2020年中考数学一轮复习基础考点专题10二次根式(含解析)
- 格式:docx
- 大小:13.42 KB
- 文档页数:15
中考数学必考知识点复习演练:二次根式一、选择题1.要使二次根式有意义,字母x的取值必须满足()A. x≥0B.C.D.2.下列各式中最简二次根式为()A. B. C. D.3.已知是整数,a是正整数,a的最小值是()A. 0B. 3C. 6D. 244.函数y= 的自变量x的取值范围在数轴上可表示为()A. B. C. D.5.下列运算中正确的是()A. ﹣=B. 2 +3 =6C. ÷ =D. (+1)(﹣1)=36.下面哪个数的倒数是()A. B. -5 C. D. 57.下列二次根式中,能与合并的是()A. B. C. D.8.若等腰三角形的两边长分别为2 和3 ,则这个三角形的周长是( )A. 4 +3B. 2 +6C. 4 +3 或2 +6D. 4 +69.下列计算正确的是().A. B. C. D.10.下列运算正确的是()A. ﹣=B. =2C. ﹣=D. =2﹣11.下列各实数中最大的一个是()A. 5×B.C.D. +12.设等式在实数范围内成立,其中a、x、y是两两不同的实数,则的值是()A. 3B.C. 2D.二、填空题13.计算﹣3 =________.14.当x取________时,2﹣的值最大,最大值是________.15.计算:﹣(﹣)=________.16.是整数,则最小的正整数a的值是________。
17.当取最小值时,a的值是________.18.(+ )﹣(﹣)=________.19.已知,,则代数式x2﹣3xy+y2的值为________ .20.把分母中的根号去掉,得到的最简结果是________(结果保留根号).21.某农户用5 米长的围栏围出一块如图所示的长方形土地(墙面是长方形土地的长),已知该长方形土地的宽为米,则该长方形土地的周长为________.三、解答题22.计算:(1);(2).23.计算:(1)÷ ﹣× +(2)(3 +2 )(3 ﹣2 )﹣(﹣)2.24.化简求值:(-)÷,其中x=2+.25.若x,y都是实数,且y=++1,求+3y的值.26.小明在学习后,认为也成立,因此他认为一个化简过程:是正确的,你认为他的化简过程对吗?说说理由.27.观察下列等式:第1个等式:a1= = ﹣1,第2个等式:a2= = ﹣,第3个等式:a3= =2﹣,第4个等式:a4= = ﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:a n=________;(2)a1+a2+a3+…+a n=________.参考答案一、选择题1.D2.D3.C4.D5. C6. B7. D8. C9. B 10.C 11.C 12. B二、填空题13.14.5;2 15.16.5 17.18.5 + 19.95 20.+1 21.7 米三、解答题22. (1)原式=2 +-2+2=3 ;(2)原式=2 +2+4-3=2 +3.23.(1)解:原式= ﹣+2 =4﹣+2=4+ ;(2)解:原式=18﹣12﹣(3﹣2 +2)=6﹣5+2=1+224.解:原式=×=.将x=2+代入,得原式==.25.解:由题意得:,解得:x=4,则y=1,+3y=2+3=5.26. 解:错误,原因是被开方数必须是非负数。
考点03 二次根式数学中考中,对二次根式的考察主要集中在对其取值范围、化简计算、坡比的应用几个方面;取值范围类考点多出选择填空等小题,而化简计算则多以简答题形式考察,还常和锐角三角函数、实数概念结合出题,属于中考必考题;考向一、二次根式的相关概念;考向二、二次根式的性质与化简考向三、二次根式的运算;考向四、二次根式的应用考向一:二次根式的相关概念1.平方根与二次根式【易错警示】1.下列式子一定是二次根式的是( )A.B.C.D.【分析】直接利用二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式分别分析得出答案.【解答】解:A、,a有可能小于0,故不一定是二次根式,不合题意;B、,若﹣1<b<1,a>1时,无意义,不合题意;C、,(a﹣1)2≥0,故一定是二次根式,符合题意;D、,若﹣1<a<1时,无意义,不合题意;故选:C.2.12的平方根为 ± .【分析】由平方根的概念即可求解.【解答】解:12的平方根为±,故答案为:±.3.的算术平方根是( )A.5B.﹣5C.D.【分析】一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.【解答】解:∵=5,∴的算术平方根是.故选:C.4.若(a +)2与|b ﹣1|互为相反数,则a +b 的值是( )A .B .+1C .﹣1D .1﹣【分析】先根据非负数的性质求出a ,b 的值,进而可得出结论.【解答】解:∵(a +)2与|b ﹣1|互为相反数,∴(a +)2+|b ﹣1|=0,∴a +=0,b ﹣1=0,∴a =﹣,b =1,∴a +b =+1.故选:B .5.已知n 是一个正整数,且是整数,那么n 的最小值是( )A .6B .36C .3D .2【分析】先把=2,从而判断出6n 是完全平方数,所以得出答案正整数n 的最小值是6.【解答】解:=2,则6n 是完全平方数,∴正整数n 的最小值是6,故选:A .2..同类二次根式与最简二次根式【易错警示】、都是二次根式。
专题04 二次根式的运算1.二次根式:形如式子a (a ≥0)叫做二次根式。
(或是说,表示非负数的算术平方根的式子,叫做二次根式)。
2.二次根式有意义的条件:被开方数≥0 3.二次根式的性质: (1)是非负数;(2)(a )2=a (a ≥0);(3)==a a 2(4)非负数的积的算术平方根等于积中各因式的算术平方根的积, 即=·(a ≥0,b ≥0)。
(5)非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即= (a ≥0,b>0)。
反之,4.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
5.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
6.分母有理化:分母有理化就是通过分子和分母同乘以分母的有理化因式,将分母中的根号去掉的过程,混合运算中进行二次根式的除法运算,一般都是通过分母有理化而进行的。
7.分母有理化的方法:分子分母同乘以分母的有理化因式。
8.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。
())0,0(0,0>≥=≥≥=⨯b a b ab a b a ab b a 专题知识回顾(>0)(<0)0 (=0);9.找有理化因式的方法:(1)分母为单项式时,分母的有理化因式是分母本身带根号的部分。
如:①的有理化因式为,②的有理化因式为。
(2)分母为多项式时,分母的有理化因式是与分母相乘构成平方差的另一部分。
即的有理化因式为,的有理化因式为,的有理化因式为10.二次根式的加减,先把各个二次根式化成最简二次根式,再将同类二次根式分别合并。
一般地,二次根式的加减法可分以下三个步骤进行:(1)将每一个二次根式都化简成最简二次根式(2)判断哪些二次根式是同类二次根式,把同类二次根式结合成一组(3)合并同类二次根式11.二次根式的乘法两个二次根式相乘,把被开方数相乘,根指数不变,即(≥0,≥0)。
2020年全国中考数学试题精选50题:分式、二次根式一、单选题1.(2020·绵阳)若有意义,则a的取值范围是()A. a≥1B. a≤1C. a≥0D. a≤﹣12.(2020·淄博)化简的结果是()A. a+bB. a﹣b C.D.3.(2020·威海)人民日报讯,2020年6月23日,中国成功发射北斗系统第55颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统投时精度达到了十亿分之一秒,十亿分之一用科学记数法可以表示为()A. B.C.D.4.(2020·威海)分式化简后的结果为()A. B.C.D.5.(2020·滨州)冠状病毒的直径约为80~120纳米,1纳米=米,若用科学记数法表示110纳米,则正确的结果是()A. 米B.米 C.米 D. 米6.(2020·鄂尔多斯)二次根式中,x的取值范围在数轴上表示正确的是()A. B. C.D.7.(2020·赤峰)2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.000 000 009 9秒.数据“0. 000 000 009 9”用科学记数法表示为()A. B.C.D.8.(2020·云南)下列运算正确的是()A. B.C. D.9.(2020·南通)下列运算,结果正确的是()A. B.C. D.10.(2020·上海)下列各式中与是同类二次根式的是()A. B.C.D.11.(2020·呼和浩特)下列运算正确的是()A.B.C. D.12.(2020·包头)的计算结果是()A. 5B.C.D.13.(2020·包头)下列计算结果正确的是()A. B.C. D.14.(2020·长沙)下列运算正确的是()A. B.C. D.15.(2020·邵阳)下列计算正确的是()A.B.C.D.16.(2020·郴州)下列运算正确的是()A. B.C. D.17.(2020·郴州)年月日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心点火升空.北斗卫星导航系统可提供高精度的授时服务,授时精度可达纳秒(秒= 纳秒)用科学记数法表示纳秒为()A. 秒B.秒 C.秒 D. 秒18.若关于x的分式方程=+5的解为正数,则m的取值范围为()A. m<﹣10B. m≤﹣10 C. m≥﹣10且m≠﹣6 D. m>﹣10且m≠﹣6二、填空题19.(2020·眉山)关于x的分式方程的解为正实数,则k的取值范围是________.20.(2020·东营)2020年6月23日9时43分,“北斗三号”最后一颗全球组网卫星发射成功,它的授21.(2020·永州)在函数中,自变量x的取值范围是________.22.(2020·南县)若计算的结果为正整数,则无理数m的值可以是________.(写出一个符合条件的即可)23.(2020·昆明)要使有意义,则x的取值范围是________.24.(2020·营口)(3 + )(3 ﹣)=________.25.(2020·山西)计算:________.26.(2020·呼和浩特)分式与的最简公分母是________,方程的解是________.27.(2020·包头)计算:________.28.(2020·包头)在函数中,自变量的取值范围是________.29.(2020·邵阳)在如图方格中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则2个空________.21 6330.(2020·郴州)若分式的值不存在,则________.31.(2020·黑龙江)在函数中,自变量x的取值范围是________.三、计算题32.(2020·眉山)先化简,再求值:,其中.33.(2020·烟台)先化简,再求值:÷ ,其中x=+1,y=﹣1.34.(2020·滨州)先化筒,再求值:其中35.(2020·呼伦贝尔)先化简,再求值:,其中.36.(2020·鄂尔多斯)(1)解不等式组,并求出该不等式组的最小整数解.(2)先化简,再求值:()÷ ,其中a满足a2+2a﹣15=0.37.(2020·赤峰)先化简,再求值:,其中m满足:.38.(2020·永州)先化简,再求值:,其中.39.(2020·南县)先化简,再求值:,其中40.(2020·云南)先化简,再求值:,其中.41.(2020·营口)先化简,再求值:(﹣x)÷ ,请在0≤x≤2的范围内选一个合适的整数代入求值.42.(2020·宿迁)先化简,再求值:÷(x﹣),其中x=﹣2.43.(2020·南通)计算:(1)(2m+3n)2﹣(2m+n)(2m﹣n);(2)44.(2020·娄底)计算:45.(2020·郴州)计算:46.(1)计算:sin30°+ ﹣(3﹣)0+|﹣|(2)因式分解:3a2﹣4847.(2020·长沙)先化简,再求值,其中48.(2020·娄底)先化简,然后从,0,1,3中选一个合适的数代入求值.49.(2020·山西)(1)计算:(2)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.第一步第二步第三步第四步第五步第六步任务一:填空:①以上化简步骤中,第________步是进行分式的通分,通分的依据是________或填为________;②第________步开始出现不符合题意,这一步错误的原因是________;(3)任务二:请直接写出该分式化简后的正确结果;解;.任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.50.(2020·通辽)用※定义一种新运算:对于任意实数m和n ,规定,如:.(1)求;(2)若,求m的取值范围,并在所给的数轴上表示出解集.答案解析部分一、单选题1.【答案】 A【解析】【解答】解:若有意义,则,解得:.故答案为:A.【分析】直接利用二次根式有意义的条件分析得出答案.2.【答案】 B【解析】【解答】解:原式====a﹣b.故答案为:B.【分析】跟据同分母分式相加减的运算法则计算.同分母分式相加减,分母不变,分子相加减.3.【答案】 B【解析】【解答】,故答案为:B.【分析】根据科学记数法的表示形式(n为整数)进行表示即可求解.4.【答案】 B【解析】【解答】解:故答案为:B.【分析】根据异分母分式相加减的运算法则计算即可.异分母分式相加减,先通分,再根据同分母分式相加减的法则计算.5.【答案】 C【解析】【解答】解:110纳米=110×10-9米=1.1×10-7米.故答案为:C.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.6.【答案】 D【解析】【解答】解:根据题意得3+x≥0,解得:x≥﹣3,故x的取值范围在数轴上表示正确的是.故答案为:D .【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.7.【答案】 C【解析】【解答】解:0. 000 000 009 9用科学记数法表示为.8.【答案】 D【解析】【解答】解:A. ,故本选项错误;B. ,故本选项错误;C. ,故本选项错误;D. ,故本选项正确;故答案为:D.【分析】根据一个正数的正的平方根就是该数的算术平方根即可判断A;根据与互为倒数即可判断B;根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘即可判断C;根据同底数幂的除法,底数不变,指数相减即可判断D.9.【答案】 D【解析】【解答】解:A. 与不是同类二次根式,不能合并,此选项错误;B.3与不是同类二次根式,不能合并,此选项错误;C. ,此选项错误;D. ,此选项计算正确.故答案为:D.【分析】(1)由同类二次根式的定义可知与不是同类二次根式,所以不能合并;(2)同理可知不能合并;(3)由二次根式的除法法则可得原式=;(4)由二次根式的乘法法则可得原式=.10.【答案】 C【解析】【解答】解:A、和是最简二次根式,与的被开方数不同,故A选项不符合题意;B、,3不是二次根式,故B选项不符合题意;C、,与的被开方数相同,故C选项符合题意;D、,与的被开方数不同,故D选项不符合题意;故答案为:C.【分析】根据同类二次根式的概念逐一判断即可.11.【答案】 C【解析】【解答】解:A、,不符合题意;B、,不符合题意;C、=== ,符合题意;D、,不符合题意;故答案为:C.【分析】分别根据二次根式的乘法,幂的乘方和积的乘方,分式的混合运算,分式的除法法则判断即可.12.【答案】 C【解析】【解答】= ,故答案为:C.【分析】根据二次根式的运算法则即可求解.13.【答案】 D【解析】【解答】解:A. ,故A选项不符合题意;B. ,故B选项不符合题意;C. ,故C选项不符合题意;D. ,故D选项符合题意.故答案为D.【分析】根据幂的乘方、积的乘方、单项式除法、分式加法以及分式乘除混合运算的知识逐项排除即可.14.【答案】 B【解析】【解答】解:A、,故本选项不符合题意;B、,故本选项符合题意;C、,故本选项不符合题意;D、,故本选项不符合题意.故答案为:B.【分析】根据合并同类项,系数相加字母和字母的指数不变;同底数幂的除法,底数不变指数相减;二次根式的乘法计算;幂的乘方,底数不变,指数相乘,利用排除法求解.15.【答案】 D【解析】【解答】解:A. ,故A选项不符合题意;B. ,故B选项不符合题意;C. ,故C选项不符合题意;D. ,故D选项符合题意.故答案为D.【分析】分别运用二次根式、整式的运算、分式的运算法则逐项排除即可.16.【答案】 A【解析】【解答】A. ,计算符合题意,符合题意;B. ,故本选项不符合题意;C. ,故本选项不符合题意;D. 不能计算,故本选项不符合题意;故答案为:A.【分析】根据积的乘方、同底数幂的乘法、二次根式的减法以及合并同类项法则进行计算得出结果进行判断即可.17.【答案】 A【解析】【解答】∵1秒=1000000000纳秒,∴10纳秒=10÷1000000000秒=0.000 00001秒=1×10-8秒.故答案为:A.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.18.【答案】 D【解析】【解答】解:去分母得,解得,由方程的解为正数,得到,且,,则m的范围为且,二、填空题19.【答案】 k>-2且k≠2【解析】【解答】解:方程两边同乘(x-2)得,1+2x-4=k-1,解得,,且故答案为:且【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.20.【答案】【解析】【解答】因为,故答案为:.【分析】根据科学记数法表示较小的数,一般形式为,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定,进而求解.21.【答案】x≠3【解析】【解答】∵在函数中,x-3≠0,∴x≠3.故答案是:x≠3.【分析】根据分式有意义的条件,即可求解.22.【答案】(答案不唯一)【解析】【解答】解:∵ ,∴ 时的结果为正整数,故答案为:(答案不唯一).【分析】根据为12,即可得到一个无理数m的值.23.【答案】x≠﹣1【解析】【解答】解:要使分式有意义,需满足x+1≠0.即x≠﹣1.故答案为:x≠﹣1.【分析】根据分式的分母不能为0,建立不等式即可求解.24.【答案】 12【解析】【解答】解:原式=(3 )2﹣()2=18﹣6=12.故答案为:12.【分析】直接利用平方差公式去括号,再根据二次根式的性质化简,最后利用有理数的减法计算得出答案.25.【答案】 5【解析】【解答】原式=2+2 +3−2 =5.故答案为5.【分析】灵活运用完全平方公式进行求解.26.【答案】;x=-4【解析】【解答】解:∵ ,∴分式与的最简公分母是,方程,去分母得:,去括号得:,移项合并得:,变形得:,解得:x=2或-4,∵当x=2时,=0,当x=-4时,≠0,∴x=2是增根,∴方程的解为:x=-4.【分析】根据最简公分母的定义得出结果,再解分式方程,检验,得解.27.【答案】【解析】【解答】解:=== .故答案为.【分析】先将乘方展开,然后用平方差公式计算即可.28.【答案】【解析】【解答】在函数中,分母不为0,则,即,故答案为:.【分析】在函数中,分母不为0,则x-3≠0,求出x的取值范围即可.29.【答案】【解析】【解答】解:由题意可知,第一行三个数的乘积为:,设第二行中间数为x ,则,解得,设第三行第一个数为y ,则,解得,∴2个空格的实数之积为.故答案为:.【分析】先将表格中最上一行的3个数相乘得到,然后中间一行的三个数相乘以及最后一行的三个数相等都是,即可求解.30.【答案】 -1【解析】【解答】∵分式的值不存在,∴x+1=0,解得:x=-1,故答案为:-1.【分析】根据分式无意义的条件列出关于x的方程,求出x的值即可.31.【答案】【解析】【解答】解:函数中:,解得:.故答案为:.【分析】直接利用二次根式和分式有意义的条件列出不等式组求解即可.三、计算题32.【答案】解:原式,,.当时,原式【解析】【分析】首先计算小括号里面的分式的减法,然后再计算括号外分式的除法,化简后,再代入a 的值可得答案.33.【答案】解:÷=÷=×=当x=+1,y=﹣1时原式==2﹣.【解析】【分析】根据分式四则运算顺序和运算法则对原式进行化简÷ ,得到最简形式后,再将x=+1、y=﹣1代入求值即可.34.【答案】解:,,,;∵ ,所以,原式.【解析】【分析】直接利用分式的混合运算法则化简,再计算x,y的值,进而代入得出答案.35.【答案】解:原式== ,将代入得:原式=-4+3=-1,故答案为:-1.【解析】【分析】先根据分式混合运算的法则把原式进行化简,再把x=-4代入进行计算即可.36.【答案】(1)解:解不等式①,得:x>﹣,解不等式②,得:x≤4,则不等式组的解集为﹣<x≤4,∴不等式组的最小整数解为﹣2;(2)解:原式=====,∵a2+2a﹣15=0,∴a2+2a=15,则原式=.【解析】【分析】(1)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集;(2)先根据分式的混合运算顺序和运算法则化简原式,再由已知等式得出a2+2a=15,整体代入计算可得.37.【答案】解:原式为==== ,又∵m满足,即,将代入上式化简的结果,∴原式= .【解析】【分析】将分式运用完全平方公式及平方差公式进行化简,并根据m所满足的条件得出,将其代入化简后的公式,即可求得答案.38.【答案】解:当时,原式【解析】【分析】先根据分式的混合运算步骤进行化简,然后代入求值即可.39.【答案】解:时,原式=【解析】【分析】先利用分式的运算法则化简,然后代入计算即可.40.【答案】解:当上式【解析】【分析】先把分子、分母能分解因式的分解因式,再把除法转化为乘法,约分后再代入求值即可.41.【答案】解:原式===﹣2﹣x.∵x≠1,x≠2,∴在0≤x≤2的范围内的整数选x=0.当x=0时,原式=﹣2﹣0=﹣2.【解析】【分析】先通分计算括号内异分母分式的减法,再将能分解因式的分子、分母分解因式,化除法为乘法进行约分化简,然后根据分式有意义的条件取x的值,代入求值即可.42.【答案】解:原式=÷( ﹣)=÷=·=,当x=﹣2时,原式===.【解析】【分析】先通分计算括号内异分母分式的减法,再将各个分式的分子、分母能分解因式的分别分解因式,同时将除法转变为乘法,约分化为最简形式,最后将x的值代入计算可得.43.【答案】(1)解:原式=4m2+12mn+9n2﹣(4m2﹣n2)=4m2+12mn+9n2﹣4m2+n2=12mn+10n2;(2)解:原式====.【解析】【分析】(1)根据完全平方公式,平方差公式去括号,再合并同类项即可;(2)括号内先通分计算,将各个分式的分子、分母能分解因式的分别分解因式,然后变除为乘,进行约分即可.44.【答案】原式.【解析】【分析】先计算绝对值运算、特殊角的正切函数值、零指数幂、负整数指数幂,再计算实数的混合运算即可得.45.【答案】.【解析】【分析】根据负整指数幂的性质,特殊角的三角函数值,绝对值,零指数幂的性质,直接计算即可.46.【答案】(1)sin30°+ ﹣(3﹣)0+|﹣|=+4﹣1+=4;(2)3a2﹣48=3(a2﹣16)=3(a+4)(a﹣4).【解析】【分析】(1)先用特殊角的三角函数值、零指数幂的性质、绝对值的性质、算术平方根的知识化简,然后计算即可;(2)先提取公因式3,再运用平方差公式分解因式即可.四、解答题47.【答案】.将x=4代入可得:原式= .【解析】【分析】先将代数式化简,再代入值求解即可.48.【答案】原式分式的分母不能为0解得:m不能为,0,3则选代入得:原式.【解析】【分析】先计算括号内的分式减法,再计算分式的除法,然后选一个使得分式有意义的x的值代入求值即可.五、综合题49.【答案】(1)原式(2)三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;五;括号前是“ ”号,去掉括号后,括号里的第二项没有变号(3)解:答案不唯一,如:最后结果应化为最简分式或整式;约分,通分时,应根据分式的基本性质进行变形;分式化简不能与解分式方程混淆,等.【解析】【解答】(2)任务一:①三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;故答案为:三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;②五;括号前是“ ”号,去掉括号后,括号里的第二项没有变号;故答案为:五;括号前是“ ”号,去掉括号后,括号里的第二项没有变号;【分析】(1)先分别计算乘方,与括号内的加法,再计算乘法,再合并即可得到答案;(2)先把能够分解因式的分子或分母分解因式,化简第一个分式,再通分化为同分母分式,按照同分母分式的加减法进行运算,注意最后的结果必为最简分式或整式.50.【答案】(1)===(2)∵ ,∴解得:将解集表示在数轴上如下:【解析】【分析】(1)根据新定义规定的运算法则列式,再由有理数的运算法则计算可得;(2)根据新定义列出关于x的不等式,解不等式即可得.。
第05讲 二次根式1.二次根式的概念一般地,我们把形如a (a≥0)的式子叫做二次根式.二次根式a 有意义的条件:_a≥0 .2.二次根式的性质⎩⎪⎨⎪⎧(1)(a )2=a (a≥0).(2)a 2=|a|=⎩⎪⎨⎪⎧ a (a>0)0(a =0)-a (a<0);(3)ab =a ·b (a≥0,b≥0);(4)a b =a b (a≥0,b>0)3.最简二次根式必须满足两个条件⎩⎪⎨⎪⎧(1)被开方数不含分母;(2)被开方数中不含开得尽方的因数或因式4.同类二次根式几个二次根式化为最简二次根式后,如果被开方数相同,那么这几个二次根式叫同类二次根式. 5.二次根式的运算(1)加减法:先将二次根式化为最简二次根式,再将同类二次根式进行加减运算.(2)乘法:a ·b =ab ;(3)除法:ab =_a b_. 6.二次根式的估值二次根式的估算,一般是对根式平方,找出与平方后所得数字相邻的两个开得尽方的整数,对其进行开方,就可以确定这个根式在哪两个整数之间.【高频考点】考点1:二次根式的概念【例题1】(广东省广州市,12,3分)代数式x -9有意义时,实数x 的取值范围是 .【答案】x ≤9 【提示】要使二次根式有意义,只需满足被开方数是非负数即可.通过解不等式,即得实数x 的取值范围. 【解答】解:∵代数式x 9有意义,∴9-x ≥0,解得x ≤9.故答案为x ≤9.归纳:式子a (a ≥0)叫做二次根式.a (a ≥0);|a |;a 2;是初中阶段常见的非负数形式,若几个非负数的和为0,则这几个数均为0,据此可求某些字母的值.考点2:二次根式的运算【例题2】(江苏盐城,19(2),4分)计算: (3-7)(3+7)+2(2-2).【提示】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的运算法则和乘法公式,先根据平方差公式、单项式乘多项式的法则分别进行运算,再化简.【解答】解:原式=2+22-2=22.点拨:二次根式的运算,若是加减运算时,先将每一项化为最简二次根式,然后再将被开方数相同的二次根式合并;若是乘除运算时,先将被开方数相乘或相除,再将所得的数开方并化为最简二次根式;若是混合运算时,按照先乘除,后加减,有括号的先算括号里面的顺序进行计算,同时注意运算的结果必须是最简二次根式.考点3:二次根式与其它知识的综合应用【例题:3】(2018•枣庄)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为S=.现已知△ABC 的三边长分别为1,2,,则△ABC 的面积为 .【答案】1【解析】:∵S=, ∴△ABC 的三边长分别为1,2,,则△ABC 的面积为:S==1, 故答案为:1.【自我检测】一、选择题:1. (2018•扬州)使有意义的x 的取值范围是( )A .x >3B .x <3C .x≥3D .x≠3【答案】C解:由题意,得x ﹣3≥0,解得x≥3, 故选:C .2. (2018•绵阳)等式=成立的x 的取值范围在数轴上可表示为( ) A .B .C .D . 【答案】B【解答】由题意可知:解得:x≥3故选:B .3. (2019•湖南益阳•4分)下列运算正确的是( )A .2)2(2-=-B .6)32(2=C .532=+D .632=⨯【答案】D【解答】解:选项A 2-2()2,故本选项错误;选项B 、2(23)12=,故本选项错误;选项C 23不是同类二次根式,不能合并,故本选项错误;选项D 、根据二次根式乘法运算的法则知本选项正确.故选D .4. (2019•湖南湘西州•4分)下面是一个简单的数值运算程序,当输入x 的值为16时,输出的数值为3 .(用科学计算器计算或笔算).【答案】3 【解答】解:解:由题图可得代数式为21x ÷+.当x =16时,原式=16÷2+1=4÷2+1=2+1=3.故答案为:35. (2019•湖北宜昌•3分)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记p =3a b c ++,那么三角形的面积为S =()()()p p a p b p c ---.如图,在△ABC 中,∠A ,∠B ,∠C 所对的边分别记为a ,b ,c ,若a =5,b =6,c =7,则△ABC 的面积为( )A .66B .63C .18D .192【答案】A【解答】解:∵a =7,b =5,c =6.∴p ==9,∴△ABC 的面积S ==66; 故选:A .二、填空题:6. 化简= x .(x≥0)【答案】x解析:原式==x . 故答案为:x7. (2018•广州)如图,数轴上点A表示的数为a,化简:a+= .【答案】2【解答】由数轴可得:0<a<2,则a+=a+=a+(2﹣a)=2.故答案为:2.8. (2018·广东广州·3分)如图,数轴上点A表示的数为a,化简:=________【答案】2【解析】解:由数轴可知:0<a<2,∴a-2<0,∴原式=a+ =a+2-a=2.故答案为:2.9. (2019,山东枣庄,4分)观察下列各式:=1+=1+(1﹣),=1+=1+(﹣),=1+=1+(﹣),…请利用你发现的规律,计算:+++…+,其结果为 . 【答案】2018. 【解答】解:+++…+=1+(1﹣)+1+(﹣)+…+1+(﹣) =2018+1﹣+﹣+﹣+…+﹣ =2018,故答案为:2018. 三、解答题:10. (2018·徐州)已知x =3+1,求x 2-2x -3的值.解:原式=(x -3)(x +1),将x =3+1代入到上式,则可得,原式=(3+1-3)×(3+1+1)=(3-2)×(3+2)=-1.11. 2018•陕西)计算:(﹣)×(﹣)+|﹣1|+(5﹣2π)0 解:原式=+﹣1+1 =3+﹣1+1 =4. 12. 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+22=(1+2)2,善于思考的小明进行了以下探索:设a +b 2=(m +n 2)2(其中a ,b ,m ,n 均为整数),则有a +b 2=m 2+2n 2+2mn 2,所以a =m 2+2n 2,b =2mn ,这样小明就找到了一种把部分a +b 2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a ,b ,m ,n 均为正整数时,若a +b 3=(m +n 3)2,用含m ,n 的式子分别表示a ,b ,得a = ,b = ;(2)若a +43=(m +n 3)2,且a ,m ,n 均为正整数,求a 的值.解:由题意,得⎩⎪⎨⎪⎧a =m 2+3n 2,4=2mn.∵4=2mn,且m,n为正整数,∴m=2,n=1或m=1,n=2.∴a=22+3×12=7或a=12+3×22=13.。
第3讲分式及二次根式 2023年中考数学一轮复习专题训练(浙江专用)一、单选题1.(2022·江北模拟)无论x取什么数,总有意义的代数式是()A.√x2B.4xx3+1C.1(x−2)2D.√x+32.(2022·浦江模拟)若分式1x−1有意义,则x的取值范围是()A.x>1B.x>2C.x≠0D.x≠13.(2022·平阳模拟)若分式x−2x−3的值为0,则x的值为()A.-3B.-2C.0D.2 4.(2022·慈溪模拟)若二次根式√1−x在实数范围内有意义,则下列各数中,x 可取的值是()A.4B.πC.√2D.1 5.(2022·北仑模拟)若二次根式√3−x在实数范围内有意义,则x的取值范围是()A.x≠3B.x≥3C.x≤3D.x<3 6.(2022·慈溪模拟)下列计算正确的是()A.22+23=25B.23−22=2C.23⋅22=25D.2−1=−27.(2022·定海模拟)对于以下四个命题:①若直角三角形的两条边长与3与4,则第三边的长是5;②(√a)2=a;③若点P(a,b)在第三象限,则点Q(−a,−b)在第一象限;④两边及其第三边上的中线对应相等的两个三角形全等,正确的说法是()A.只有①错误,其他正确B.①②错误,③④正确C.①④错误,②③正确D.只有④错误,其他正确8.(2022·宁波模拟)二次根式√x−3中字母x的取值范围是()A.x>3B.x≠3C.x≥3D.x≤39.(2022·洞头模拟)计算2aa+2−a−22+a的结果为()A.a+2B.a−2C.1D.a−2a+210.(2021·北仑模拟)要使代数式√x−1有意义,x的取值应满足() A.x≥1B.x>1C.x≠1D.x≠0二、填空题11.(2022·台州)如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被污染的x的值是.先化简,再求值:3−xx−4+1,其中x=解:原式=3−xx−4⋅(x−4)+(x−4)…①=3−x+x−4=−112.(2022·丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形PQMN.已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5,AE=a,DE=b,且a>b.(1)若a,b是整数,则PQ的长是;(2)若代数式a2﹣2ab﹣b2的值为零,则S四边形ABCDS矩形PQMN的值是.13.(2022·宁波模拟)若二次根式√3+x在实数范围内有意义,则x的取值范围是.14.(2022·衢江模拟)二次根式√x−4中字母x的取值范围是.15.(2022·温州)计算:x 2+xyxy+xy−x2xy=.16.(2022·金华)若分式2x−3的值为2,则x的值是.17.(2022·永康模拟)若分式1x−3有意义,则x的取值范围为.18.(2022·湖州)当a=1时,分式 a+1a 的值是 . 19.(2022·萧山模拟)计算:√3×√2= .20.(2022·宁波模拟)分式 2x−6x+1有意义的条件是 .三、计算题21.(2022·北仑模拟)先化简,直求值:(2a −1)⋅aa 2−4,共中a =√2−2.22.(2022·温州模拟)(1)计算:6÷(−3)+√4−8×2−2.(2)化简:2x x 2−4−1x−2.23.(2022·衢州模拟)计算:(1)−12+20180−(12)−1+√83; (2)a 2−b 2a−b ÷a+b 2a−2b.24.(2022·龙湾模拟)(1)计算: 2−1−(√5−1)0+|−32|−√273 . (2)化简: a 2+3a 2−a +3a−a2 .25.(2022·瓯海模拟)(1)计算:(﹣2)2×32+|﹣5|﹣√9.(2)化简:a 2a 2−2a +42a−a 2. 四、解答题26.(2022·衢州模拟)先化简,再求值:(1x−1−1x+1)÷x+2x 2−1,然后从﹣1,1,3中选择适当的数代入求值.27.(2022·台州模拟)先化简,再求值:(1﹣1a )÷a 2−1a,其中a =2020.28.(2022·衢州模拟)先化简4m 2−4−1m−2,从-2,-1,0,2四个数中选取一个合适的数代入求值.29.(2022·余杭模拟)化简: 3x−1+x−31−x 2小明的解答如下: 原式= 3x−1−x−3x 2−1=(x2-1)3x−1-(x 2-1)x−3x2−1=3(x+1)-(x-3)=2x+6小明的解答正确吗?如果不正确,请写出正确的解答过程.30.(2022·江干模拟)化简:xx−1−1x+1−1.小马的解答如下,小马的解答正确吗?如果不正确,写出正确的解答.解:xx−1−1x+1−1=x(x+1)−(x−1)−1=x2+x−x+1−1=x2答案解析部分1.【答案】A【解析】【解答】解:A 、无论x 取任何数,√x 2有意义,A 选项符合题意; B 、x≠-1时,4xx 3+1有意义,B 选项不符合题意;C 、x≠2时,1(x−2)2有意义,C 选项不符合题意; D 、x≥-3时,√x +3有意义,D 选项不符合题意. 故答案为:A.【分析】根据二次根式有意义的条件,即被开方数为非负数,及分式有意义的条件,即分母不为零,逐项进行判断即可.2.【答案】D【解析】【解答】解:∵分式1x−1有意义,∴x −1≠0,解得x ≠1, 故答案为:D.【分析】分式有意义的条件:分母不为0,据此解答即可.3.【答案】D【解析】【解答】解:∵分式x−2x−3的值为0∴x ﹣2=0,x ﹣3≠0, ∴x =2. 故答案为:D.【分析】根据分式值为0的条件可得x-2=0,x-3≠0,求解即可.4.【答案】D【解析】【解答】解:由题意得1-x≥0 解之:x≤1. ∴x 可以为1. 故答案为:D.【分析】利用二次根式有意义的条件:被开方数是非负数,可求出x 的取值范围,即可求解.5.【答案】C【解析】【解答】解:要使二次根式√3−x在实数范围内有意义,必须3−x≥0,解得:x≤3.故答案为:C.【分析】根据二次根式有意义的条件是被开方数不为负数,据此可得3−x≥0,求解即可.6.【答案】C【解析】【解答】解:22+23≠25,故A不符合题意;B、23-22≠2,故B不符合题意;C、22·23=25,故C符合题意;D、2−1=12,故D不符合题意;故答案为:C.【分析】同底数幂相加减,要先算乘方,再算加法或减法,可对A,B作出判断;利用同底数幂相乘,底数不变,指数相加,可对C作出判断;利用负整数指数幂的性质,可对D作出判断.7.【答案】A【解析】【解答】解:①错误,应强调为直角三角形的两条直角边长为3与4,则第三边的长是5;②正确,隐含条件a≥0,根据二次根式的意义,等式成立;③正确,若点P(a,b)在第三象限,则a<0,b<0;则-a>0,-b>0,点Q(-a,-b)在第一象限;④正确,已知:如图,AB=A'B',AC=A'C',AD=A'D',BD=CD,B'D'=C'D',求证:△ABC≌△A'B'C';证明:过点C作CE∥AB交AD的延长线于E,∵∠BAD=∠E,∠ABD=∠ECD,∵BD=CD,∴△ABD≌△ECD(AAS),∴AB=CE,AD=DE,过点C'作C'E'∥A'B'交A'D'的延长线于E',同理:A'B'=C'E',A'D'=D'E',∵AD=A'D',AB=A'B',∴AE=A'E',CE=C'E',∵AC=A'C',∴△ACE≌△A'C'E'(SSS),∴∠CAE=∠C'A'E',∠E=∠E'=∠BAD=∠B'A'D',∴∠BAC=∠B'A'C',∴△ABC≌△A'B'C'(SAS),即:两边及第三边上的中线对应相等的两个三角形全等,正确.故答案为:A.【分析】根据勾股定理可判断①;根据二次根式有意义的条件可得a≥0,据此判断②;根据点的坐标与象限的关系可判断③;画出示意图,已知AB=A'B',AC=A'C',AD=A'D',BD=CD,B'D'=C'D',过点C作CE∥AB交AD的延长线于E,证明△ABD ≌△ECD,得到AB=CE,AD=DE,过点C'作C'E'∥A'B'交A'D'的延长线于E',证明△ACE≌△A'C'E'(SSS),得到∠CAE=∠C'A'E',∠E=∠E'=∠BAD=∠B'A'D',推出∠BAC=∠B'A'C',据此判断④.8.【答案】C【解析】【解答】解:∵√x −3,∴x-3≥0, ∴x≥3. 故答案为:C.【分析】根据二次根式被开方数为非负数,即x-3≥0,求解不等式即可得x 的取值范围.9.【答案】C【解析】【解答】解:原式=2a−a+2a+2=a+2a+2 =1.故答案为:C.【分析】直接根据同分母分式减法法则进行计算即可.10.【答案】B【解析】【解答】解:由题意得:{x −1≥0x −1≠0,解得x >1.故答案为:B.【分析】依据被开方数大于等于0及分母不为零,列出不等式组,求解即可.11.【答案】5【解析】【解答】解:原式=3−x x−4+x−4x−4=−1x−4∵最后所求的值是正确的∴−1x−4=-1 解之:x=5经检验:x=5是方程的解. 故答案为:5.【分析】先通分计算,再由题意可得到−1x−4=-1;然后解方程求出x 的值. 12.【答案】(1)a-b(2)3+2√2【解析】【解答】解:(1)∵①和②能够重合,③和④能够重合,AE=a ,DE=b ,∴PQ=AE+DE-2ED=a+b-2b=b ,故答案为:a-b ; (2)∵a 2- 2ab- b 2=0, ∴a 2-b 2=2ab , 则(a-b)2=2b 2,∴a=(√2+1)b 或(1-√2)b(舍去),∵四个矩形的面积都是5,AE=a ,DE=b , ∴EP=5a ,EN=5b,∴S四边形ABCD S矩形PQMN=(a+b )(5a +5b )(a−b )(5b −5a)=a 2+2ab+b2a 2−2ab+b 2=a 2b2=(√2+1)2b2b2=3+2√2.故答案为:3+2√2.【分析】(1)直接根据线段和差关系,结合两组全等矩形的边相等,列式计算可得结论;(2)解关于a 的二元一次方程:a 2-2ab-b 2=0, 得到a=(√2+1)b ,根据四个矩形的面积都是5分别表示小矩形的宽,再利用含a 、b 的代数式表示S四边形ABCDS 矩形PQMN,化简后,再代入a=(√2+1)b ,即可解答.13.【答案】x≥-3【解析】【解答】解:由题意得: 3+x ≥0,解得: x ≥−3, 故答案为: x ≥−3.【分析】根据二次根式的被开方数不能为负数可得3+x≥0,求解即可.14.【答案】x≥4【解析】【解答】解:由题意,得x-4≥0, 解得:x≥4. 故答案为:x≥4.【分析】根据二次根式有意义的条件是被开方数不能为负数,可得x-4≥0,求解即可.15.【答案】2【解析】【解答】解:原式=x 2+xy+xy−x 2xy=2..故答案为:2.【分析】利用同分母分式相加,分母不变,把分子相加,然后化简即可.16.【答案】4【解析】【解答】解:∵分式2x−3的值为2,∴2x−3=2, ∴2=2x-6, ∴x=4. 故答案为:4.【分析】由分式2x−3的值为2,得2x−3=2,再解分式方程即可求出x 的值.17.【答案】x≠3【解析】【解答】解:由题意得x-3≠0 解之:x≠3. 故答案为:x≠3.【分析】利用分式有意义的条件:分母不等于0,可得到关于x 的不等式,然后求出不等式的解集.18.【答案】2【解析】【解答】解:把a=1代入分式中, ∴a+1a =1+11=2.故答案为:2.【分析】把a=1代入分式中,化简求值即可求解.19.【答案】√6【解析】【解答】解:√3×√2,=√3×2, =√6; 故答案为:√6.【分析】直接根据二次根式的乘法法则进行计算.20.【答案】x≠-1【解析】【解答】解:要使分式有意义,则x+1≠0,∴x≠-1.故答案为:x≠-1.【分析】分式有意义的条件是分母不等于零,依此列式求解,即可解答.21.【答案】解:(2a −1)⋅a a 2−4=2−a a ⋅a (a+2)(a−2)=−1a+2 当a =√2−2时,原式=1√2−2+2=1√2=−√22 【解析】【分析】对括号中的式子进行通分,对括号外分式的分母进行分解,然后约分即可对原式进行化简,接下来将a 的值代入计算即可.22.【答案】(1)解:6÷(−3)+√4−8×2−2=−2+2−8×14=−2+2−2=−2(2)解:2x x 2−4−1x−2 =2x −(x +2)(x +2)(x −2)=x −2(x +2)(x −2)=1x +2 【解析】【分析】(1)根据算术平方根的概念、负整数指数幂的运算性质及有理数的除法法则分别计算,然后计算乘法,再计算加减法即可;(2)对第一个分式的分母进行分解,然后通分,再约分即可.23.【答案】(1)解:−12+20180−(12)−1+√83 =﹣1+1﹣2+2=0;(2)解:a 2−b 2a−b ÷a+b 2a−2b=(a+b)(a−b)a−b ÷a+b 2(a−b) =(a+b)(a−b)a−b×2(a−b)a+b =2(a −b)=2a ﹣2b.【解析】【分析】(1)根据乘方、开方、零指数幂及负整数幂的性质分别h 进行计算,然后根据有理数的加减法法则算出答案即可;(2)先将分子、分母进行因式分解,再将除法转化为乘法,然后约分即可.24.【答案】(1)解:原式=12-1+32-3=-2. (2)解:原式=a 2+3a 2−a −3a 2−a=a 2a (a−1)=a a−1. 【解析】【分析】(1)根据负整数指数幂的性质、零指数幂的性质、立方根的定义进行化简,再计算加减法,即可得出答案;(2)先通分,再计算分式的减法,即可得出答案.25.【答案】(1)解:(﹣2)2×32+|﹣5|﹣√9 =4×32+5﹣3 =6+5-3=8(2)解:a 2a 2−2a +42a−a 2=a 2a(a−2)+4a(2−a)=a 2a(a −2)−4a(a −2)=a 2−4a(a −2)=(a +2)(a −2)a(a −2)=a+2a .【解析】【分析】(1)根据有理数的乘方法则、绝对值的性质以及算术平方根的概念可得原式=4×32+5-3,然后计算乘法,再计算加减法即可; (2)对两个分式的分母进行分解,然后结合同分母分式减法法则进行计算.26.【答案】解:(1x−1−1x+1)÷x+2x 2−1=x+1−x+1(x−1)(x+1)÷x+2(x−1)(x+1)=2(x−1)(x+1)×(x−1)(x+1)x+2 =2x+2; ∵x −1≠0,x +1≠0,x +2≠0,∴x ≠±1,x ≠−2,当x =3时,2x+2=23+2=25【解析】【分析】对括号中的式子进行通分,对括号外分式的分母进行分解,然后将除法化为乘法,再约分即可对原式进行化简,接下来选择一个使分式有意义的x 的值代入计算即可.27.【答案】解:原式=a−1a ·a (a+1)(a−1)=1a+1当a=2020时,原式=12021【解析】【分析】对括号中的式子进行通分,将第二个分式的分子分解因式,同时除法化为乘法,再进行约分即可对原式进行化简,接下来将a 的值代入计算即可.28.【答案】解:原式=4(m+2)(m−2)−1m−2=4−(m +2)(m +2)(m −2)=2−m (m +2)(m −2)=−1m +2要使分式有意义,则m 2−4≠0且m −2≠0解得m≠±2,∴只能选择-1或0当m=-1时,原式=−1当m=0时,原式=−1 2【解析】【分析】对第一个分式的分母进行分解,再通分后按同分母分式的加减法进行计算,并进行约分即可对原式进行化简,然后选取一个使分式有意义的m的值代入进行计算.29.【答案】解:不正确原式=-=-==【解析】【分析】根据分式加法法则,先通分,化为同分母的分式相加减,再进行计算,即可得出答案.30.【答案】解:不正确,正确解答如下:xx−1−1x+1−1=x(x+1)x2−1−x−1x2−1−x2−1x2−1=x2+x−x+1−x2+1x2−1=2x2−1.【解析】【分析】首先第一项的分子、分母都乘以(x+1),第二项的分子、分母都乘以(x-1),第三项的分析分母都乘以(x+1)(x-1)进行通分,然后根据同分母分式减法法则进行计算。
二次根式一、选择题1.(2019•云南)要使√x+12有意义,则x的取值范围为()A.x≤0B.x≥﹣1C.x≥0D.x≤﹣1解:要使根式有意义则令x+1≥0,得x≥﹣1,故选:B.2.(2019•黄石)若式子√x−1x−2在实数范围内有意义,则x的取值范围是()A.x≥1且x≠2B.x≤1C.x>1且x≠2D.x<1解:依题意,得x﹣1≥0且x﹣2≠0,解得x≥1且x≠2.故选:A.3.(2019•连云港)要使√x−1有意义,则实数x的取值范围是()A.x≥1B.x≥0C.x≥﹣1 D.x≤0解:依题意得x﹣1≥0,∴x≥1.故选:A.4.(2019•随州)“分母有理化”是我们常用的一种化简的方法,如:+√323=+√3)(+√3)(2−√3)(2+√3)=7+4√3,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于√35−√35x=√35√35易知√35>√35故x>0,由x2=(√35√352=3+√5+3−√5−2√(3+√5)(3−√5)=2,解得x=√2,即√35√35=√2.根据以上方法,化+√6−33−√6+33后的结果为()简√3−√23+√2A.5+3√6B.5+√6C.5−√6D.5﹣3√6解:设x=√633√633√633>√633∴x<0,∴x2=6﹣3√3−2√(6−3√3)(6+3√3)+6+3√3,∴x2=12﹣2×3=6,∴x=−√6,=5﹣2√6,∵√3−√23+√2∴原式=5﹣2√6−√6=5﹣3√6,故选:D.5.(2019•孝感)下列计算正确的是()A.x7÷x5=x2B.(xy2)2=xy4C.x2•x5=x10D.(√x+√x)(√x−√x)=b﹣a解:A、x7÷x5=x2,故本选项正确;B、(xy2)2=x2y4,故本选项错误;C、x2•x5=x7,故本选项错误;D、(√x+√x)(√x−√x)=a﹣b,故本选项错误;故选:A.6.(2019•郴州)下列运算正确的是()A.(x2)3=x5B.√2+√8=√10C.x•x2•x4=x6D.√2=√2解:A、(x2)3=x6,故本选项错误;B、√2+√8=√2+2√2=3√2,故本选项错误;C、x•x2•x4=x7,故本选项错误;D、√2=√2,故本选项正确;故选:D.7.(2019•聊城)下列各式不成立的是()A.√18−√89=73√2B.√2+23=2√23C.√8+√182=√4+√9=5D.√3+√2=√3−√2解:√18−√89=3√2−2√23=7√23,A选项成立,不符合题意;√2+23=√83=2√23,B选项成立,不符合题意;√8+√182=2√2+3√22=5√22,C选项不成立,符合题意;√3+√2=√3−√2(√3+√2)(√3−√2)=√3−√2,D选项成立,不符合题意;故选:C.8.(2019•广安)下列运算正确的是()A.a2+a3=a5B.3a2•4a3=12a6C.5√3−√3=5D.√2×√3=√6解:A、a2+a3不是同类项不能合并;故A错误;B、3a2•4a3=12a5故B错误;C、5√3−√3=4√3,故C错误;D、√2×√3=√6,故D正确;故选:D.9.(2019•宜昌)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a,b,c,记p=x+x+x2,那么三角形的面积为S=√x(x−x)(x−x)(x−x).如图,在△ABC中,∠A,∠B,∠C所对的边分别记为a,b,c,若a =5,b=6,c=7,则△ABC的面积为()A.6√6B.6√3C.18 D.192解:∵a=7,b=5,c=6.=9,∴p=5+6+72∴△ABC的面积S=√9×(9−5)×(9−6)×(9−7)=6√6;故选:A.10.(2019•淄博)如图,矩形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为()A.√2B.2C.2√2D.6解:由题意可得,大正方形的边长为√8=2√2,小正方形的边长为√2,∴图中阴影部分的面积为:√2×(2√2−√2)=2,故选:B.二、填空题11.(2019•益阳)观察下列等式:①3﹣2√2=(√2−1)2,②5﹣2√6=(√3−√2)2,③7﹣2√12=(√4−√3)2,…请你根据以上规律,写出第6个等式.解:写出第6个等式为13﹣2√42=(√7−√6)2. 故答案为13﹣2√42=(√7−√6)2.12.(2019•青岛)计算:√24+√82−(√3)0= .解:√24+√8√2(√3)0=2√3+2﹣1=2√3+1,故答案为:2√3+1.13.(2019•临沂)计算:√12×√6−tan45°= . 解:√12×√6−tan45°=√12×6−1=√3−1, 故答案为:√3−1. 14.(2019•南京)计算√7√28的结果是 .解:原式=2√7−2√7=0. 故答案为0.15.(2019•滨州)计算:(−12)﹣2﹣|√3−2|+√32÷√118= .解:原式=4−2+√3+3√3=2+4√3, 故答案为:2+4√3.16.(2019•扬州)计算:(√5−2)2018(√5+2)2019的结果是 .解:原式=[(√5−2)(√5+2)]2018•(√5+2)=(5﹣4)2018•(√5+2)=√5+2, 故答案为√5+2.17.(2019•天津)计算(√3+1)(√3−1)的结果等于 . 解:原式=3﹣1 =2. 故答案为2.18.(2019•枣庄)观察下列各式:√1+112+122=1+11×2=1+(1−12), √1+122+132=1+12×3=1+(12−13), √1+132+142=1+13×4=1+(13−14),…请利用你发现的规律,计算:√1+112+122+√1+122+132+√1+132+142+⋯+√1+120182+120192,其结果为 .解:√1+112+122+√1+122+132+√1+132+142+⋯+√1+120182+120192=1+(1−12)+1+(12−13)+…+1+(12018−12019) =2018+1−12+12−13+13−14+⋯+12018−12019=201820182019,故答案为:201820182019. 三、计算题19.(2019•大连)计算:(√3−2)2+√12+6√13解:原式=3+4﹣4√3+2√3+6×√33=3+4﹣4√3+2√3+2√3 =7.20.(2019•天门)(1)计算:(﹣2)2﹣|﹣3|+√2×√8+(﹣6)0; (2)解分式方程:2x −1=5x 2−1. 解:(1)原式=4﹣3+4+1=6;(2)两边都乘以(x +1)(x ﹣1),得:2(x +1)=5,解得:x =32,检验:当x =32时,(x +1)(x ﹣1)=54≠0, ∴原分式方程的解为x =32.21.(2019•长沙)计算:|−√2|+(12)﹣1−√6÷√3−2cos60°.解:原式=√2+2−√6÷3−2×12=√2+2−√2−1 =1.22.(2019•泰州)(1)计算:(√8−√12)×√6;(2)解方程:2x −5x −2+3=3x −3x −2. 解:(1)原式=√8×6−√12×6=4√3−√3=3√3;(2)去分母得2x﹣5+3(x﹣2)=3x﹣3,解得x=4,检验:当x=4时,x﹣2≠0,x=4为原方程的解.所以原方程的解为x=4.23.(2019•南充)计算:(1﹣π)0+|√2−√3|−√12+()-1.√2。
二次根式【知识回顾】1.二次根式:式子a(a≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)(a)2=a(a≥0);(2)==aa25.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术平方根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.(a≥0,b≥0);=(b≥0,a>0).a(a>0)a-(a<0)0 (a=0);(4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质例1、下列各式1)-, 其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围(1)x x --+315;(2)22)-(x例3、 在根式1),最简二次根式是( )A .1) 2) B .3) 4) C .1) 3) D .1) 4)例4、已知:的值。
求代数式22,211881-+-+++-+-=x yy x x y y x x x y例5、已知数a ,b,若=b -a ,则 ( )A. a>bB. a<bC. a≥bD. a≤b 2、二次根式的化简与计算例1. 将根号外的a 移到根号内,得 ( ) A.; B. -; C. -; D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:11()b a b b a a b ++++,其中51+51-.例5、如图,实数a 、b 在数轴上的位置,化简 :222()a b a b ---4、比较数值 (1)、根式变形法当0,0a b >>时,①如果a b >>a b <<。
2020届中考数学总复习数与式——二次根式1一.选择题(共8小题)1.函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≤2 D.x≠22.要使式子有意义,则m的取值范围是()A.m>﹣1 B.m≥﹣1 C.m>﹣1且m≠1D.m≥﹣1且m≠13.在式子,,,中,x可以取2和3的是()A.B.C.D.4.代数式有意义,则x的取值范围是()A.x≥﹣1且x≠1B.x≠1 C.x≥1且x≠﹣1 D.x≥﹣15.要使二次根式在实数范围内有意义,则实数x的取值范围是()A.x>2 B.x≥2 C.x>﹣2 D.x≥﹣26.下列说法中,正确的是()A.当x<1时,有意义B.方程x2+x﹣2=0的根是x 1=﹣1,x2=2C.的化简结果是 D.a,b,c均为实数,若a>b,b>c,则a>c7.如果ab>0,a+b<0,那么下面各式:①=,②•=1,③÷=﹣b,其中正确的是()A.①② B.②③ C.①③ D.①②③8.二次根式有意义,则实数x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x<2 D.x≤2二.填空题(共7小题)9.若y=﹣2,则(x+y)y= _________ .10.使二次根式有意义的x的取值范围是_________ .11.已知x、y为实数,且y=﹣+4,则x﹣y= _________ .12.若式子有意义,则实数x的取值范围是_________ .13.计算:﹣= _________ .14.实数a在数轴上的位置如图,化简+a= _________ .15.计算:(+1)(﹣1)= _________ .三.解答题(共8小题)16.计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.17.(1)计算:×﹣4××(1﹣)0;(2)先化简,再求值:(+)÷,其中a,b满足+|b﹣|=0.18.先化简下式,再求值:(﹣x2+3﹣7x)+(5x﹣7+2x2),其中x=+1.19.已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.20.已知+有意义,求的值.21.计算.22.(1)计算:;(2)先化简,再求值:,其中.23.(1)|﹣|﹣+(π+4)0﹣sin30°+;(2)+÷a,其中a=.数与式——二次根式1参考答案与试题解析一.选择题(共8小题)1.函数y=中自变量x的取值范围是()A.x>2 B.x≥2C.x≤2D.x≠2考点:二次根式有意义的条件.分析:二次根式的被开方数大于等于零.解答:解:依题意,得2﹣x≥0,解得x≤2.故选:C.点评:考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.要使式子有意义,则m的取值范围是()A.m>﹣1 B.m≥﹣1 C.m>﹣1且m≠1 D.m≥﹣1且m≠1考点:二次根式有意义的条件;分式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:,解得:m≥﹣1且m≠1.故选:D.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.在式子,,,中,x可以取2和3的是()A.B.C.D.考点:二次根式有意义的条件;分式有意义的条件.分析:根据二次根式的性质和分式的意义:被开方数大于等于0,分母不等于0,就可以求得x的范围,进行判断.解答:解:A、的分母不可以为0,即x﹣2≠0,解得:x≠2,故A错误;B、的分母不可以为0,即x﹣3≠0,解得:x≠3,故B错误;C、被开方数大于等于0,即x﹣2≥0,解得:x≥2,则x可以取2和3,故C正确;D、被开方数大于等于0,即x﹣3≥0,解得:x≥3,x不能取2,故D错误.故选:C.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.4.代数式有意义,则x的取值范围是()A.x≥﹣1且x≠1B.x≠1C.x≥1且x≠﹣1 D.x≥﹣1考点:二次根式有意义的条件;分式有意义的条件.分析:此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.解答:解:依题意,得x+1≥0且x﹣1≠0,解得x≥﹣1且x≠1.故选:A.点评:本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5.要使二次根式在实数范围内有意义,则实数x的取值范围是()A.x>2 B.x≥2C.x>﹣2 D.x≥﹣2考点:二次根式有意义的条件.分析:直接利用二次根式的概念.形如(a≥0)的式子叫做二次根式,进而得出答案.解答:解:∵二次根式在实数范围内有意义,∴x+2≥0,解得:x≥﹣2,则实数x的取值范围是:x≥﹣2.故选:D.点评:此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.6.下列说法中,正确的是()A.当x<1时,有意义B.方程x2+x﹣2=0的根是x 1=﹣1,x2=2C.的化简结果是 D. a,b,c均为实数,若a>b,b>c,则a>c考点:二次根式有意义的条件;实数大小比较;分母有理化;解一元二次方程-因式分解法.专题:代数综合题.分析:根据二次根式有意义,被开方数大于等于0,因式分解法解一元二次方程,分母有理化以及实数的大小比较对各选项分析判断利用排除法求解.解答:解:A、x<1,则x﹣1<0,无意义,故本选项错误;B、方程x2+x﹣2=0的根是x1=1,x2=﹣2,故本选项错误;C、的化简结果是,故本选项错误;D、a,b,c均为实数,若a>b,b>c,则a>c正确,故本选项正确.故选:D.点评:本题考查了二次根式有意义的条件,实数的大小比较,分母有理化,以及因式分解法解一元二次方程,是基础题,熟记各概念以及解法是解题的关键.7.如果ab>0,a+b<0,那么下面各式:①=,②•=1,③÷=﹣b,其中正确的是()A.①②B.②③C.①③D.①②③考点:二次根式的乘除法.专题:计算题.分析:由ab>0,a+b<0先求出a<0,b<0,再进行根号内的运算.解答:解:∵ab>0,a+b<0,∴a<0,b<0①=,被开方数应≥0a,b不能做被开方数,(故①错误),②•=1,•===1,(故②正确),③÷=﹣b,÷=÷=×=﹣b,(故③正确).故选:B.点评:本题是考查二次根式的乘除法,解答本题的关键是明确a<0,b<0.8.二次根式有意义,则实数x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x<2 D.x≤2考点:二次根式有意义的条件.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,﹣2x+4≥0,解得x≤2.故选:D.点评:本题考查的知识点为:二次根式的被开方数是非负数.二.填空题(共7小题)9.若y=﹣2,则(x+y)y= .考点:二次根式有意义的条件.专题:计算题.分析:根据被开方数大于等于0,列式求出x,再求出y,然后代入代数式进行计算即可得解.解答:解:由题意得,x﹣4≥0且4﹣x≥0,解得x≥4且x≤4,∴x=4,y=﹣2,∴x+y)y=(4﹣2)﹣2=.故答案为:.点评:本题考查的知识点为:二次根式的被开方数是非负数.10.使二次根式有意义的x的取值范围是x≥﹣3 .考点:二次根式有意义的条件.专题:计算题.分析:二次根式有意义,被开方数为非负数,列不等式求解.解答:解:根据二次根式的意义,得x+3≥0,解得x≥﹣3.故答案为:x≥﹣3.点评:用到的知识点为:二次根式的被开方数是非负数.11.已知x、y为实数,且y=﹣+4,则x﹣y= ﹣1或﹣7 .考点:二次根式有意义的条件.专题:计算题.分析:根据一对相反数同时为二次根式的被开方数,那么被开方数为0可得x可能的值,进而得到y的值,相减即可.解答:解:由题意得x2﹣9=0,解得x=±3,∴y=4,∴x﹣y=﹣1或﹣7.故答案为﹣1或﹣7.点评:考查二次根式有意义的相关计算;得到x可能的值是解决本题的关键;用到的知识点为:一对相反数同时为二次根式的被开方数,那么被开方数为0.12.若式子有意义,则实数x的取值范围是x≤2且x≠0.考点:二次根式有意义的条件;分式有意义的条件.专题:计算题.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:由题意得,2﹣x≥0且x≠0,解得x≤2且x≠0.故答案为:x≤2且x≠0.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.13.计算:﹣= .考点:二次根式的加减法.专题:计算题.分析:先进行二次根式的化简,然后合并同类二次根式求解.解答:解:原式=2﹣=.故答案为:.点评:本题考查了二次根式的加减法,关键是掌握二次根式的化简以及同类二次根式的合并.14.实数a在数轴上的位置如图,化简+a= 1 .考点:二次根式的性质与化简;实数与数轴.分析:根据二次根式的性质,可化简二次根式,根据整式的加法,可得答案.解答:解:+a=1﹣a+a=1,故答案为:1.点评:本题考查了实数的性质与化简,=a(a≥0)是解题关键.15.计算:(+1)(﹣1)= 1 .考点:二次根式的乘除法;平方差公式.专题:计算题.分析:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.就可以用平方差公式计算.结果是乘式中两项的平方差(相同项的平方减去相反项的平方).解答:解:(+1)(﹣1)=.故答案为:1.点评:本题应用了平方差公式,使计算比利用多项式乘法法则要简单.三.解答题(共8小题)16.计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.考点:二次根式的混合运算;零指数幂;负整数指数幂.专题:计算题.分析:根据零指数幂、负整数指数幂和平方差公式得到原式=5﹣1﹣9+﹣1﹣1+2,然后合并即可.解答:解:原式=5﹣1﹣9+﹣1﹣1+2=﹣7+3.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂.17.(1)计算:×﹣4××(1﹣)0;(2)先化简,再求值:(+)÷,其中a,b满足+|b﹣|=0.考点:二次根式的混合运算;非负数的性质:绝对值;非负数的性质:算术平方根;分式的化简求值;零指数幂.专题:计算题.分析:(1)根据二次根式的乘法法则和零指数幂的意义得到原式=﹣4××1=2﹣,然后合并即可;(2)先把分子和分母因式分解和除法运算化为乘法运算,再计算括号内的运算,然后约分得到原式=,再根据非负数的性质得到a+1=0, b﹣=0,解得a=﹣1,b=,然后把a和b的值代入计算即可.解答:解:(1)原式=﹣4××1=2﹣=;(2)原式=[﹣]•=(﹣]•=•=,∵+|b﹣|=0,∴a+1=0,b﹣=0,解得a=﹣1,b=,当a=﹣1,b=时,原式=﹣=﹣点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、非负数的性质和分式的化简求值.18.先化简下式,再求值:(﹣x2+3﹣7x)+(5x﹣7+2x2),其中x=+1.考点:二次根式的化简求值;整式的加减.分析:根据去括号、合并同类项,可化简代数式,根据代数式求值,可得答案.解答:解;原式=x2﹣2x﹣4=(x﹣1)2﹣5,把x=+1代入原式,=(+1﹣1)2﹣5=﹣3.点评:本题考查了二次根式的化简求值,先去括号、合并同类项,再求值.19.已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.考点:二次根式的化简求值;因式分解的应用.专题:计算题.分析:根据x、y的值,先求出x﹣y和xy,再化简原式,代入求值即可.解答:解:∵x=1﹣,y=1+,∴x﹣y=(1﹣)﹣(1+)=﹣2,xy=(1﹣)(1+)=﹣1,∴x2+y2﹣xy﹣2x+2y=(x﹣y)2﹣2(x﹣y)+xy=(﹣2)2﹣2×(﹣2)+(﹣1)=7+4.点评:本题考查了二次根式的化简以及因式分解的应用,要熟练掌握平方差公式和完全平方公式.20.已知+有意义,求的值.考点:二次根式有意义的条件.分析:先根据二次根式的基本性质:有意义,则a≥0可求x=a,再代入即可求值.解答:解:∵+有意义,∴x﹣a≥0且a﹣x≥0,∴x=a,∴==2.点评:考查了二次根式有意义的条件,解决此题的关键:掌握二次根式的基本性质:有意义,则a≥0.21.计算.考点:二次根式的混合运算;零指数幂;负整数指数幂.专题:计算题.分析:根据二次根式的除法法则、零指数幂和负整数指数幂的意义得到原式=+1﹣1+2﹣+4,然后化简后合并即可.解答:解:原式=+1﹣1+2﹣+4=2+1﹣1+2﹣+4=8﹣.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂.22.(1)计算:;(2)先化简,再求值:,其中.考点:二次根式的混合运算;分式的化简求值;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:(1)根据零指数幂、负整数指数幂和特殊角的三角函数值得到=2+1﹣2×+﹣1,然后合并即可;(2)先把括号内通分和除法运算化为乘法运算,再把分母分解因式,然后约分得到原式=,再把a的值代入计算即可.解答:解:(1)原式=2+1﹣2×+﹣1=3﹣+﹣1=2;(2)原式=•=,当a=时,原式==﹣2.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了分式的混合运算、零指数幂、负整数指数幂和特殊角的三角函数值.23.(1)|﹣|﹣+(π+4)0﹣sin30°+;(2)+÷a,其中a=.考点:二次根式的混合运算;分式的化简求值;零指数幂;特殊角的三角函数值.专题:计算题.分析:(1)根据零指数幂、特殊角的三角函数值和分母有理化得到原式=﹣3+1﹣++1,然后合并即可;(2)先把分子分母因式分解,然后约后合并得到原式=,然后把a的值代入计算即可.解答:解:(1)原式=﹣3+1﹣++1=﹣1;(2)原式=﹣÷a=﹣1=,当a=+1时,原式==.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和特殊角的三角函数值以及分式的化简求值.。
专题10 二次根式考点总结【思维导图】【知识要点】知识点一二次根式的有关概念和性质二次根式概念:一般地,我们把形如(?≥0)的式子叫做二次根式,“ ”称为二次根号。
【注意】1.二次根式,被开方数a可以是一个具体的数,也可以是代数式。
2.二次根式是一个非负数。
3.二次根式与算术平方根有着内在联系,(?≥0)就表示a的算术平方根。
二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
二次根式的性质:1.含有两种相同的运算,两者都需要进行平方和开方。
2.结果的取值范围相同,两者的结果都是非负数。
3.当a≧0时,考查题型一利用二次根式非负性解题1.(2013·四川中考真题)已知实数x,y,m满足,且y为负数,则m的取值范围是()A.m>6 B.m<6 C.m>﹣6 D.m<﹣6【答案】A【解析】根据算术平方根和绝对值的非负数性质,得:,解得:。
∵y为负数,∴6﹣m<0,解得:m>6。
故选A。
2.(2016·四川中考真题)若 +b2﹣4b+4=0,则ab的值等于()A.﹣2 B.0 C.1 D.2【答案】D【解析】试题分析:由,得:a﹣1=0,b﹣2=0.解得a=1,b=2.ab=2.故选D.3.(2012·湖北中考真题)若与|x﹣y﹣3|互为相反数,则x+y的值为()A.3 B.9 C.12 D.27【答案】D【解析】依题意得 .∴x+y=27.故选D.考查题型二判断二次根式有意义的取值范围1.(2013·四川中考真题)若代数式有意义,则实数x的取值范围是()A. B. C. D.且【答案】D【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且x≠1。
故选D。
2.(2018·内蒙古中考真题)代数式中x的取值范围在数轴上表示为()A. B.C. D.【答案】A【详解】由题意,得:3﹣x≥0且x﹣1≠0,解得:x≤3且x≠1,在数轴上表示如图:.故选A.3.(2018·山东中考真题)若式子有意义,则实数m的取值范围是A. B.且C. D.且【答案】D【详解】由题意可知:∴m≥﹣2且m≠1故选D.考查题型三根据二次根式性质进行化简1.(2012·湖南中考真题)实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简的结果为()A.2a+b B.-2a+b C.b D.2a-b【答案】C【解析】试题分析:利用数轴得出a+b的符号,进而利用绝对值和二次根式的性质得出即可:∵由数轴可知,b>0>a,且 |a|>|b|,∴ .故选C.2.(2016·山东中考真题)实数a,b在数轴上对应点的位置如图所示,化简|a|+ 的结果是( )A.﹣2a-b B.2a﹣b C.﹣b D.b【答案】A【详解】由图可知:,∴ ,∴ .故选A.3.(2011·北京中考真题)如果,则a的取值范围是()A. B. C. D.【答案】B【解析】试题分析:根据二次根式的性质1可知:,即故答案为B. . 4.(2015·湖北中考真题)当1<a<2时,代数式+|1-a|的值是( ) A.-1 B.1 C.2a-3 D.3-2a【答案】B【解析】试题解析:∵1<a<2,∴ =|a-2|=-(a-2),|a-1|=a-1,∴ +|a-1|=-(a-2)+(a-1)=2-1=1.故选A.5.(2011·四川中考真题)已知,则的值为()A. B. C. D.【答案】A【解析】试题解析:由,得,解得.2xy=2×2.5×(-3)=-15,故选A.知识点二二次根式的运算二次根式的乘法法则:【注意】1、要注意这个条件,只有a,b都是非负数时法则成立。
:3、乘法交换律在二次根式中仍然适用。
二次根式的乘法法则变形(积的算术平方根):化简二次根式的步骤(易错点):1.把被开方数分解因式(或因数) ;2.把各因式(或因数)积的算术平方根化为每个因式(或因数)的算术平方根的积;3.如果因式中有平方式(或平方数),应用关系式(√?)^2=?(?≥0)把这个因式(或因数)开出来,将二次根式化简。
二次根式的除法法则:【注意】1、要注意这个条件,因为b=0时,分母为0,没有意义。
2、在实际解题时,若不考虑a、b的正负性,直接得是错误的。
二次根式的除法法则变形(商的算术平方根):二次根式的特点:1.被开方数不含分母,例:;2.被开方数中不含能开得尽方的因数或因式,例:。
【二次根式运算中的注意事项】一般将最后结果化为最简二次根式,并且分母中不含二次根式。
二次根式的加减:先将二次根式化为最简二次根式,再把被开方数相同的二次根式(即同类二次根式)进行合并。
(合并方法为:将系数相加减,二次根式部分不变),不能合并的直接抄下来。
二次根式比较大小:1、若,则有;2、若,则有.3、将两个根式都平方,比较平方后的大小,对应平方前的大小。
二次根式混合运算顺序:先计算括号内,再乘方(开方),再乘除,再加减。
注意:运算结果是根式的,一般应表示为最简二次根式。
考查题型四二次根式化简的方法1.(2016·甘肃中考真题)下列根式中是最简二次根式的是A. B. C. D.【答案】B【详解】A. = ,故此选项错误;B.是最简二次根式,故此选项正确;C. =3,故此选项错误;D. = ,故此选项错误;故选B.2.(2018·甘肃中考真题)下列二次根式中,是最简二次根式的是A. B. C. D.【答案】B【详解】A、不是最简二次根式,错误;B、是最简二次根式,正确;C、不是最简二次根式,错误;D、不是最简二次根式,错误,故选B.3.(2011·广东中考真题)下列二次根式中,最简二次根式的是()A. B. C. D.【答案】C【详解】A、 = ,被开方数含分母,不是最简二次根式;故A选项错误;B、 = ,被开方数为小数,不是最简二次根式;故B选项错误;C、,是最简二次根式;故C选项正确;D. = ,被开方数,含能开得尽方的因数或因式,故D选项错误;故选C.考查题型五二次根式乘除运算的方法1.(2015·安徽中考真题)计算 × 的结果是()A. B.4C. D.2【答案】B【解析】试题解析: .故选B.2.(2013·海南中考真题)下列各数中,与的积为有理数的是()A. B. C. D.【答案】C【解析】试题分析:根据实数运算的法则对各选项进行逐一计算作出判断:A、,是无理数,故本选项错误;B、,是无理数,故本选项错误;C、,是有理数,故本选项正确;D、,是无理数,故本选项错误。
故选C。
3.(2018·江苏中考真题)计算: =_____.【答案】2【详解】= =2,故答案为:2.4.(2018·湖南中考真题) ________.【答案】6【详解】原式=2 × =6.故答案为:6.5.(2019·安徽中考真题)计算的结果是__________.【答案】3【详解】解:,故答案为36.(2015·广西中考真题)计算: _________.【答案】【解析】试题分析:原式= = =3.故答案为3.7.(2016·山东中考真题)计算: = .【答案】12【解析】试题分析:直接利用二次根式乘除运算法则化简求出答案.=3 × ÷ =3 =12.考察题型六二次根式加减运算的方法1.(2018·山东中考真题)与最简二次根式5 是同类二次根式,则a=_____.【答案】2【解析】详解:∵ 与最简二次根式5 是同类二次根式,且 =2 ,∴a+1=3,解得:a=2.故答案为2.2.(2019·江苏中考真题)计算:.【答案】【解析】3.(2018·黑龙江中考真题)计算6 ﹣10 的结果是_____.【解析】原式=6 -10× =6 -2 =4 ,故答案为4 .4.(2018·辽宁中考真题)计算:﹣ =__.【答案】【解析】详解:原式=3 -2= .故答案为.5.(2018·湖北中考真题)计算的结果是_____【答案】【详解】== ,故答案为: .考查题型七分母有理化的方法1.(2015·江苏中考真题)计算的结果是.【答案】5.【详解】.故答案为5.2.(2019·江苏中考真题)计算的结果是_____________.【详解】解:原式=2 -2 =0.故答案为0.3.(2015·湖南中考真题)把进行化简,得到的最简结果是(结果保留根号)。
【答案】2【解析】首先将其进行分母有理数,然后再进行二次根式求和.原式= = + =2 . 4.(2019·山东中考真题)计算:=___________.【答案】【详解】.故答案为 .考查题型八二次根式混合运算1.(2019·山东中考真题)计算: _________.【答案】【详解】解:原式,故答案为:.2.(2015·辽宁中考真题)计算的值是__.【答案】﹣1【详解】原式= = .故答案为.3.(2015·内蒙古中考真题)计算: = .【答案】8.【解析】原式= =9﹣1=8,故答案为8.4.(2015·山东中考真题)计算( + )(﹣)的结果为.【答案】﹣1【解析】此题是整式的乘法运算,其符合平方差公式,因此根据公式可直接计算, . 考查题型九二次根式化简求值的方法1.(2014·四川中考真题)已知,则x12+x22= .【答案】10.【解析】∵ ,∴x12+x22=(x1+x2)2﹣2x1x2= .2.(2019·山东中考真题)已知,那么的值是_____.【答案】4【详解】∵ ,∴ ,∴ ,∴,∴ ,故答案为:43.(2016·湖北中考真题)当a= ﹣1时,代数式的值是.【答案】【解析】∵a= ﹣1,∴a+b= +1+ ﹣1=2 ,a﹣b= +1﹣ +1=2,∴ = = =;4.(2015·吉林中考真题)先化简,再求值:,其中.【答案】,5.【解析】式= = ,当时,原式=6﹣1=5.考查题型十二次根式比较大小的方法1.(2018·河南中考模拟)比较大小:2 ____3 (填“>”、“<”或“=”).【答案】>【解析】详解:∵ ,∴ .2.(2019·陕西中考模拟)比较大小:5 _____ .【答案】>【详解】解:∵5 =∴5故答案为>.3.(2019·陕西中考模拟)比较大小: ______ .【答案】【详解】,,,故答案为:.。