令支撑轮的支撑力以及压紧轮的压紧力更加高效,并且还要确保跟刀架的圆跳动度,否则不但会影响到加工期间零件的变形程度与振动,而且还会影响到加工的精度等。
轴类零件的加工工艺分析及夹具设计论文摘要:本论文主要研究了轴类零件的加工工艺分析及夹具设计。
通过对轴类零件的特点进行分析,提出了适合轴类零件加工的工艺流程,并给出了一种有效的夹具设计方案。
实验证明,该工艺流程和夹具设计方案能够大大提高轴类零件的加工效率和质量。
1. 引言轴类零件是机械中常用的零件之一,广泛应用于汽车、机械、航空等领域。
由于轴类零件长且细,加工难度较大,对加工工艺和夹具设计提出了新的要求。
2. 轴类零件加工工艺分析2.1 轴类零件特点分析轴类零件具有长、细、对称等特点,加工过程中易产生变形和振动。
这些特点使得轴类零件的加工过程较为困难,需要采用适当的工艺方法来解决这些问题。
2.2 轴类零件加工流程分析根据轴类零件的特点,我们提出了一种加工流程。
该流程分为粗加工、精加工和表面处理三个阶段。
粗加工阶段主要进行外形修整和粗留余量的加工;精加工阶段采用滚刀进行细加工,以提高加工质量和表面光洁度;表面处理阶段主要进行抛光和涂漆等表面处理操作。
3. 轴类零件夹具设计3.1 夹具设计原则根据轴类零件的特点和加工流程,夹具设计应遵循以下原则:(1)稳定性原则:夹具应能够牢固固定轴类零件,防止产生振动和变形。
(2)可调性原则:夹具设计应能够根据不同的轴类零件进行调整,满足加工要求。
(3)易操作性原则:夹具应设计成易于操作和安装的形式,提高工人的工作效率。
3.2 夹具设计方案根据夹具设计原则和轴类零件的特点,本文提出了一种夹具设计方案。
该方案采用了中心定位夹具和两个侧面固定夹具的结构,能够稳定地固定轴类零件并保证加工精度。
4. 实验结果与分析通过对轴类零件的加工工艺分析及夹具设计方案的实验,比较了不同加工工艺和夹具设计方案对加工质量和效率的影响。
实验结果表明,本文提出的加工工艺流程和夹具设计方案能够显著提高轴类零件的加工效率和质量。
5. 结论本论文通过对轴类零件加工工艺分析及夹具设计的研究,提出了一种适合轴类零件加工的工艺流程和夹具设计方案。
细长轴的先进车削方法
细长轴的先进车削方法主要包括:
1. 伸长主轴法
伸长主轴法是采用长螺杆或长轴进行车削时采用的一种方法。
这种方法可以避免在加工长螺杆或长轴时因热变形而产生的误差。
这种方法的关键是保持螺杆或轴在加工过程中的稳定性,可以通过采用高强度材料、降低进给速度和采用加工中心来保持稳定。
2. 分段加工法
分段加工法是将长螺杆或长轴分成若干段进行加工的方法。
每个段的长度可以根据加工要求进行调整,可以采用不同的加工方式,避免热变形和振动。
在加工完成后再将各段连接起来成为完整的螺杆或轴。
3. 倒置加工法
倒置加工法是将长螺杆或长轴倒置后进行加工的方法。
通过倒置,可以避免螺杆或轴的热变形和振动,同时也能够减少加工时刀具的跨度。
这种方法需要采用专用的夹持装置和工艺,使螺杆或轴能够稳定地倒置,并且保持加工精度。
4. 加工中心法
加工中心法是采用加工中心进行车削的方法。
这种方法可以采用多轴控制和刀具切换等先进技术,可以在一台机床上完成多种复杂的加工工序。
在加工中心上进行车削可以极大地提高加工效率,同时也能够保证加工精度和表面质量。
细长轴保持加工精度的方法说实话细长轴保持加工精度这事,我一开始也是瞎摸索。
我先是按照传统的加工方法来,就想着跟加工别的部件也没啥大区别吧,可结果出来精度差得离谱。
我就开始找问题,我发现细长轴这东西又细又长,在加工的时候很容易变形,这变形了精度肯定就没了。
我第一反应就是想怎么把它固定得更稳当。
我试过加大夹紧力,就像死死地按住一个东西不让它动一样,但是这么搞又出问题了,虽然它确实稳定了一些,可是因为夹紧力太大了,细长轴自身又产生了弯曲变形,这还是达不到精度要求。
后来我想或许从刀具上也能着手改进。
我换了几把不同的刀具去试。
我发现刀具的锋利程度和切削参数对精度有很大影响。
要是刀具钝了,就像拿一把不快的刀去切肉,切得坑坑洼洼的。
所以我就特别注意刀具的刃磨和及时更换,在切削参数上,也不断在调整。
比如说切削深度,一开始我弄得比较深,就好像一口想咬下一大块肉,结果细长轴吃不消了,精度不行,我减小了切削深度后就好一些。
还有切削速度,这就像跑步速度一样,太快了容易失控,太慢了干活没效率。
慢慢调试之后,我找到了一个相对合适的区间,那加工出来的细长轴精度就稍微有点像样了。
我还尝试了在加工过程中进行实时测量和调整,这就好像你在路上走路时不时低头看看方向对不对一样。
我用一些测量仪器时刻盯着加工的尺寸,如果偏差了一点,就赶快调整切削参数或者刀具的位置。
另外,细长轴的材料和毛坯质量也不能忽略。
有时候拿到的毛坯本身就有点弯弯曲曲的,就好比你要在一个歪歪扭扭的地基上盖房子,怎么可能盖得正呢。
所以在加工之前,我会尽可能挑选比较直的毛坯,或者对毛坯先进行简单的校直处理。
在支撑方面我也想了不少办法。
就像一个细长的杆子要是竖着放,中间没个支撑很容易晃悠。
我在细长轴加工的时候增加了辅助支撑,这就像给它中途搭把手,让它在加工的时候不会因为自身的细长结构容易出现振动或者弯曲的情况。
不过这个辅助支撑的位置和数量我还不是特别确定到底怎么是最优的,我还在不断尝试。
带螺纹的细长轴的加工【摘要】:本文就带螺纹细长轴加工中存在的问题做了详细的分析,并针对这些问题,从工艺流程、装卡方法、切削方法、刀具及其参数的选择、机床参数的选择等方面进行了详细的改进论述,以其达到图纸要求。
【关键词】:细长轴刀具螺纹在机械加工行业中,我们公司主要是从事单件、小批量产品加工的公司。
加工经常涉及到各种轴类零件,其中长度和直径之比为20∶1以上的称为细长轴。
细长轴的刚性较差,加工难度大,废品率较高。
尤其是带螺纹的细长轴,工件精度要求更高,若不注意加工方法,更易出现变形大,造成废品。
下面,就我公司已加工的两端带有左右旋螺纹的细长轴加工做一分析。
如图:该工件材质40CrNiMoA、毛坯来料为锻件一.带螺纹的细长轴机械加工中存在的问题1.车削加工中,在高速旋转中,强度小,摆动偏心较大,工件受切削力、重力和惯性离心力的作用,产生弯曲变形。
带螺纹的细长轴较一般细长轴受切削力的影响更大,更易产生弯曲变形。
不能满足使用要求;2.带螺纹的细长轴细长比大,刚性较差,车削过程易产生振动,加工出的螺纹达不到工件要求的形位公差及粗糙度要求。
3.车削加工中由于切削热的影响,使工件产生热变形。
实践证明:当细长轴长度一定时,热变形量与温升成正比。
4. 由于该件材质为40CrNiMoA,其中含高Cr、Ni、Mo等高硬度、高粘度元素,在精车削螺纹时,我们使用的普通刀具在一次车螺纹过程中就被严重磨损;而当我们用高硬度、高耐磨的726刀具时,又因为拉杆属于细长轴,在高速旋转中,摆动偏心较大,容易使刀尖迸裂,因为726刀具硬度合格,但韧性不足所致。
针对这些问题,进行一一分析之后,结合加工实际,我们对机床和刀具进行如下调整和改进:二. 车削带螺纹的细长轴控制变形的工艺方法。
1. 合理的工艺流程:粗加工-调质-半精加工-消应力-精加工。
对带螺纹的细长轴消应力前螺纹部应粗车出并留量(螺牙齿深到量,侧面留量)。
2.合理的装卡方法。
细长轴的加工【摘要】本文从细长轴的结构和加工过程中易出现的的变形来说明细长轴的加工特点,从装夹和刀具选择两个方面讲述了加工细长轴的精度保证方法和注意事项。
【关键词】细长轴;装夹;角度1细长轴的结构和加工特点1.1刚性差由于工件长径比大,刚性较差,车削时易引起振动和弯曲变形,尺寸精度和表面粗糙度较难保证。
1.2热变形大由于细长轴在车削时散热差,线膨胀大,当工作两端顶起时易产生弯曲变形,而弯曲工件旋转时所产生的离心力,会加剧弯曲变形。
1.3刀具磨损大细长轴加工时,切削用量小,加工时间长,刀具磨损大,因而增大了工件的形状误差。
2细长轴的装夹方法2.1两顶尖间安装细长轴这种装夹方法没有装夹定位误差、容易保证工件的同轴度,但车削刚性差,容易产生振动,因而只适宜于长径比不太大,加工余量小,需要多次以两端顶尖孔定位来保证同轴度的工件加工。
2.2一夹一顶装夹细长轴工件在软件三爪上车出一条宽度为3—5mm的环形凸带(或在工件上绕一圈细钢丝),用以夹紧系长轴工件的一端,另一端用后顶尖支承。
这种装夹方法可以使系长轴工件在自由状态下定位夹紧,定心精度高,可以克服三爪夹紧产生弯斜和限制四个自由度造成定心精度差的缺点。
2.3一夹一拉装夹细长轴工件两顶尖装夹和一夹一顶安装长轴工作,都不能削除中因热变形所产生的轴向伸长,从而导致工件弯曲变形。
一夹一拉装夹细长轴工件时,工件在车削过程中始终受到轴向拉伸作用,并可用尾座手轮调整拉伸量,因而减少了细长轴车削时的弯曲变形。
这是加工细长轴工件较理想的装夹方法之一。
2.4使用中心架和跟刀架装夹细长轴2.4.1中心架的使用把中心架安装在细长轴工件中间,能增强工件车削是的刚性一倍以上。
但中心架不能直接安装在工件的粗基准跳动量很大的细长轴上,可以用过度套同安装细长轴的方法,使卡爪不直接与毛坯料表面接触。
安装中心架不能一次车削细长轴工件的全长,所以适于精度要求不高火油多台阶的轴类尖加工。
2.4.2跟刀架的使用加工细长轴通常采用3支承爪跟刀架。
滑轮的加工材料:不锈钢一、加工工艺分析:因此工件是细长轴,故加工时应考虑到外圆两端直径的变化问题,在精加工外圆程序段应加工锥度变化的程序,不应按常规外圆加工方法实施,又因工件左端外圆直径太小,故加工时吃刀不宜过深,以0.2mm以下为宜。
1、选择工、量、刃具(1)工具选择:因是细长轴,考虑到变形,工件采用一夹一顶装夹方式。
(2)量具选择:长度用游标卡尺测量、外圆用千分尺测量,建议倒角用2次元测量。
(3)刀具选择:零件表面有台阶和槽,所选刀具既要有粗车刀,又要有精车刀,为工量刃具清单图号图1-1种类序号名称规格精度单位数量工具1 三爪自定心卡盘350mm 个 12 卡盘扳手+加力杆副 13 刀架扳手副 14 垫刀片0.5mm厚块若干5 划线盘个 16 项尖个 1量具1 游标卡尺0.02 把 12 外径千分尺0.01 把 1 4 表面粗糙度样板套 1刀具1 外圆粗车刀90°把 12 外圆精车刀90°把 13 切槽刀 1.5mm 把 14 切断刀2mm 把 15 中心钻Φ2 把 1该零件毛坯为一φ14长300mm的不锈钢料,加工时按如下步骤进行:①车端面②打中心孔③采用一夹一顶方式装夹,粗、精车外圆至φ12mm。
④保证总长109,切断。
⑤用铜皮包住已车外圆,采用三爪卡盘装夹,伸出23mm。
⑥车台阶轴⑦换切槽刀切1.5mm的槽。
⑧松开三爪,至此工件加工完毕。
3、选择合理的切削用量加工材料为不锈钢,因此工件是细长轴,加工时吃刀量不宜过深,否则容易因切削力过大而引起工件顶弯的现象。
二、编写参考程序。
描述:细长轴类零件在车削加工过程中容易产生弯曲变形。
文中分析了引起弯曲变形的因素,并从加工方法的运用、刀具的选择、切削用量、冷却液等几方面介绍了提高加工精度的措施。
摘要:细长轴类零件在车削加工过程中容易产生弯曲变形。
文中分析了引起弯曲变形的因素,并从加工方法的运用、刀具的选择、切削用量、冷却液等几方面介绍了提高加工精度的措施。
1 前言细长类零件(工件的长度与直径之比大于25)在车削时,刚性差,热变形大,在加工中工件自重、变形、振动等因素都影响工件加工的尺寸精度和形位精度,较难保证加工质量。
当用较高的切削速度加工细长轴(工件的长度与直径之比大于100)时,则加工难度更大。
2 引起细长轴产生弯曲变形的因素车削细长轴类零件采用的装夹方式主要有两种:一种方式是细长轴的一端用卡盘夹紧,另一端用车床尾架顶尖支承(一夹一顶);另一种方式是细长轴的两端均由顶尖支撑(双顶尖)。
本文主要分析一夹一顶的装夹方式。
在车削时引起细长轴弯曲变形的因素主要有:(1)切削力产生变形的影响在车削过程中,产生的切削力可以分解为轴向切削力、径向切削力。
由于细长轴的刚性较差,径向切削力将把细长轴顶弯,使其在水平面内发生弯曲变形。
轴向切削力使工件产生一个弯矩。
一般的车削加工,轴向切削力对工件弯曲变形的影响并不大,可以忽略。
但是由于细长轴的刚性较差,其稳定性也较差,当轴向切削力超过一定数值时,将会把细长轴压弯而发生纵向弯曲变形。
(2)切削热产生的影响车削加工产生的切削热,会引起工件伸长。
由于在车削过程中,卡盘和尾架顶尖都固定不动,两者之间的距离是固定的。
这样细长轴受热后伸长受到限制,会导致细长轴受到轴向挤压而产生弯曲变形。
(3)工件自重变形而加剧工件的振动,影响加工精度和表面质量。
(4)工件转速高时,离心力的作用,加剧了工件的弯曲和振动。
3 提高细长轴加工精度的措施在细长轴加工过程中,为提高其加工精度,要根据生产条件,采取相应的措施,以提高细长轴的加工精度。
细长轴加工工艺一、工艺概述细长轴是指长度大于直径10倍的轴类零件,广泛应用于机械、航空、航天等领域。
其加工难度较大,需要经过多道工序才能完成。
本文将详细介绍细长轴的加工工艺。
二、材料准备1.选择合适的材料。
常用的材料有碳素钢、合金钢等。
2.对材料进行切割。
根据长度要求,将材料切割成相应长度。
三、车削加工1.粗车。
将材料放入车床上,进行粗车加工。
首先要确定好中心线,并进行装夹固定。
2.精车。
在粗车基础上,进行精车加工。
主要是为了提高表面平整度和精度。
3.修整端面。
在端面处进行修整,以保证端面平整度和垂直度。
四、磨削加工1.外圆磨削。
采用外圆磨床对轴身进行磨削,以提高尺寸精度和表面质量。
2.内孔磨削。
对于有内孔的轴类零件,在内孔处采用内圆磨床进行磨削。
3.端面磨削。
采用平面磨床对端面进行磨削,以保证平整度和垂直度。
五、齿轮加工1.车削齿轮。
将轴类零件放入数控车床上,进行齿轮车削加工。
2.滚齿。
在车削基础上,采用滚齿机进行滚齿加工,提高齿轮精度和耐磨性。
六、淬火处理1.淬火前准备。
在淬火前,需要对轴类零件进行清洗和预热处理。
2.淬火。
将轴类零件放入油池中进行淬火处理,提高硬度和耐磨性。
3.回火。
在淬火后,需要对零件进行回火处理,以提高强度和韧性。
七、表面处理1.抛光。
采用抛光机对表面进行抛光处理,提高表面质量。
2.镀层。
根据使用要求,在表面涂覆一层保护性涂料或金属镀层。
八、检验1.外观检验。
对于表面质量要求较高的细长轴,需进行外观检验,如裂纹、气泡等。
2.尺寸检验。
对轴类零件的尺寸进行检验,以保证精度和质量。
九、包装运输1.包装。
根据轴类零件的大小和重量,选择合适的包装材料进行包装。
2.运输。
选择合适的运输方式,将轴类零件送到客户手中。
以上就是细长轴加工的详细工艺流程,通过多道工序的加工处理,可以保证细长轴的精度和质量,达到客户要求。
细长轴的车削加工摘要:细长轴在车削加工中承受自身重力、切削力、高速旋转产生的离心力的作用,极容易出现振动与弯曲变形现象,增大轴的几何形状误差,而细长轴的轴向尺寸较大,直径较小,热扩散性及刚性差,受切削热作用会在轴向发生线性膨胀,若在轴向的伸长量无法得到消除,轴将受迫弯曲,从而影响轴的精度。
因此,要提高超细长轴车削加工的精度,必须对车床的夹具和刀具做进一步的改进。
为了达到所要求的加工精度,加工过程中要使用跟刀架、弹性活络顶尖和中心架等夹具和辅具,针对加工过程可能出现的问题对普通跟刀架、尾座进行改进。
采用托架避免工件产生很大的摆动;采用一夹一顶的装夹方式,尾座具有弹性,同时采用反向车削的方法,配合以最佳的刀具几何参数、切削用量等一系列有效措施,提高了细长轴的刚性,满足了加工要求。
关键词:细长轴夹具跟刀架中心架刀具车削加工一、细长轴的特点通常认为在机械中作旋转运动的长度大于直径的圆柱零件叫做轴,而工件的长度与直径之比大于25(即L/D>25)的轴类零件称为细长轴。
车削细长轴与一般轴类相比,细长轴刚性差,易变形,振动大,给切削加工带来困难,不易获得良好的表面光洁度及几何精度,其加工特点如下:1)热变形大。
细长轴车削时热扩散性差、线膨胀大,当工件两端顶紧时易产生弯曲变形。
严重时细长轴会被卡死而无法加工。
2)刚性差。
车削时工件受到切削力、细长的工件由于自重下垂、高速旋转时受到离心力等都极易使其产生弯曲变形。
3)表面质量难以保证。
由于工件自重、变形、振动影响工件圆柱度和表面粗糙度。
以下主要针对上面的三个加工特点来谈谈如何有效的提高细长轴的加工质量。
二、如何预防细长轴车削加工变形的措施(一)减小热变形伸长车削时,因切削热传导给工件,使工件温度升高,工件就开始伸长变形,如车削直径φ50mm,长度L=1500mm的细长轴,材料为45#钢,车削时因切削热的影响,使工件比室温升高30℃,则细长轴热变形伸长量△L=11.59×10-6(45#钢的线膨胀系数)×1500×30=0.522mm 车削细长轴时,如果用两顶尖或用一端夹住一端顶住的方法加工,它的轴向位置是固定的,热变形伸长0.522mm,工件只能本身弯曲,细长轴一旦产生弯曲后加工就很难进行。
细长轴车削方法机械系袁凤艳摘要本文对加工细长轴时的受力和变形进行了分析,讨论了影响细长轴加工精度的因素,并从装夹方式、刀具角度、切削用量,以及新加工方法等方面阐述了提高细长轴加工精度的措施,得出切削细长轴减少其弯曲变形,保证轴的加工精度的基本方法关键词细长轴锥形车削方法刀具选择(一)前言细长轴的直径和长度之比(L/D)一般都大于20,车削时机床—工件—刀具工艺系统的刚性较差,工件极易弯曲且产生振动,特别是加工锥形部分刚度更差。
另外,由于细长轴热扩散性差,切削过程中切削热使工件产生的线膨胀,也会使工件容易产生腰鼓形、麻花形、竹节形等缺陷,不易获得满意的表面粗糙度及几何精度。
因此车削细长轴,尤其上锥形细长轴时,关键是要提高工艺系统的刚度,这对刀具、机床、辅助工具和工艺方法均有较高要求。
(二)车削细长轴常见的工件缺陷细长轴的定义:当工件长度跟直径直比大于20~25倍(L/d>20~25)时,称为细长轴。
常见的工件缺陷产生原因及削除方法:1.弯曲1)坯料自重和本身弯曲。
应经校直和热外省处理。
2)工件装夹不良,尾座顶尖与工件中心孔顶得过紧。
3)刀具几何参数和切削用量选择不当,造成切削力过大。
可减小切削深度,增加进给次数。
4)切削时产生热变形。
应采用冷却润滑液。
5)刀尖与支承块间距离过大。
应不超过2mm为宜。
2.竹节形1)在调整和修磨跟刀架支承块后,接刀不良,使第二次和第一次进给的径向尺寸不一致,引起工作全长上出现与支承块宽度一致的击期性直径变化。
当削中出现轻度竹节形时,可调节上侧支承块的压紧力,也可调节中拖板手柄,改变切削浓度或减少车床大拖板和中拖板间的间隙。
2)跟刀架外侧支承块调整过紧,易在工件中段出现周期性直径变化,应调整压紧,使支承块与工件保持良好接触。
3.多边形1)跟刀架支承块与工件表面接触不良,留有间隙,使工件中心偏离旋转中心。
应合理选用跟刀架结构,正确修磨支承块弧面,使其与工件良好接触。
关键词:细长轴;工艺规划;装夹方式;插补;冷却液引言在机械加工中,一般将长度与直径之比(L/D)大于20的轴类零件称为细长轴[1]。
由于细长轴刚性差,在加工过程中由于切削力和切削热的作用,容易产生弯曲变形,改变规划的刀具和零件相对运动轨迹,加工后也常常会出现竹节、凸肚、锥形等加工缺陷[2],使工件尺寸精度和表面粗糙度达不到设计要求,废品率高,效率低。
为解决上述问题,国内外众多学者做了多方面研究,提出了一系列解决方案。
刘旭[3]在研究细长轴加工时将尾座顶尖换成弹性回转顶尖,有效避免尾座顶尖卡死现象。
黄小东等[4]为了解决细长轴加工中振动较大,对心不准,表面质量差的问题,设计了一种双头带锥度车削专用机床,大大提高了生产效率。
马伏波等[5]建立了正向走刀和反向走刀车削细长轴误差计算数学公式,为提高加工精度提供了理论依据。
王小翠等[6]分析了装夹方式对工件挠曲变形的影响,提出了切削用量优化及加工变形误差补偿方案,实现柔性工件的高效精密数控加工。
胡月明[7]提出了采用数控随动支架控制细长轴的挠度变形,保证了背吃刀量在切削过程中的稳定性,进而保证加工精度。
韩荣第等[8]设计了专用的跟刀架,使工件的加工精度和表面粗糙度得到大幅度提高。
Shawky等[9]设计了传感器实时监测细长轴的壁厚,对车刀的切削位置进行闭环控制,来提高细长轴的加工质量。
Choudhury等[10]设计了刀具在线振动检测及减振系统,通过光纤传感器,将测量的刀具相对于工件的变化位移传递给振动控制组件,振动控制组件产生力来减小这种变化以此减少振动。
学者的研究成果在一定程度上解决了细长轴加工中的一些问题,但某公司在做“分拣工作站”项目时,需要细长轴,现有方案要么条件不具备,要么方案不可行。
因此,在加工该轴时,减小加工装夹时的长径比,加工另一端时配合软爪,在零件出现尺寸超差时灵活运用圆弧插补和直线插补相结合的插补方式进行编程。
利用现有机床设备,该工艺方案可加工出符合设计要求的细长轴。
浅谈细长轴车削加工细长轴是指其长度远大于直径的轴。
细长轴的车削加工是现代制造业中常见的一种加工方式,广泛应用于汽车、航空航天、机械、电子和能源等领域。
本文将从细长轴的特点、加工过程以及常见问题等方面进行讨论。
细长轴的特点主要有以下几点:1. 长大于直径:细长轴的长度远大于其直径,这使得加工过程中需要应对较大的挠度和变形问题。
2. 材料切削量大:由于轴的长度较长,每个切削点上的切削力相对较大,这会导致工件变形、扭曲和振动等问题。
3. 刚度较低:由于细长轴的直径较小,其刚度往往较低,不易保持其原有形状。
细长轴的加工过程较为复杂,需要采取一系列的工艺措施来保证加工质量和工件形状的精度。
1. 合理选择切削工艺参数:在细长轴的车削加工中,需要注意选择合适的刀具材料、刀具尺寸和切削参数等,以减小切削力和工件变形的影响。
2. 优化切削路径:细长轴的加工过程中,应尽量减小车刀在工件上的运动距离,避免在工件两端长时间停留,以减小挠度和变形的风险。
3. 采用适当的工装夹紧:细长轴车削加工中,由于工件的长度较大,容易出现振动和变形等问题,因此应采取适当的夹紧工装,保证工件的稳定和刚性。
4. 补偿刀具磨损:由于细长轴的加工过程中刀具磨损较快,会导致工件形状和尺寸的变化,因此需要及时检测和补偿刀具磨损。
细长轴的车削加工是一个较为复杂的工艺过程,需要工程师和技术人员在加工过程中综合考虑材料特性、切削工艺参数和机床等因素,并采取相应的解决措施来保证加工质量和工件形状的精度。
随着科技的发展和加工技术的不断改进,细长轴的加工质量将得到进一步提高,为实现工业制造的高精度和大规模生产提供更好的保障。
细长轴的车削加工技巧【摘要】本文介绍了细长轴的加工特点,详细分析了影响加工质量的各种因素,并从装夹、刀具的几何参数、加工方法等方面采取了系统有效的措施,保证达到细长轴的设计精度。
【关键词】细长轴;刀具;装夹;车削方法1.细长轴的加工特点(1)细长轴是指长径比大于25的杆类零件。
由于刚性差,在车削时径向切削力使轴弯曲,中间切削量小,产生腰鼓形,影响工件精度。
(2)由于自重和切削力作用,使工件振动,圆柱度和粗糙度差。
(3)在高速旋转时,由于离心力的作用,加剧了工件的弯曲和振动。
(4)细长杆长度过大,一次进时间长,切削热大部分传给工件,温度升高,产生轴向伸长变形,使工件弯曲,影响加工质量。
例如:轴外圆?35、长度L=1200mm,材料为45。
车削时工件温度从室温(21°C)升高到61°C(若工件冷却不足,会达到100°C以上),工件伸长可达0.56mm,这个伸长量若不能从顶尖处释放出来,就会产生偏心距0.56mm的变形,使轴中间部分严重超差,导致报废。
2.车削细长轴的装夹方法细长轴的装夹方法对质量影响非常大,下边分别加以介绍。
(1)中心架。
为提高刚性,在工件中间用一个甚至几个中心架,使工件支撑点间的距离减少,使刚性提高几倍,减小弯曲变形。
当轴径过小,或精度低,或异形时,可配过渡套,用调节螺钉调中心,过渡套外径精度要高,粗糙度要低,中心架夹持过渡套,可方便装夹,提高定位精度,特别是解决异形圆柱面的装夹问题。
安装中心架的架位,在工件两端用百分表测量合适后在架,架位先精车一刀,防止架偏。
(2)跟刀架。
一般用两只卡爪就可以了,但加工细长轴时,由于刚性差,工件本身的重力引起弯曲变形,所以跟刀架要做成三只卡爪,在下面多一个卡爪,三个爪和车刀共同撑着工件,使之上下、左右都不能移动,有利于车削加工。
跟刀架和中心架的卡爪圆弧面要进行修整、研磨,使之与工件外圆吻合,其与工件接触适宜,过紧过松都对车削不利。
细长轴车削加工方法和技巧在机械加工过程中,有很多轴类零件的长径比L/d>25。
在切削力、重力和顶尖顶紧力的作用下,横置的细长轴很容易弯曲甚至失稳,因此,车削细长轴时必须改善细长轴的受力问题。
加工方法:采用反向进给车削,选用合理的刀具几何参数、切削用量、拉紧装置和轴套式跟刀架等一系列有效措施。
一、车削细长轴产生弯曲变形的因素分析在车床上车削细长轴采用的传统装夹方式主要有两种,这里主要说说一夹一顶安装。
通过实际加工分析,车削引起细长轴弯曲变形的原因主要有:1、切削力导致变形在车削过程中,产生的切削力可以分解为轴向切削力P X、径向切削力P Y及切向切削力P Z。
不同的切削力对车削细长轴时产生弯曲变形的影响是不同的。
2、切削热产生的影响加工产生的切削热,会引起工件热变形伸长。
由于在车削过程中,卡盘和尾架顶尖都是固定不动的,因此两者之间的距离也是固定不变的。
这样细长轴受热后的轴向伸长量受到限制,导致细长轴受到轴向挤压而产生弯曲变形。
二、提高细长轴加工精度的措施1、选择合适的装夹方法在车床上车削细长轴采用的两种传统装夹方式中,采用双顶尖装夹,工件定位准确,容易保证同轴度。
但用该方法装夹细长轴,其刚性较差,细长轴弯曲变形较大,而且容易产生振动.因此只适宜于安装长径比不大、加工余量较小、同轴度要求较高的工件。
采用跟刀架和中心架,虽然能够增加工件的刚度,基本消除径向切削力对工件的影响。
但还不能解决轴向切削力把工件压弯的问题,特别是对于长径比较大的细长轴,这种弯曲变形更为明显。
因此可以采用轴向拉夹法车削细长轴。
轴向夹拉车削是指在车削细长轴过程中,细长轴的一端由卡盘夹紧,另一端由专门设计的夹拉头夹紧,夹拉头给细长轴施加轴向拉力,2、采用合理的车削方法采用反向切削法车削细长轴。
这样在加工过程中产生的轴向切削力使细长轴受拉,消除了轴向切削力引起的弯曲变形。
同时,采用弹性的尾架顶尖,可以有效地补偿刀具至尾架一段的工件的受压变形和热伸长量,避免工件的压弯变形。
车工技师论文 车工职业文章
文章类型: 技师论文
文章题目:细长轴的加工技术方法 * 名: ** 职 业: 不落轮镟床工 准考证号: 工作单位:长沙市轨道交通运营有限公司
2015年9月8日细长轴的加工技术方法 长沙市轨道交通运营有限公司 杨强 摘要:由于细长轴在加工中刚性差,在切削时受切削力、重力、切削热等因素影响产生弯曲变形,产生震动、锥度、腰鼓形和竹节形等缺陷,难以保证加工精度。通过分析细长轴加工各关键技术问题对细长轴加工的影响,找到改进方法,从而提高细长轴加工的精度,保证合格率。 关键字:细长轴 技术问题 加工方法 精度
引言 通常轴的长度与之直径比大于20~25(即L/d≥20~25)的轴称之为细长轴。这类零件一般在车床上进行加工。在车削加工过程中,由于其刚性差,在切削力和切削热的作用下,细长轴很容易产生弯曲变形,使加工出来的细长轴产生中间粗、两头细的形状,严重影响零件的加工精度。同时细长轴产生弯曲变形后,还会引起工艺系统振动,影响零件的粗糙度。 在切削力、重力和顶尖顶紧力的作用下, 横置的细长轴很容易弯曲甚至失稳, 因此, 车削细长轴时必须改善细长轴的受力问题。 加工方法: 采用反向进给车削, 选用合理的刀具几何参数、切削用量、拉紧装置和轴套式跟刀架等一系列有效措施。
一、提出问题 细长轴是机器上的重要零件之一.用来支配机器中的传动零件,使传动零件有确定的工作位置,并且传递运动和转矩。当轴的长度与直径之比L/D>25时,轴称为细长轴。“车工怕杆。钳工怕眼’’是人们熟悉的口头语。也就是说,由于细长轴的加工精度要求高,但细长轴本身的结构特点使之刚性差、振动大,所以加工起来存在一定的难度。其加工特点如下: 1、细长轴刚性很差。在车削加工时,如果装夹不当,很容易因切削力及重力的作用而产生弯曲变形,从而引起振动,降低加工精度和表面粗糙度。 2、细长轴的散热性差。在切削热的作用下。工件轴向尺寸会变热伸长,如果轴的两端为固定支承,则会因变挤而产生弯曲变形,甚至会使工件卡死在顶尖间而无法加工。 3、工件高速旋转时,在离心力作用下,加剧工件弯曲与振动。 4、细长轴轴向尺寸较长,加工时一次给所需时间长。刀具磨损大,从而影响零件的几何形状精度。
二、分析细长轴车削加工时受力变形的主要原因 在车床上车削细长轴采用的传统装夹方式主要有两种:一种方式是细长轴的一端用卡盘夹紧,另一端用车床尾架顶尖支承(一夹一顶);另一种方式是细长轴的两端均由顶尖支撑(双顶尖)。通过分析研究,车削引起细长轴弯曲变形的原因主要有: 1、切削力导致变形 在车削过程中,产生的切削力可以分解为轴向切削力Px、径向切削力Pz。不同的切削力对车削细长轴时产生弯曲变形的影响是不同的。 (1)径向切削力Pz的影响 径向切削力是垂直作用在通过细长轴轴线水平平面内的,由于细长轴的刚性较差,径向力将会把细长轴顶弯,使其在水平面内发生弯曲变形.径向切削力对细长轴弯曲变形的影响(见图1)。
图 1 一夹一顶装夹方式及力学模型 (2)轴向切削力Px的影响 轴向切削力是平行作用在细长轴轴线方向上的,它对工件形成一个弯矩。对于一般的车削加工,轴向切削力对工件弯曲变形的影响并不大,可以忽略。但是由于细长轴的刚性较差,其稳定性也较差,当轴向切削力超过一定数值时,将会把细长轴压弯而发生纵向弯曲变形(如图2)。
图2 径向切削力的影响及力学模型 2、切削热产生的影响 车削加工产生的切削热,会引起工件热伸长。由于在车削过程中,卡盘和尾架顶尖都是固定不动的,因此两者之间的距离也是固定不变的。这样细长轴受热后的轴向伸长量受到限制,导致细长轴受到轴向挤压而产生弯曲变形。 因此可以看出,提高细长轴的加工精度问题,实质上就是控制工艺系统的受力及受热变形的问题。
三、提高细长轴加工精度的措施 1、机床的调整 细长轴的加工过程需要使用床身导轨的全部或大部分,因此机床本身的精度对加工效率、质量有着相当重要的影响。由于机床导轨面磨损程度不同,因此首先要对机床做适当的调整。使主轴中心和尾座顶尖中心线与导轨全长平行。 2、棒料的校直 对于精度要求高的零件要采用热校直法校直棒料,不宜冷校直,忌锤击。 3、选择合适的装夹方法 (1)两顶尖装央定位准确,容易保证工件轴度要求。但该方法车削刚性较差,要求顶紧力适当,否则弯曲变形大,而且极易产生振动。只适宜于长度与直径比不很大,加工余量小,需要多次以两顶尖孔定位来保证同轴度要求的工件加工。 (2)一端用卡盘夹紧,另一端用顶尖顶紧顶尖顶得太紧,工件切削时变热伸长变阻,将引起轴变形弯曲;顶尖顶得太松,则稳定性差,另外,顶尖孔与装夹基面往往不同轴,会形成装夹的过定位而使工件弯曲。此时.可在三爪卡盘与工件问垫入—个开口钢丝圈,使工件与卡爪成线接触,使细长轴在自由状态下定位夹紧,不会产生内应力。此外,后顶尖还可以采用弹性活顶尖,使工件变热伸长时不变阻,以减少弯曲变形 (3)一夹一拉装夹细长轴在车削过程中工件始终受到轴向拉力,因切削热而产生的轴向伸长量,可用后尾座手轮进行调整,这是加工细长轴比较理想的一种装夹方法 4、增加细长轴的刚性,减小车削时的振动,使用中心架和跟刀架来解决 使用跟刀架或中心架的加工特点: 车细长轴时由于使用跟刀架,若支承工件的两个支承块对零件压力不适当,会影响加工精度。若压力过小或不接触,就不起作用,不能提高零件的刚度:若压力过大,零件被压向车刀,切削深度增加,车出的直径就小,当跟刀架继续移动后,支承块支承在小直径外圆处,支承块与工件脱离,切削力使工件向外让开,切削深度减小,车出的直径变大,以后跟刀架又跟到大直径圆上,又把工件压向车刀,使车出的直径变小,这样连续有规律的变化,就会把细长的工件车成“竹节”形。造成机床、工件、刀具工艺系统的刚性不良给切削加工带来困难,不易获得良好的表面粗糙度和几何精度。 (1)当工件可分段车削时,中心架直接支承在工件中间。采用这种支承,长度与直径之比可以减少一半,相当于减少了轴与支承跨距,细长轴的刚度可以增加几倍,能有效防止轴加工时的绕曲变形(见图3-1)。
图3-1 中心架的装夹方法 (2)跟刀架固定在床鞍上,一般有两个或三个支承爪,跟刀架可以跟随车刀移动,抵消径向切削时可以增加工件的刚度,减少变形。从而提高细长轴的形状精度和减小表面粗糙度。跟刀架是加工细长轴及其重要的附件。跟刀架的形式很多,但不管是哪种,其中心都必须与卡盘、尾座顶尖处于同一中心上(如图3-2)。必要时可将圆柱铰刀或圆柱铣刀支持在三爪卡盘上,对跟刀架支撑头进行修正。加工细长轴时最好采用三支柱的跟刀架,支柱的材料为普通铸铁,因为这种材料的磨损较小能保证加工精度,而且不会研伤工件表面,能提高工件表面的光洁度。跟刀架爪与工件表面要接触良好,其压力大小是由操作者手感控制,不得过紧或过松。过紧,工件随着走刀,会产生竹节形误差,表面粗糙度加大;过松,工件容易跳动产生椭圆形、三菱形、竹节形等误差,表面粗糙度也会增大。
图3-2 跟刀架 5、减小热变形伸长影响 车削时,因切削热传导给工件,使工件温度升高,工件就开始变形伸长,其热变形伸长量为
tLL1 式中: 1为材料的线膨胀系数;
L为工件总长; t为工件升高的温度。 如前所述,车削细长轴时,一般用两顶尖或一端夹紧,另一端顶紧的方法加工,其轴向位置是固定的,如果工件变热伸长了dL,工件就受挤压弯曲,一旦产生弯曲后,细长轴就很难进行加工,因此,加工细长轴时,需采取措施以减小热变形的影响: (1)使用弹性回转顶尖来补偿热变形伸长实践证明,用弹性回转顶尖加工细长轴,可有效的补偿工件的热变形伸长,工件不易弯曲,车削可顺利进行。 (2)采用反向进给车削反向进给是指刀具从床头到床尾方向作切削运动。常规的切削方向使尾架的顶紧轴向力与切削轴向力B方向一致,加剧了细长轴工件的弯曲。若反向进给,其轴向分力只对工件产生的拉力,使工件已加工部分轴向拉伸,与工件变热伸长方向一致,共同向弹性顶尖压缩。为取得最佳效果,反向进给和弹性顶尖一般配合使用。 (3)加注充分的切削液车削细长轴时.无论是低速切削还是高速切削,使用切削液进行冷却,能有效地抑制工件温度上升,从而控制热变形。 (4)刀具应经常保持锐利状态,以减小刀具与工件的摩擦发热。
6、采用适当的车削方法 (1)一夹一顶上中心架,或两顶尖上中心架,正装车刀车削,适用于允许调头接刀车削的工件。 (2)一夹一顶上跟刀架,正装车刀车削,适用于不允许调头接刀车削的工件。两爪跟刀架不适用于高速切削,三爪跟刀架适用于高速切削。 (3)一夹一顶或一夹一拉,卡盘央紧面用开口钢丝圈,上跟刀架,反向进给,适用于精车长径比大于50倍的轴(见图3-3)。
图3-3 (4)双刀切削法。采用双刀车削细长轴改装车床中溜板,增加后刀架,采用前后两把车刀同时进行车削。两把车刀,径向相对,前车刀正装,后车刀反装。两把车刀车削时产生的径向切削力相互抵消。工件受力变形和振动小,加工精度高,适用于批量生产(见图3-4)。
图3-4 双刀车削细长轴 (5) 双顶尖法装夹法。采用双顶尖装夹,工件定位准确,容易保证同轴度。但用该方法装夹细长轴,其刚性较差,细长轴弯曲变形较大,而且容易产生振动.因此只适宜于长径比不大、加工余量较小、同轴度要求较高、多台阶轴类零件的加工。 (6)采用反向切削法车削细长轴。反向切削法是指在细长轴的车削过程中,车刀由主轴卡盘开始向尾架方向进给。在加工过程中产生的轴向切削力使细长轴受拉,消除了轴向切削力引起的弯曲变形。同时,采用弹性的尾架顶尖,可以有效地补偿刀具至尾架一段的工件的受压变形和热伸长量,避免工件的压弯变形 7、适当的控制切削用量。加工时,冷却液的浇淋要充分。 切削用量选择的是否合理,对切削过程中产生的切削力的大小、切削热的多少是不同的。因此对车削细长轴时引起的变形也是不同的。 (1)切削深度(t) 在工艺系统刚度确定的前提下,随着切削深度的增大,车削时产生的切削力、切削热随之增大,引起细长轴的受力、受热变形也增大。因此在车削细长轴时,应尽量减少切削深度 (2)进给量(f) 进给量增大会使切削厚度增加,切削力增大。但切削力不是按正比增大,因此细长轴的受力变形系数有所下降.如果从提高切削效率的角度来看,增大进给量比增大切削深度有利。