高中数学 考前归纳总结 导数中的不等式证明问题
- 格式:doc
- 大小:543.00 KB
- 文档页数:4
利用导数证明不等式的常见题型题型一构造函数法把不等式的证明转化为利用导数研究函数的单调性或求最值的问题,从而证明不等式,而如何根据不等式的结构特征构造一个可导函数是利用导数证明不等式的关键.这四道题比较简单,证明过程略.概括而言,这四道题证明的过程分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论.【启示】证明分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论。
题型二通过对函数的变形,利用分析法,证明不等式【启示】解答第一问用的是分离参数法,解答第二问用的是分析法、构造函数,对函数的变形能力要求较高,大家应记住下面的变形:题型三求最值解决任意、存在性变量问题解决此类问题,关键是将问题转化为求函数的最值问题,常见的有下面四种形式:题型四分拆成两个函数研究【注意】(2)如果按题型一的方法构造函数求导,会发现做不下去,只好半途而废,所以我们在做题时需要及时调整思路,改变思考方向.【启示】掌握下列八个函数的图像和性质,对我们解决不等式的证明问题很有帮助,这八个函数分别为要求会画它们的图像,以后见到这种类型的函数,就能想到它们的性质题型五设而不求当函数的极值点(最值点)不确定时,可以先设出来,只设不解,把极值点代入,求出最值的表达式而证明.【启示】设而不求,整体代换是一种常用的方法,在解析几何中体现很多.在本例第(2)问中,只设出了零点而没有求出零点,这是一种非常好的方法,同学们一定要认真体会,灵活应用.题型六估值法题型七利用图象的特点,证明不等式题型八证明数列不等式题型九利用放缩法证明不等式【注意】在解决第(2)问时,用构造函数法证不出来,又试着分开两个函数仍然不行,正当我一筹莫展时,忽然想到与第一问题的切线联系,如果左边的函数的图像在切线的上方,右边函数的图像在切线的下方,这样问题不就得证了吗?心里非常高兴,马上付诸行动。
导数中的不等式证明问题一、常见基本题型:(1) 结合问题之间的联系,利用函数的单调性证明;(2) 构造新的函数,求导,结合函数的单调性去证。
例1:已知函数()ln f x x =,21()22g x x x =-. (1)设/()(1)()h x f x g x =+-(其中是的导函数),求的最大值;(2)证明: 当0b a <<时,求证:()(2)2b a f a b f a a-+-<; 解:(1)/()(1)()ln(1)2h x f x g x x x =+-=+-+,1x >- 所以 1()111x h x x x -'=-=++. 当10x -<<时,()0h x '>;当时,()0h x '<.因此,在(1,0)-上单调递增,在(0,)+∞上单调递减. 因此,当时,取得最大值(0)2h =;(2)当0b a <<时,102b a a--<<. 由(1)知:当10x -<<时,()2h x <,即ln(1)x x +<. 因此,有()(2)ln ln 1222a b b a b a f a b f a a a a +--⎛⎫+-==+< ⎪⎝⎭. 例2:已知221()ln ,02f x x a x a =-> (I )求函数f ()的最小值;(II )(i )设0t a <<,证明:()()f a t f a t +<-;(ii )若12()()f x f x =,且12,x x ≠证明:122.x x a +>解:(Ⅰ)f '=-错误!=错误!.当∈0,a 时,f '<0,f 单调递减;当∈a ,+∞时,f '>0,f 单调递增.当=a 时,f 取得极小值也是最小值f a =错误!a 2-a 2n a . (Ⅱ)(ⅰ)设g t =f a +t -f a -t ,则当0<t <a 时,g't=f'a+t+f'a-t=a+t-错误!+a-t-错误!=错误!<0,所以g t在0,a单调递减,g t<g0=0,即f a+t-f a-t<0,故f a+t<f a-t.(ⅱ)由(Ⅰ),f在0,a单调递减,在a,+∞单调递增,不失一般性,设0<1<a<2,因0<a-1<a,则由(ⅰ),得f2a-1=f a+a-1<f a-a-1=f1=f2,又2a-1,2∈a,+∞,故2a-1<2,即1+2>2a.(3)与数列相结合的问题例3设曲线32132axy bx cx=++在点x处的切线斜率为()k x,且(1)0k-=,对一切实数x,不等式12()(1)2x k x x≤≤+恒成立(0a≠)(1)求()1k的值;(2)求函数()k x的表达式;(3)求证:11112 (1)(2)(3)()2n k k k k n n ++++>+解:(1)2()k x ax bx c=++,()21(21)x k x x≤≤+,11(1)(11)12k∴≤≤+=, ()11k∴=21(1)002(1)1112bk a b ck a b c a c⎧=⎧⎧-=-+=⎪⎪⎪⇒∴⎨⎨⎨=++=⎪⎪⎩⎩⎪+=⎩()k x x≥,122ax x c x∴++≥111 20,40,2416ax x c ac ac-+≥∆=-≤∴≥,又2()1416a c ac +≤=即1111,,1616164ac ac a c ≤≤∴=∴== ()()11112214244k x x x x ∴=++=+ 3证明:()()1421k x x =+∴原式()()()444222112131=++++++…()421n ++1114222234⎡=+++⎢⎢⎣…()121n ⎤⎥+⎥+⎦ 1114344523⎡>+++⎢⨯⨯⨯⎣…()()112n n ⎤+⎥++⎥⎦1111114233445⎛=-+-+-+ ⎝…1112n n ⎫++⎪++⎭ ()2114422222n n n n n ⎛⎫=-=⨯= ⎪+++⎝⎭针对性练习:2已知函数()()ln 3f x a x ax a R =--∈(1)当时,求函数的最小值;(2)求证:()2,1ln 44ln 33ln 22ln ≥∈<⋅⋅⋅⋅n N n nn n 解:(1)当时,函数的最小值3a --, (2)令1,a =-此时()ln 3f x x x =-+-(1)2f =-2已知函数1ln )1()(+-+=x x x b x f ,斜率为的直线与相切于点(1)求()()ln h x f x x x =-的单调区间; (2)证明:(1)()0x f x -≥解:(1)由题意知:1)1(ln )(-++='xx x b x f 1,112)1(==-='b b f()()ln ln 1h x f x x x x x =-=-+ 1()1h x x'=-1()10h x x '=->解得:01x <<;1()10h x x '=-<解得: 所以在上单调递增,在(1,)+∞上单调递减, (2)由(1)知:。
利用导数证明不等式的常见题型及解题技巧趣题引入已知函数x x x g ln )(= 设b a <<0, 证明:2ln )()2(2)()(0a b b a b g a g -<+-+<分析:主要考查利用导数证明不等式的能力。
分析:主要考查利用导数证明不等式的能力。
证明:1ln )(+=¢x x g ,设)2(2)()()(xa g x g a g x F +-+=2ln ln )2()(21)2(2)()(''''x a x x a g x g xa g x g x F +-=+-=´+-=¢当a x <<0时0)(<¢x F ,当a x >时 0)(>¢x F , 即)(x F 在),0(a x Î上为减函数,在),(+¥Îa x 上为增函数上为增函数 ∴0)()(min==a F x F ,又a b > ∴0)()(=>a F b F , 即0)2(2)()(>+-+ba gb g a g设2ln )()2(2)()()(a x x a g x g a g x G --+-+=)ln(ln 2ln 2ln ln )(x a x xa x x G +-=-+-=¢\当0>x 时,0)('<x G ,因此)(x G 在区间),0(+¥上为减函数;上为减函数; 因为0)(=a G ,又a b > ∴0)()(=<a G b G , 即 02ln )()2(2)()(<--+-+a x x a g x g a g故2ln )()2(2)()(a x xa g x g a g -<+-+ 综上可知,当综上可知,当b a <<0时,2ln )()2(2)()(0a b ba b g a g -<+-+< 本题在设辅助函数时,考虑到不等式涉及的变量是区间的两个端点,因此,设辅助函数时就把其中一个端点设为自变量,范例中选用右端点,读者不妨设为左端点试一试,就能体会到其中的奥妙了。
利用导数证明不等式的常见题型及解题技巧不等式的证明问题是高中数学的一个难点,证明不等式的方法技巧性强,并且各类不等式的证明没有通性解法。
一、简单作差(商)法方法:.要证明对任意∈x [b a ,]都有)()(x g x f ≤,可设)()()(x g x f x h -=,只要利用导数说明)(x h 在[b a ,]上的最大值为0即可.利用导数证明不等式要考虑构造新的函数,利用新函数的单调性或最值解决不等式的证明问题 例1、证明下列不等式:①1+≥x e x ②1ln -≤x x ③xx 1-1ln ≥ ④1x 1)-2(x ln +≥x )1(≥x ⑤)2,0(,2sin ππ∈>x x x例2已知函数.ln 21)(2x x x f +=求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方;二、换元后作差构造函数证明【例3】(山东卷)证明:对任意的正整数n ,不等式3211)11ln(nn n ->+ 都成立.提示:令则,1nt =构造0)1ln()(32>+-+=t t t x f例4已知:)0(∞+∈x ,求证xx x x 11ln 11<+<+;(换元:设x x t 1+=)三、利用max min )()(x g x f ≥证明不等式 例1、已知函数.22)(),,(,ln )1(1)(ex e x g R b a x a b x ax x f +-=∈+-+-= (1)若函数2)(=x x f 在处取得极小值0,求b a ,的值;(2)在(1)的条件下,求证:对任意的],[,221e e x x ∈,总有)()(21x g x f >.例2:证明:对一切),0(+∞∈x ,都有exe x x 21ln ->成立.含有两个变量的不等式常有两种题型,即根据两个变量是否能分离将题型分为可分离变量式和不可分离变量式,对于这两种采用不同的方法,请注意区别。
利用导数证明不等式考点与题型归纳例1]已知函数$f(x)=1-\frac{1}{x\ln x}$,$g(x)=\frac{1}{x}-bxe^{-x}$,若曲线$y=f(x)$与曲线$y=g(x)$的一个公共点是$A(1,1)$,且在点$A$处的切线互相垂直.(1)求$a$,$b$的值;(2)求证:当$x\geq 1$时,$f(x)+g(x)\geq\frac{1}{x\ln x}$.解](1)因为$f(x)=1-\frac{1}{x\ln x}$,所以$f'(x)=\frac{1}{x^2\ln x}$,$f'(1)=-1$。
因为$g(x)=\frac{1}{x}-bxe^{-x}$,所以$g'(x)=-\frac{1}{x^2}-be^{-x}+bxe^{-x}$,$g'(1)=1-a-b$。
因为曲线$y=f(x)$与曲线$y=g(x)$的一个公共点是$A(1,1)$,且在点$A$处的切线互相垂直,所以$g(1)=1$,且$f'(1)\cdot g'(1)=-1$,即$g(1)=a+1-b=1$,$g'(1)=-a-1-b=1$,解得$a=-1$,$b=-1$.2)证明:由(1)知,$g(x)=-\frac{1}{x}+x$,则$f(x)+g(x)\geq\frac{1}{x\ln x}\Leftrightarrow 1-\frac{1}{x\ln x}-\frac{1}{x}+x\geq 0$,即$\frac{1}{x\ln x}-\frac{1}{x}+x\geq 1$。
令$h(x)=1-\frac{1}{x\ln x}-\frac{1}{x}+x(x\geq 1)$,则$h'(x)=\frac{2}{x^3}-\frac{1}{x^2}+\frac{1}{x\ln^2 x}+1$,因为$x\geq 1$,所以$h'(x)>0$,所以$h(x)$在$[1,+\infty)$上单调递增,所以$h(x)\geq h(1)=1-\frac{1}{\ln e}-1+1=0$,即$\frac{1}{x\ln x}-\frac{1}{x}+x\geq 1$,所以当$x\geq 1$时,$f(x)+g(x)\geq\frac{1}{x\ln x}$.解题技法]待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,利用导数研究其单调性,借助所构造函数的单调性即可得证.例2](2019·长沙模拟)已知函数$f(x)=e^{x^2}-x\ln x$.求证:当$x>1$时,$f(x)<x e^x$.证明]要证$f(x)<xe^x$,只需证$e^x-e^{-x}<\frac{\lnx}{x}$.令$h(x)=\ln x+\frac{1}{x}(x>0)$,则$h'(x)=\frac{1}{x^2}-\frac{1}{x^2}=0$,$h''(x)=\frac{2}{x^3}>0$,所以$h(x)$在$(0,+\infty)$上下凸,所以$h(x)\geq h(1)=1$,即$\lnx+\frac{1}{x}\geq 1$,即$\frac{\ln x}{x}\geq 1-\frac{1}{x}$.再令$\varphi(x)=e^x-e^{-x}$,则$\varphi'(x)=e^x+e^{-x}>0$,所以$\varphi(x)$在$(0,+\infty)$上单调递增,所以$\varphi(x)<\varphi(1)=e-e^{-1}$.因为$\frac{\ln x}{x}\geq 1-\frac{1}{x}>1-e^{-1}$,所以$\varphi(x)1$时,$f(x)<e^{x^2}-x\ln x<xe^x$.3.已知不等式 $\frac{e^{1-x_2}-e^{1-x_1}}{\ln{x_1}-\ln{x_2}}>\frac{1}{x_2}$,证明 $\ln{x_1}-\ln{x_2}>1-\frac{1}{e^{1-x_2}-e^{1-x_1}}$。
专题五 利用导数证明函数不等式(二)本专题总结了利用导数证明含有两个未知数的函数不等式的常见方法,希望同学们看后有所收获,提升利用导数证明函数不等式的能力.模块1 整理方法 提升能力对于两个未知数的函数不等式问题,其关键在于将两个未知数化归为一个未知数,常见的证明方法有以下4种:方法1:利用换元法,化归为一个未知数方法2:利用未知数之间的关系消元,化归为一个未知数 方法3:分离未知数后构造函数,利用函数的单调性证明 方法4:利用主元法,构造函数证明对数平均值不等式链我们将两个正数a 和b 的对数平均值定义为:(),,ln ln ,a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩,对数平均值不等式链为:()222,1122a b a b ab L a b a b++≤≤≤≤+. 对数平均值不等式链的指数形式为:2222e e e e e e e1122e e a b a b a b a b a ba b +-++≤≤≤≤-+,其中a b ≠.例1已知函数()1ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点1x ,2x ,证明:()()12122f x f x a x x -<--.【解析】(1)定义域为()0,+∞,()22111a x ax f x x x x -+'=--+=-.①若0a ≤,则()0f x '<,()f x 在()0,+∞上递减.②若240a ∆=-≤,即02a <≤时,()0f x '≤,()f x 在()0,+∞上递减.③若240a ∆=->,即2a >时,由()0f x '>x <<,由()0f x '<,可得0x <<或x ,所以()f x在⎛ ⎝⎭,2a ⎛⎫++∞ ⎪ ⎪⎝⎭上递减,在22a a ⎛-+ ⎪⎝⎭上递增.综上所述,当2a ≤时,()f x 在()0,+∞上递减;当2a >时,()f x在⎛ ⎝⎭,⎫+∞⎪⎪⎝⎭上递减,在⎝⎭上递增.【证明】(2)法1:由(1)知,()f x 存在两个极值点,则2a >.因为1x ,2x 是()f x 的两个极值点,所以1x ,2x 满足210x ax -+=,所以12x x a +=,121x x =,不妨设1201x x <<<.()()11221212121211ln ln x a x x a x f x f x x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪-⎝⎭⎝⎭==-- ()()()()21121212121212121212ln ln ln ln ln ln 112x x x x a x x a x x a x x x x x x x x x x x x ---+---=--+=-+---,于是()()()121212212121222ln ln ln ln 2ln 222111f x f x a x x x x x a a x x x x x x x x ----<-⇔-+<-⇔<⇔<⇔----22212ln 0x x x +-<.构造函数()12ln g x x x x=+-,1x >,由(1)知,()g x 在()1,+∞上递减,所以()()10g x g <=,不等式获证.法2:由(1)知,()f x 存在两个极值点,则2a >.因为1x ,2x 是()f x 的两个极值点,所以1x ,2x 满足210x ax -+=,不妨设1201x x <<<,则21x x -=,121x x =.()()11221212121211ln ln x a x x a x f x f x x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪-⎝⎭⎝⎭==--()2111121222121212ln ln 112x x x x x x a a x x x x x x x x x x ---+=--+=---,于是()()1212222f x f x a a x x -<-⇔-<-⇔-2ln ln222a a ⎛++⇔<⇔< ⎪⎝⎭.设t =a =())lnt t t ϕ=-,0t >,则()110t ϕ'==>,所以()t ϕ在()0,+∞上递增,于是()()00t ϕϕ>=,命题获证.法3:仿照法1,可得()()12121212ln ln 21f x f x x x a x x x x --<-⇔<--,因为121x x =,所以121211212122ln ln ln ln 1ln ln ln x x x x x x x x x x x x --<⇔<⇔->⇔>--()0,1t =,构造函数()12ln h t t t t=+-,由(1)知,()h t 在()0,1上递减,所以()()10h t h >=,不等式获证.【点评】1x 、2x 和a 之间的关系为12x x a +=,121x x =,我们可以利用其关系式对不等式进行消元,化归为只含有一个未知数的不等式.法1消去1x 和a 留下2x ,法2消去1x 和2x 留例2已知函数()e x f x =,x ∈R .(1)设0x >,讨论曲线()y f x =与曲线2y mx =(0m >)公共点的个数; (2)设a b <,比较()()2f a f b +与()()f b f a b a--的大小,并说明理由.【解析】(1)e xy =与2y mx =的公共点的个数等价于2e y x=与y m =的公共点的个数.令()2e xh x x=,则()()3e 2x x h x x -'=,由()0h x '<可得02x <<,由()0h x '>可得2x >,所以()h x 在()0,2上递减,在()2,+∞上递增,所以()h x 在()0,+∞上的最小值为()2e 24h =.当0x +→时,()h x →+∞,当x →+∞时,()h x →+∞.当2e 04m <<时,2e x y x =与y m =没有公共点,即e xy =与2y mx =没有公共点;当2e 4m =时,2e x y x =与y m =有一个公共点,即e x y =与2y mx =有一个公共点;当2e 4m >时,2e x y x=与y m =有两个公共点,即e x y =与2y mx =有两个公共点.(2)结论:()()()()2f a f b f b f a b a+->-,证明如下.法1:()()()()e e e e e e 222e e a b b a b abaf a f b f b f a b a b a b a +-+--->⇔>⇔>--+ e 12e 1b a b ab a ----⇔>+.令x b a =-,则0x >,即证e 12e 1x x x ->+.构造函数()e 12e 1x x x x ϕ-=-+,则()()()()222e 112e 02e 12e 1xxxxx ϕ-'-=>++=,所以()x ϕ在()0,+∞上递增,于是()()00x ϕϕ>=.命题获证.法2:()()()()e e e e e e 222e e a b b a b a baf a f b f b f a b a b a b a +-+--->⇔>⇔>--+ e 12e 1b a b ab a ----⇔>+.令x b a =-,则0x >,即证e 12e 1xx x ->+,该不等式等价于()22e x x x +>-. 构造函数()()22e x h x x x =++-,则()()11e x h x x '=+-,令()()g x h x '=,则()e 0x g x x '=>,于是()g x 在()0,+∞上递增,所以()()00g x g >=,即()0h x '>,所以()h x 在()0,+∞上递增,于是()()00h x h >=.命题获证.法3:()()()()e e e e 22a b b af a f b f b f a b ab a+-+->⇔>--.令e a m =,e b n =,则m n <,且不等式1ln ln 2ln 22ln ln 1n n m n m n m n m n m n n m n m m m ⎛⎫- ⎪+--⎛⎫⇔>⇔->⇔> ⎪ ⎪-+⎝⎭ ⎪+ ⎪⎝⎭,令n t m =,1t >,则不等式()21ln 1t t t -⇔>+,这是与ln x 有关的常用不等式,命题获证.【点评】第(2)小问的不等式含有两个未知数a 、b ,其解题思路主要是利用换元法将两个未知数a 、b 化归为一个未知数,常见的换元手法有x a b =+,x a b =-,x ab =,ax b=.所证不等式为e e e e 2a b b ab a+->-,这是对数平均值不等式的指数形式,法3通过换元将其转化为对数平均值不等式再进行证明.例3已知函数()()21ln 1f x a x ax =+++. (1)讨论函数()f x 的单调性;(2)设1a <-,如果对任意()12,0,x x ∈+∞,()()12124f x f x x x -≥-,求a 的取值范围.【解析】(1)()f x 的定义域为()0,+∞.()1212a ax a f x ax x x+++'=+=. 当0a ≥时,()0f x '>,所以()f x 在()0,+∞上递增;当1a ≤-时,()0f x '<,所以()f x 在()0,+∞上递减;当10a -<<时,由()0f x '>可得102a x a+<<-,由()0f x '<可得12a x a +>-()f x 在12a a ⎛+- ⎝上递增,在1,2a a ⎫+-+∞⎪⎪⎭上递减. (2)不妨设12x x ≥,因为1a <-,所以由(1)可知()f x 在()0,+∞上递减,于是()()12f x f x ≤,于是对任意()12,0,x x ∈+∞,()()12124f x f x x x -≥-等价于对任意()12,0,x x ∈+∞,()()()21124f x f x x x -≥-.法1:(分离未知数后构造函数)()()()()()21122211444f x f x x x f x x f x x -≥-⇔+≥+. 构造函数()()4g x f x x =+,则只需证明()g x 在()0,+∞上是减函数.()2214ax a g x x++'=+,要使()g x 在()0,+∞上是减函数,则22140ax a x +++≤在()0,+∞上恒成立,所以24121x a x +≤-+.令()24121x h x x +=-+,则()()()()()()()2222242141442112121x x xx x h x x x +-+⋅-+'=-=++,由()0h x '>可得12x >,由()0h x '<可得102x <<.所以()h x 在10,2⎛⎫ ⎪⎝⎭上递减,在1,2⎛⎫+∞ ⎪⎝⎭上递增,所以当12x =时,()h x 有最小值2-,于是a 的取值范围是(],2-∞-.法2:(主元法)由()()()21124f x f x x x -≥-可得()()()222211121ln 1ln 4a x ax a x ax x x ++-+-≥-,以2x 为主元构造函数()()()221111ln 41ln 4F x a x ax x a x ax x =+++-+--(10x x <≤),则()124a F x ax x+'=++ ()2241ax x a x+++=.令()()2241G x ax x a =+++,则()G x 是开口方向向下,对称轴为1x a=-的抛物线,其()()812a a ∆=--+.①若2a ≤-,则0∆≤,此时()0G x ≤,即()0F x '≤,所以()F x 在(]10,x 上递减,于是()()10F x F x ≥=,即()()()21124f x f x x x -≥-.②若21a -<<-,则0∆>,此时()0G x =有两个根,不妨设为m 、n ,且m n <.由()0F x '>可得m x n <<,由()0F x '<可得0x m <<或x n >.因为2x 是任意的,不妨设2m x n <<,于是()F x 在()0,m 上递减,在()2,m x 上递增,于是在()2,m x 上,有()()10F x F x <=,即()()()21124f x f x x x -≥-不成立.综上所述,a 的取值范围是(],2-∞-.【点评】得到二元不等式()()()21124f x f x x x -≥-后,有三种方法解决,一是分离未知数后构造函数,进而利用函数的单调性进行证明,二是利用换元法,把二元化归为一元,三是把其中一个元看成主元,进而再求导,法1是分离未知数后构造函数法,法2是主元法.例4已知函数()()()22e 1x f x x a x =-+-有两个零点. (1)求a 的取值范围;(2)设1x 、2x 是()f x 的两个零点,证明:122x x +<.【解析】(1)法1:()()()22e 01x x f x a x -=⇔=--,于是()f x 有两个零点等价于y a =与()()()22e 1x x g x x -=--有两个交点.因为()()()23e 451x x x g x x -+'=--,由()0g x '>可得1x <,由()0g x '<可得1x >,于是()g x 在(),1-∞上递增,在()1,+∞上递减.当x →-∞时,()0g x +→;当1x -→时,()g x →+∞;当1x +→时,()g x →+∞;当x →+∞时,()g x →-∞.于是当0a >时,y a =与()g x 有两个交点,所以a 的取值范围是()0,+∞.法2:()()()()()1e 211e 2x x f x x a x x a '=-+-=-+. ①当0a =时,()()2e x f x x =-,只有1个零点.②当0a >时,e 20x a +≥,由()0f x '>可得1x >,由()0f x '<可得1x <,所以()f x 在(),1-∞上递减,在()1,+∞上递增.()1e 0f =-<,()20f a =>,当x →-∞时,()21a x -→+∞,()2e 0x x --→,所以()f x →+∞,所以()f x 有两个零点.③当0a <时,由()0f x '=可得1x =或()ln 2x a =-. (i )当e2a <-时,()ln 21a ->,由()0f x '>可得1x <或()ln 2x a >-,由()0f x '<可得()1ln 2x a <<-,所以()f x 在(),1-∞、()()ln 2,a -+∞上递增,在()()1,ln 2a -上递减.因为()1e 0f =-<,所以()f x 没有两个零点.(ii )当e2a =-时,()ln 21a -=,所以()0f x '≥恒成立,即()f x 在R 上递增,所以()f x 没有两个零点.(iii )当e 2a >-时,()ln 21a -<,由()0f x '>可得()ln 2x a <-或1x >,由()0f x '<可得()ln 21a x -<<,所以()f x 在()(),ln 2a -∞-、()1,+∞上递增,在()()ln 2,1a -上递减.当1x ≤时,()0f x <,所以()f x 没有两个零点.综上所述,a 的取值范围是()0,+∞.【证明】(2)法1:(极值点偏移)构造函数()()()()()()2222e e 211x xx x G x g x g x x x --=--=--=-- ()()222e e 1x x x x x --+--(1x <),令()()22e e x x x x x ϕ-=-+,则()()()21e e x xx x ϕ-'=--,因为1x <,所以10x -<,2x x <-,2e e 0x x --<,所以()0x ϕ'>,于是()x ϕ在(),1-∞上递增,于是()()10x ϕϕ<=,于是()()()20G x g x g x =-->,即()()2g x g x >-.不妨设12x x <,由(1)可知()1,1x ∈-∞,()21,2x ∈,于是()()112g x g x >-,而()()12g x g x =,所以()()212g x g x >-.因为()121,x -∈+∞,且()g x 在()1,+∞上递减,所以212x x <-,即122x x +<.法2:(极值点偏移)构造函数()()()()222e e x x F x f x f x x x -=--=-+(1x <),则()()()21e e x x F x x -'=--,因为1x <,所以10x -<,2x x <-,2e e 0x x --<,所以()0F x '>,于是()F x 在(),1-∞上递增,于是()()10F x F <=,于是()()2f x f x <-.不妨设12x x <,由(1)可知()1,1x ∈-∞,()21,2x ∈,于是()()112f x f x <-,而()()12f x f x =,所以()()212f x f x <-.因为()121,x -∈+∞,且()f x 在()1,+∞上递增,所以212x x <-,即122x x +<.【点评】对于函数()y f x =在区间(),a b 内只有一个极值点0x ,方程()0f x =的解分别于极值点偏移问题,解题可沿循着如下处理策略:①构造一元差函数()()()02F x f x f x x =--;②对差函数()F x 求导,判断函数符号,确定()F x 的单调性;③结合()00F x =,判断()F x 的符号,从而确定()f x 、()02f x x -的大小关系;模块2 练习巩固 整合提升练习1:已知函数()ln f x ax x x =+的图象在点e x =(e 为自然对数的底数)处的切线斜率为3.(1)求实数a 的值; (2)若k ∈Z ,且()1f x k x <-对任意1x >恒成立,求k 的最大值;(3)当4n m >≥时,证明:()()mnnm mn nm >.【解析】(1)因为()ln f x ax x x =+,所以()ln 1f x a x '=++,所以()e 3f '=,即lne 13a ++=,所以1a =.(2)由(1)知,()ln f x x x x =+,所以()1f x k x <-对任意1x >恒成立,即ln 1x x xk x +<-对任意1x >恒成立.当2x =时,有22ln 23.3821k +<≈-,猜想k 的最大值为3,下面进行证明. ()ln 3331ln 23ln ln 201x x x x x x x x x x x x x +<⇔-<+⇔-<⇔+->-,令()3ln 2g x x x =+-,则()22133x g x x x x-'=-=,由()0g x '>可得3x >,由()0g x '<可得13x <<,所以()g x 在()1,3上递减,在()3,+∞上递增,所以()()min 3ln310g x g ⎡⎤==->⎣⎦,命题获证,整数k 的最大值是3.【证明】(3)()()()()ln ln ln ln ln ln mnnm mn m mn n mn m mn n mn nm n m m n n m m n >⇔>⇔+>+ln ln ln ln mn n m m mn m n n ⇔+>+.法1:(分离未知数后构造函数)ln ln ln ln mn n m m mn m n n +>+⇔()()ln ln 1ln 1ln 11n n m mn m n m n m n m ->-⇔>--. 构造函数()ln 1x xk x x =-,4x ≥,则()()()()()221ln 1ln 1ln 11x x x x x x k x x x +----'==--,令()11ln k x x x =--,则()111k x x'=-,因为4x ≥,所以()10k x '>在[)4,+∞上恒成立,即()1k x 在[)4,+∞上递增,而()143ln 40k =->,于是()0k x '>在[)4,+∞上恒成立,所以()k x 在[)4,+∞上递增.而4n m >≥,所以ln ln 11n n m mn m >--,不等式获证. 法2:(主元法)以n 为主元构造函数()ln ln ln ln f x mx x m m mx m x x =+--,则()()1ln 1ln f x m x m m m '=-+--.因为4x m >≥,所以()()1ln 1ln 1ln 0f x m m m m m m m '>-+--=-->,所以函数()f x 在[),m +∞上递增.因为n m >,所以()()f n f m >,所以ln ln ln ln mn n m m mn m n n +-->22ln ln ln ln 0m m m m m m m m +--=,即ln ln ln ln mn n m m mn m n n +>+,不等式获证.练习2:已知函数()()ln 1f x x x =+-,()ln g x x x =. (1)求函数()f x 的最大值;(2)设0a b <<,证明:()()()02ln 22a b g a g b g b a +⎛⎫<+-<- ⎪⎝⎭.【解析】(1)函数()f x 的定义域为()1,-+∞.()111f x x'=-+,由()0f x '>可得10x -<<,由()0f x '<可得0x >,于是()f x 在()1,0-上递增,在()0,+∞上递减,于是当0x =时,()f x 有最大值,且最大值为()00f =.【证明】(2)以b 为主元构造函数.设()()()22a x F x g a g x g +⎛⎫=+- ⎪⎝⎭,其中(),x a ∈+∞,则()()2ln ln 22a x a xF x g x g x '⎡⎤++⎛⎫''=-=- ⎪⎢⎥⎝⎭⎣⎦.因为x a >,所以()0F x '>,因此()F x 在(),a +∞上为增函数.而b a >,所以()()0F b F a >=,即()()202a b g a g b g +⎛⎫+->⎪⎝⎭. 设()()()ln 2G x F x x a =--,其中(),x a ∈+∞,则()()ln lnln 2ln ln 2a xG x x x a x +'=--=-+.当x a >时,()0G x '<,因此()G x 在(),a +∞上为减函数,而b a >,所以()()0G b G a <=,即()()()2ln 22a b g a g b g b a +⎛⎫+-<- ⎪⎝⎭.综上所述,()()()02ln 22a b g a g b g b a +⎛⎫<+-<- ⎪⎝⎭.11练习3:设a ∈R ,函数()ln f x x ax =-有两个零点1x 、2x ,且120x x <<. (1)求实数a 的取值范围; (2)证明:212e x x ⋅>. 【解析】(1)()ln 0x f x a x =⇔=,所以()0f x =有两个零点⇔y a =与()ln xg x x=有两个交点.()21ln xg x x-'=,由()0g x '>可得0e x <<,由()0g x '<可得e x >,所以()g x 在()0,e 上递增,在()e,+∞上递减.又因为当0x +→时,()g x →-∞;当x →+∞时,()0g x +→;()1e e g =,所以实数a 的取值范围为10,e ⎛⎫⎪⎝⎭.【证明】(2)法1:(化二元为一元)依题意,有11ln 0x ax -=,22ln 0x ax -=,于是()1212ln ln x x a x x +=+,()1212ln ln x x a x x -=-,所以()()12121212ln ln ln ln x x x x x x x x -++=-.()()()12121221212121212ln ln 2e ln ln 22ln ln x x x x x x x x x x xx x x x x -+-⋅>⇔+>⇔>⇔-<-+12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭⇔<+,令()120,1x t x =∈,则上式等价于()21ln 1t t t -<+,这是与ln x 有关的常用不等式,证明如下:构造()()21ln 1t h t t t -=-+,01t <<,则()()()()222114011t h t t t t t -'=-=>++,于是()h t 在()0,1上递增,于是()()10h t h <=,命题获证.法2:(化二元为一元)依题意,有1212ln ln x x x x =,即1122ln ln x x x x =,设()1122ln 0,1ln x x t x x ==∈,则()1222ln ln ln ln ln x tx t x t x ==+=,于是2ln ln 1tx t =-,因此21212e ln ln 2x x x x ⋅>⇔+>⇔ ()()221ln 21ln ln 22ln 11t t t t x x t t t +-+>⇔>⇔<-+,下同法1.法3:(极值点偏移)21212e ln ln 2x x x x ⋅>⇔+>,令11ln t x =,22ln t x =,则1t 、2t 是函数()e t g t t a =-的两个零点,且120t t <<,该问题不是极值点偏移问题,因为()g t 的极值点不是1,需要把()e t g t t a =-改为()et tk t a =-,问题才转化为极值点偏移问题.12()1e ttk t -'=,由()0k t '>可得1t <,由()0k t '<可得1t >,所以()k t 在(),1-∞上递增,在()1,+∞上递减,于是1201t t <<<.构造函数()()()()222e2e 22e e e tt t t t t t t K t k t k t --+--=--=-=(01t <<),则()()()221e e 0e t t t K t ---'=≥,于是()K t 在()0,1上递增,于是()()10K t K <=,即()()2k t k t <-,于是()()112k t k t <-,而()()12k t k t =,所以()()212k t k t <-.因为21t >,121t ->,且()k t 在()1,+∞上递减,所以212t t >-,即122t t +>,命题获证.。
高考数学考点归纳之利用导数证明不等式考点一 单变量不等式的证明 方法一 移项作差构造法证明不等式[例1] 已知函数f (x )=1-ln x x ,g (x )=a e e x +1x -bx (e 为自然对数的底数),若曲线y =f (x )与曲线y =g (x )的一个公共点是A (1,1),且在点A 处的切线互相垂直.(1)求a ,b 的值;(2)求证:当x ≥1时,f (x )+g (x )≥2x .[解] (1)因为f (x )=1-ln xx ,所以f ′(x )=ln x -1x 2,f ′(1)=-1.因为g (x )=a e e x +1x -bx ,所以g ′(x )=-a e e x -1x2-b .因为曲线y =f (x )与曲线y =g (x )的一个公共点是A (1,1),且在点A 处的切线互相垂直, 所以g (1)=1,且f ′(1)·g ′(1)=-1, 即g (1)=a +1-b =1,g ′(1)=-a -1-b =1, 解得a =-1,b =-1.(2)证明:由(1)知,g (x )=-e e x +1x +x ,则f (x )+g (x )≥2x ⇔1-ln x x -e e x -1x +x ≥0.令h (x )=1-ln x x -e e x -1x+x (x ≥1),则h ′(x )=-1-ln x x 2+e e x +1x 2+1=ln x x 2+ee x +1. 因为x ≥1,所以h ′(x )=ln x x 2+eex +1>0,所以h (x )在[1,+∞)上单调递增,所以h (x )≥h (1)=0, 即1-ln x x -e e x -1x +x ≥0,所以当x ≥1时,f (x )+g (x )≥2x .[解题技法]待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,利用导数研究其单调性,借助所构造函数的单调性即可得证.方法二 隔离审查分析法证明不等式[例2] (2019·长沙模拟)已知函数f (x )=e x 2-x ln x .求证:当x >0时,f (x )<x e x +1e .[证明] 要证f (x )<x e x +1e ,只需证e x -ln x <e x +1e x ,即e x -e x <ln x +1e x .令h (x )=ln x +1e x (x >0),则h ′(x )=e x -1e x2,易知h (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增,则h (x )min =h ⎝⎛⎭⎫1e =0,所以ln x +1e x≥0. 再令φ(x )=e x -e x ,则φ′(x )=e -e x ,易知φ(x )在(0,1)上单调递增,在(1,+∞)上单调递减,则φ(x )max =φ(1)=0,所以e x -e x ≤0.因为h (x )与φ(x )不同时为0,所以e x -e x <ln x +1e x ,故原不等式成立.[解题技法]若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个都便于求导的函数,从而找到可以传递的中间量,达到证明的目标.方法三、放缩法证明不等式[例3] 已知函数f (x )=ax -ln x -1. (1)若f (x )≥0恒成立,求a 的最小值; (2)求证:e -xx+x +ln x -1≥0;(3)已知k (e -x +x 2)≥x -x ln x 恒成立,求k 的取值范围. [解] (1)f (x )≥0等价于a ≥ln x +1x .令g (x )=ln x +1x (x >0),则g ′(x )=-ln xx2,所以当x ∈(0,1)时,g ′(x )>0,当x ∈(1,+∞)时,g ′(x )<0,则g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以g (x )max =g (1)=1,则a ≥1, 所以a 的最小值为1.(2)证明:当a =1时,由(1)得x ≥ln x +1, 即t ≥ln t +1(t >0).令e -xx =t ,则-x -ln x =ln t , 所以e -xx ≥-x -ln x +1,即e -xx+x +ln x -1≥0. (3)因为k (e -x+x 2)≥x -x ln x 恒成立,即k ⎝⎛⎭⎫e-xx +x ≥1-ln x 恒成立,所以k ≥1-ln xe -x x +x =-e -xx +x +ln x -1e -xx +x +1, 由(2)知e -xx +x +ln x -1≥0恒成立,所以-e -xx+x +ln x -1e -xx +x +1≤1,所以k ≥1. 故k 的取值范围为[1,+∞). [解题技法]导数的综合应用题中,最常见就是e x 和ln x 与其他代数式结合的难题,对于这类问题,可以先对e x 和ln x 进行放缩,使问题简化,便于化简或判断导数的正负.常见的放缩公式如下:(1)e x ≥1+x ,当且仅当x =0时取等号; (2)e x ≥e x ,当且仅当x =1时取等号;(3)当x ≥0时,e x ≥1+x +12x 2, 当且仅当x =0时取等号;(4)当x ≥0时,e x ≥e2x 2+1, 当且仅当x =0时取等号;(5)x -1x≤ln x ≤x -1≤x 2-x ,当且仅当x =1时取等号;(6)当x ≥1时,2(x -1)x +1≤ln x ≤x -1x ,当且仅当x =1时取等号.考点二 双变量不等式的证明[典例] 已知函数f (x )=ln x -12ax 2+x ,a ∈R.(1)当a =0时,求函数f (x )的图象在(1,f (1))处的切线方程;(2)若a =-2,正实数x 1,x 2满足f (x 1)+f (x 2)+x 1x 2=0,求证:x 1+x 2≥5-12.[解] (1)当a =0时,f (x )=ln x +x ,则f (1)=1,所以切点为(1,1),又因为f ′(x )=1x +1,所以切线斜率k =f ′(1) =2,故切线方程为y -1=2(x -1),即2x -y -1=0. (2)证明:当a =-2时,f (x )=ln x +x 2+x (x >0). 由f (x 1)+f (x 2)+x 1x 2=0,即ln x 1+x 21+x 1+ln x 2+x 22+x 2+x 1x 2=0,从而(x 1+x 2)2+(x 1+x 2)=x 1x 2-ln(x 1x 2), 令t =x 1x 2,设φ(t )=t -ln t (t >0), 则φ′(t )=1-1t =t -1t,易知φ(t )在区间(0,1)上单调递减,在区间(1,+∞)上单调递增,所以φ(t )≥φ(1)=1, 所以(x 1+x 2)2+(x 1+x 2)≥1, 因为x 1>0,x 2>0,所以x 1+x 2≥5-12成立. [解题技法]破解含双参不等式的证明的关键一是转化,即由已知条件入手,寻找双参所满足的关系式,并把含双参的不等式转化为含单参的不等式;二是巧构造函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果. [题组训练]已知函数f (x )=ln x +ax .(1)求f (x )的最小值;(2)若方程f (x )=a 有两个根x 1,x 2(x 1<x 2),求证:x 1+x 2>2a . 解:(1)因为f ′(x )=1x -a x 2=x -ax2(x >0),所以当a ≤0时,f (x )在(0,+∞)上单调递增,函数无最小值. 当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. 函数f (x )在x =a 处取最小值f (a )=ln a +1.(2)证明:若函数y =f (x )的两个零点为x 1,x 2(x 1<x 2), 由(1)可得0<x 1<a <x 2.令g (x )=f (x )-f (2a -x )(0<x <a ),则g ′(x )=(x -a )⎣⎡⎦⎤1x 2-1(2a -x )2=-4a (x -a )2x 2(2a -x )2<0,所以g (x )在(0,a )上单调递减,g (x )>g (a )=0, 即f (x )>f (2a -x ).令x =x 1<a ,则f (x 1)>f (2a -x 1),所以f (x 2)=f (x 1)>f (2a -x 1), 由(1)可得f (x )在(a ,+∞)上单调递增,所以x 2>2a -x 1, 故x 1+x 2>2a .考点三 证明与数列有关的不等式[典例] 已知函数f (x )=ln(x +1)+ax +2.(1)若x >0时,f (x )>1恒成立,求a 的取值范围; (2)求证:ln(n +1)>13+15+17+…+12n +1(n ∈N *).[解] (1)由ln(x +1)+ax +2>1,得 a >(x +2)-(x +2)ln(x +1). 令g (x )=(x +2)[1-ln(x +1)],则g ′(x )=1-ln(x +1)-x +2x +1=-ln(x +1)-1x +1.当x >0时,g ′(x )<0,所以g (x )在(0,+∞)上单调递减. 所以g (x )<g (0)=2,故a 的取值范围为[2,+∞). (2)证明:由(1)知ln(x +1)+2x +2>1(x >0), 所以ln(x +1)>xx +2.令x =1k(k >0),得ln ⎝⎛⎭⎫1k +1>1k1k +2, 即ln k +1k >12k +1.所以ln 21+ln 32+ln 43+…+ln n +1n >13+15+17+…+12n +1,即ln(n +1)>13+15+17+…+12n +1(n ∈N *).[解题技法]证明与数列有关的不等式的策略(1)证明此类问题时常根据已知的函数不等式,用关于正整数n 的不等式替代函数不等式中的自变量.通过多次求和达到证明的目的.此类问题一般至少有两问,已知的不等式常由第一问根据待证式的特征而得到.(2)已知函数式为指数不等式(或对数不等式),而待证不等式为与对数有关的不等式(或与指数有关的不等式),还要注意指、对数式的互化,如e x >x +1可化为ln(x +1)<x 等.[题组训练](2019·长春质检)已知函数f (x )=e x ,g (x )= ln(x +a )+b .(1)若函数f (x )与g (x )的图象在点(0,1)处有相同的切线,求a ,b 的值; (2)当b =0时,f (x )-g (x )>0恒成立,求整数a 的最大值;(3)求证:ln 2+(ln 3-ln 2)2+(ln 4-ln 3)3+…+[ln(n +1)-ln n ]n <ee -1(n ∈N *).解:(1)因为函数f (x )和g (x )的图象在点(0,1)处有相同的切线,所以f (0)=g (0)且f ′(0)=g ′(0),又因为f ′(x )=e x ,g ′(x )=1x +a,所以1=ln a +b,1=1a ,解得a =1,b =1.(2)现证明e x ≥x +1,设F (x )=e x -x -1,则F ′(x )=e x -1,当x ∈(0,+∞)时,F ′(x )>0,当x ∈(-∞,0)时,F ′(x )<0,所以F (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以F (x )min =F (0)=0,即F (x )≥0恒成立,即e x ≥x +1.同理可得ln(x +2)≤x +1,即e x >ln(x +2), 当a ≤2时,ln(x +a )≤ln(x +2)<e x , 所以当a ≤2时,f (x )-g (x )>0恒成立.当a ≥3时,e 0<ln a ,即e x -ln(x +a )>0不恒成立. 故整数a 的最大值为2.(3)证明:由(2)知e x >ln(x +2),令x =-n +1n ,则e -n +1n >ln ⎝⎛⎭⎫-n +1n +2, 即e-n +1>⎣⎡⎦⎤ln ⎝⎛⎭⎫-n +1n +2n=[ln(n +1)-ln n ]n ,所以e 0+e -1+e -2+…+e -n +1>ln 2+(ln 3-ln 2)2+(ln 4-ln 3)3+…+[ln(n +1)-ln n ]n ,又因为e 0+e -1+e -2+…+e -n +1=1-1e n1-1e <11-1e=e e -1,所以ln 2+(ln 3-ln 2)2+(ln 4-ln 3)3+…+[ln(n +1)-ln n ]n <ee -1.[课时跟踪检测]1.(2019·唐山模拟)已知f (x )=12x 2-a 2ln x ,a >0.(1)求函数f (x )的最小值;(2)当x >2a 时,证明:f (x )-f (2a )x -2a >32a .解:(1)函数f (x )的定义域为(0,+∞), f ′(x )=x -a 2x =(x +a )(x -a )x.当x ∈(0,a )时,f ′(x )<0,f (x )单调递减; 当x ∈(a ,+∞)时,f ′(x )>0,f (x )单调递增.所以当x =a 时,f (x )取得极小值,也是最小值,且f (a )=12a 2-a 2ln a .(2)证明:由(1)知,f (x )在(2a ,+∞)上单调递增, 则所证不等式等价于f (x )-f (2a )-32a (x -2a )>0.设g (x )=f (x )-f (2a )-32a (x -2a ),则当x >2a 时,g ′(x )=f ′(x )-32a =x -a 2x -32a=(2x +a )(x -2a )2x>0,所以g (x )在(2a ,+∞)上单调递增, 当x >2a 时,g (x )>g (2a )=0, 即f (x )-f (2a )-32a (x -2a )>0,故f (x )-f (2a )x -2a>32a . 2.(2018·黄冈模拟)已知函数f (x )=λln x -e -x (λ∈R). (1)若函数f (x )是单调函数,求λ的取值范围; (2)求证:当0<x 1<x 2时,e1-x 2-e1-x 1>1-x 2x 1.解:(1)函数f (x )的定义域为(0,+∞), ∵f (x )=λln x -e -x , ∴f ′(x )=λx +e -x =λ+x e -xx,∵函数f (x )是单调函数,∴f ′(x )≤0或f ′(x )≥0在(0,+∞)上恒成立,①当函数f (x )是单调递减函数时,f ′(x )≤0,∴λ+x e -x x ≤0,即λ+x e -x ≤0,λ≤-x e -x=-x ex .令φ(x )=-xe x ,则φ′(x )=x -1ex ,当0<x <1时,φ′(x )<0;当x >1时,φ′(x )>0,则φ(x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴当x >0时,φ(x )min =φ(1)=-1e ,∴λ≤-1e.②当函数f (x )是单调递增函数时,f ′(x )≥0,∴λ+x e -x x ≥0,即λ+x e -x ≥0,λ≥-x e -x=-x ex ,由①得φ(x )=-xe x 在(0,1)上单调递减,在(1,+∞)上单调递增,又∵φ(0)=0,当x ―→+∞时,φ(x )<0,∴λ≥0.综上,λ的取值范围为⎝⎛⎦⎤-∞,-1e ∪[0,+∞). (2)证明:由(1)可知,当λ=-1e 时,f (x )=-1e ln x -e -x 在(0,+∞)上单调递减,∵0<x 1<x 2,∴f (x 1)>f (x 2),即-1e ln x 1-e -x 1>-1e ln x 2-e -x 2,∴e1-x 2-e1-x 1>ln x 1-ln x 2.要证e1-x 2-e1-x 1>1-x 2x 1,只需证ln x 1-ln x 2>1-x 2x 1,即证ln x 1x 2>1-x 2x 1,令t =x 1x 2,t ∈(0,1),则只需证ln t >1-1t,令h (t )=ln t +1t -1,则当0<t <1时,h ′(t )=t -1t2<0,∴h (t )在(0,1)上单调递减,又∵h (1)=0,∴h (t )>0,即ln t >1-1t ,故原不等式得证.3.(2019·贵阳模拟)已知函数f (x )=kx -ln x -1(k >0). (1)若函数f (x )有且只有一个零点,求实数k 的值; (2)求证:当n ∈N *时,1+12+13+…+1n>ln(n +1).解:(1)∵f (x )=kx -ln x -1,∴f ′(x )=k -1x =kx -1x (x >0,k >0);当0<x <1k时,f ′(x )<0;当x >1k时,f ′(x )>0.∴f (x )在⎝⎛⎭⎫0,1k 上单调递减,在⎝⎛⎭⎫1k ,+∞上单调递增, ∴f (x )min =f ⎝⎛⎭⎫1k =ln k , ∵f (x )有且只有一个零点, ∴ln k =0,∴k =1.(2)证明:由(1)知x -ln x -1≥0,即x -1≥ln x ,当且仅当x =1时取等号, ∵n ∈N *,令x =n +1n ,得1n >ln n +1n,∴1+12+13+…+1n >ln 21+ln 32+…+ln n +1n =ln(n +1),故1+12+13+…+1n >ln(n +1).第三课时 导数与函数的零点问题 考点一 判断函数零点的个数[典例] 设函数f (x )=ln x +m x ,m ∈R.讨论函数g (x )=f ′(x )-x3零点的个数.[解] 由题设,g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减. 所以x =1是φ(x )的极大值点,也是φ(x )的最大值点. 所以φ(x )的最大值为φ(1)=23.由φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.[题组训练]1.已知函数f (x )=3ln x -12x 2+2x -3ln 3-32,求方程f (x )=0的解的个数.解:因为f (x )=3ln x -12x 2+2x -3ln 3-32(x >0),所以f ′(x )=3x -x +2=-x 2+2x +3x =-(x -3)(x +1)x ,当x ∈(0,3)时,f ′(x )>0,f (x )单调递增; 当x ∈(3,+∞)时,f ′(x )<0,f (x )单调递减, 所以f (x )max =f (3)=3ln 3-92+6-3ln 3-32=0,因为当x →0时,f (x )→-∞;当x →+∞时,f (x )→-∞, 所以方程f (x )=0只有一个解. 2.设f (x )=x -1x-2ln x .(1)求证:当x ≥1时,f (x )≥0恒成立;(2)讨论关于x 的方程x -1x -f (x )=x 3-2e x 2+tx 根的个数.解:(1)证明:f (x )=x -1x -2ln x 的定义域为(0,+∞).∵f ′(x )=1+1x 2-2x =x 2-2x +1x 2=(x -1)2x 2≥0,∴f (x )在[1,+∞)上是单调增函数,∴f (x )≥f (1)=1-1-2ln 1=0对于x ∈[1,+∞)恒成立. 故当x ≥1时,f (x )≥0恒成立得证. (2)化简方程得2ln x =x 3-2e x 2+tx . 注意到x >0,则方程可变为2ln x x=x 2-2e x +t .令L (x )=2ln x x,H (x )=x 2-2e x +t , 则L ′(x )=2(1-ln x )x 2. 当x ∈(0,e)时,L ′(x )>0,∴L (x )在(0,e)上为增函数;当x ∈(e ,+∞)时,L ′(x )<0,∴L (x )在(e ,+∞)上为减函数.∴当x =e 时,L (x )max =L (e)=2e. 函数L (x )=2ln x x,H (x )=(x -e)2+t -e 2在同一坐标系内的大致图象如图所示.由图象可知,①当t -e 2>2e ,即t >e 2+2e时,方程无实数根; ②当t -e 2=2e ,即t =e 2+2e时,方程有一个实数根; ③当t -e 2<2e ,即t <e 2+2e时,方程有两个实数根. 考点二 由函数零点个数求参数[典例] (2018·全国卷Ⅱ)已知函数f (x )=e x -ax 2.(1)若a =1,证明:当x ≥0时,f (x )≥1;(2)若f (x )在(0,+∞)只有一个零点,求a .[解] (1)证明:当a =1时,f (x )≥1等价于(x 2+1)e -x -1≤0. 设函数g (x )=(x 2+1)e -x -1,则g ′(x )=-(x 2-2x +1)e -x =-(x -1)2e -x .当x ≠1时,g ′(x )<0,所以g (x )在(0,+∞)上单调递减.而g (0)=0,故当x ≥0时,g (x )≤0,即f (x )≥1.(2)设函数h (x )=1-ax 2e -x .f (x )在(0,+∞)上只有一个零点等价于h (x )在(0,+∞)上只有一个零点.(ⅰ)当a ≤0时,h (x )>0,h (x )没有零点;(ⅱ)当a >0时,h ′(x )=ax (x -2)e -x .当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0.所以h (x )在(0,2)上单调递减,在(2,+∞)上单调递增.故h (2)=1-4a e 2是h (x )在(0,+∞)上的最小值. ①当h (2)>0,即a <e 24时,h (x )在(0,+∞)上没有零点. ②当h (2)=0,即a =e 24时,h (x )在(0,+∞)上只有一个零点. ③当h (2)<0,即a >e 24时,因为h (0)=1,所以h (x )在(0,2)上有一个零点. 由(1)知,当x >0时,e x >x 2,所以h (4a )=1-16a 3e 4a =1-16a 3(e 2a )2>1-16a 3(2a )4=1-1a >0,故h (x )在(2,4a )上有一个零点.因此h (x )在(0,+∞)上有两个零点.综上,当f (x )在(0,+∞)上只有一个零点时,a =e 24. [解题技法]根据函数零点个数确定参数取值范围的核心思想是“数形结合”,即通过函数图象与x 轴的交点个数,或者两个相关函数图象的交点个数确定参数满足的条件,进而求得参数的取值范围,解决问题的步骤是“先形后数”.[题组训练]1.(2019·安阳一模)已知函数f (x )=x 33+x 22与g (x )=6x +a 的图象有3个不同的交点,则a 的取值范围是________.解析:原问题等价于函数h (x )=x 33+x 22-6x 与函数y =a 的图象有3个不同的交点, 由h ′(x )=x 2+x -6=(x -2)(x +3),得x =2或x =-3,当x ∈(-∞,-3)时,h ′(x )>0,h (x )单调递增;当x ∈(-3,2)时,h ′(x )<0,h (x )单调递减;当x ∈(2,+∞)时,h ′(x )>0,h (x )单调递增.且h (-3)=272,h (2)=-223, 数形结合可得a 的取值范围是⎝⎛⎭⎫-223,272. 答案:⎝⎛⎭⎫-223,272 2.(2019·赣州模拟)若函数f (x )=a e x -x -2a 有两个零点,则实数a 的取值范围是________.解析:∵f (x )=a e x -x -2a ,∴f ′(x )=a e x -1.当a ≤0时,f ′(x )≤0恒成立,函数f (x )在R 上单调递减,不可能有两个零点;当a >0时,令f ′(x )=0,得x =ln 1a,函数f (x )在⎝⎛⎭⎫ -∞,ln 1a 上单调递减,在⎝⎛⎭⎫ ln 1a ,+∞上单调递增,∴f (x )的最小值为f ⎝⎛⎭⎫ ln 1a =1-ln 1a-2a =1+ln a -2a . 令g (a )=1+ln a -2a (a >0),则g ′(a )=1a-2. 当a ∈⎝⎛⎭⎫ 0,12时,g (a )单调递增;当a ∈⎝⎛⎭⎫ 12,+∞时,g (a )单调递减, ∴g (a )max =g ⎝⎛⎭⎫ 12=-ln 2<0, ∴f (x )的最小值为f ⎝⎛⎭⎫ ln 1a <0,函数f (x )=a e x -x -2a 有两个零点. 综上所述,实数a 的取值范围是(0,+∞).答案:(0,+∞)[课时跟踪检测]1.设a 为实数,函数f (x )=-x 3+3x +a .(1)求f (x )的极值;(2)是否存在实数a ,使得方程f (x )=0恰好有两个实数根?若存在,求出实数a 的值;若不存在,请说明理由.解:(1)f ′(x )=-3x 2+3,令f ′(x )=0,得x =-1或x =1.∵当x ∈(-∞,-1)时,f ′(x )<0;当x ∈(-1,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )<0,∴f (x )在(-∞,-1),(1,+∞)上单调递减,在(-1,1)上单调递增.∴f (x )的极小值为f (-1)=a -2,极大值为f (1)=a +2.(2)方程f (x )=0恰好有两个实数根,等价于直线y =a 与函数y =x 3-3x 的图象有两个交点.∵y =x 3-3x ,∴y ′=3x 2-3.令y ′>0,解得x >1或x <-1;令y ′<0,解得-1<x <1.∴y =x 3-3x 在(-1,1)上为减函数,在(1,+∞)和(-∞,-1)上为增函数.∴当x =-1时,y极大值=2;当x =1时,y 极小值=-2.∴y =x 3-3x的大致图象如图所示.y =a 表示平行于x 轴的一条直线,由图象知,当a =2或a =-2时,y =a 与y =x 3-3x 有两个交点.故当a =2或a =-2时,方程f (x )=0恰好有两个实数根.2.(2019·锦州联考)已知函数f (x )=e x +ax -a (a ∈R 且a ≠0).(1)若函数f (x )在x =0处取得极值,求实数a 的值,并求此时f (x )在[-2,1]上的最大值;(2)若函数f (x )不存在零点,求实数a 的取值范围.解:(1)由f (x )=e x +ax -a ,得f ′(x )=e x +a .∵函数f (x )在x =0处取得极值,∴f ′(0)=e 0+a =0,∴a =-1.∴f (x )=e x -x +1,f ′(x )=e x -1.∴当x ∈(-∞,0)时,f ′(x )<0,f (x )单调递减;当x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增.易知f (x )在[-2,0)上单调递减,在(0,1]上单调递增,且f (-2)=1e 2+3,f (1)=e ,f (-2)>f (1), ∴f (x )在[-2,1]上的最大值是1e 2+3. (2)f ′(x )=e x +a .①当a >0时,f ′(x )>0,f (x )在R 上单调递增,且当x >1时,f (x )=e x +a (x -1)>0;当x <0时,取x =-1a,则f ⎝⎛⎭⎫-1a <1+a ⎝⎛⎭⎫-1a -1=-a <0,∴函数f (x )存在零点,不满足题意.②当a <0时,令f ′(x )=e x +a =0,则x =ln(-a ).当x ∈(-∞,ln(-a ))时,f ′(x )<0,f (x )单调递减;当x ∈(ln(-a ),+∞)时,f ′(x )>0 ,f (x )单调递增,∴当x =ln(-a )时,f (x )取得极小值,也是最小值.函数f (x )不存在零点,等价于f (ln(-a ))=e ln(-a )+a ln(-a )-a =-2a +a ln(-a )>0,解得-e 2<a <0.综上所述,所求实数a 的取值范围是(-e 2,0).3.(2018·郑州第一次质量预测)已知函数f (x )=ln x +1ax -1a(a ∈R 且a ≠0). (1)讨论函数f (x )的单调性;(2)当x ∈⎣⎡⎦⎤1e ,e 时,试判断函数g (x )=(ln x -1)e x +x -m 的零点个数.解:(1)f ′(x )=ax -1ax 2(x >0), 当a <0时,f ′(x )>0恒成立,函数f (x )在(0,+∞)上单调递增;当a >0时,由f ′(x )=ax -1ax 2>0,得x >1a, 由f ′(x )=ax -1ax 2<0,得0<x <1a, 函数f (x )在⎝⎛⎭⎫1a ,+∞上单调递增,在⎝⎛⎭⎫0,1a 上单调递减. 综上所述,当a <0时,函数f (x )在(0,+∞)上单调递增;当a >0时,函数f (x )在⎝⎛⎭⎫1a ,+∞上单调递增,在⎝⎛⎭⎫0,1a 上单调递减.(2)当x ∈⎣⎡⎦⎤1e ,e 时,函数g (x )=(ln x -1)e x +x -m 的零点个数,等价于方程(ln x -1)e x +x =m 的根的个数.令h (x )=(ln x -1)e x +x ,则h ′(x )=⎝⎛⎭⎫1x +ln x -1e x +1.由(1)知当a =1时,f (x )=ln x +1x-1在⎝⎛⎭⎫1e ,1上单调递减,在(1,e)上单调递增, ∴当x ∈⎣⎡⎦⎤1e ,e 时,f (x )≥f (1)=0.∴1x+ln x -1≥0在x ∈⎣⎡⎦⎤1e ,e 上恒成立. ∴h ′(x )=⎝⎛⎭⎫1x +ln x -1e x +1≥0+1>0, ∴h (x )=(ln x -1)e x +x 在x ∈⎣⎡⎦⎤1e ,e 上单调递增,∴h (x )min =h ⎝⎛⎭⎫1e =-2e 1e +1e,h (x )max =h (e)=e. ∴当m <-2e 1e +1e或 m >e 时,函数g (x )在⎣⎡⎦⎤1e ,e 上没有零点; 当-2e 1e +1e≤m ≤e 时,函数g (x )在⎣⎡⎦⎤1e ,e 上有一个零点. 4.(2019·益阳、湘潭调研)已知函数f (x )=ln x -ax 2+x ,a ∈R.(1)当a =0时,求曲线y =f (x )在点(e ,f (e))处的切线方程;(2)讨论f (x )的单调性;(3)若f (x )有两个零点,求a 的取值范围.解:(1)当a =0时,f (x )=ln x +x ,f (e)=e +1,f ′(x )=1x +1,f ′(e)=1+1e,∴曲线y =f (x )在点(e ,f (e))处的切线方程为y -(e +1)=⎝⎛⎭⎫1+1e (x -e),即y =⎝⎛⎭⎫1e +1x . (2)f ′(x )=-2ax 2+x +1x(x >0), ①当a ≤0时,显然f ′(x )>0,f (x )在(0,+∞)上单调递增;②当a >0时,令f ′(x )=-2ax 2+x +1x=0,则-2ax 2+x +1=0,易知Δ>0恒成立. 设方程的两根分别为x 1,x 2(x 1<x 2),则x 1x 2=-12a<0,∴x 1<0<x 2, ∴f ′(x )=-2ax 2+x +1x =-2a (x -x 1)(x -x 2)x (x >0).由f ′(x )>0得x ∈(0,x 2),由f ′(x )<0得x ∈(x 2,+∞),其中x 2=1+8a +14a, ∴函数f (x )在⎝ ⎛⎭⎪⎫0,1+8a +14a 上单调递增,在⎝ ⎛⎭⎪⎫1+8a +14a ,+∞上单调递减. (3)函数f (x )有两个零点,等价于方程a =ln x +x x 2有两解. 令g (x )=ln x +x x 2(x >0),则g ′(x )=1-2ln x -x x 3. 由g ′(x )=1-2ln x -x x 3>0,得2ln x +x <1,解得0<x <1, ∴g (x )在(0,1)单调递增,在(1,+∞)单调递减,又∵当x ≥1时,g (x )>0,当x →0时,g (x )→-∞,当x →+∞时,g (x )→0,∴作出函数g (x )的大致图象如图,结合函数值的变化趋势猜想:当a ∈(0,1)时符合题意.下面给出证明:当a ≥1时,a ≥g (x )max ,方程至多一解,不符合题意;当a ≤0时,方程至多一解,不符合题意;当a ∈(0,1)时,g ⎝⎛⎭⎫1e <0,∴g ⎝⎛⎭⎫1e -a <0, g ⎝⎛⎭⎫2a =a 24⎝⎛⎭⎫ln 2a +2a <a 24⎝⎛⎭⎫2a +2a =a , ∴g ⎝⎛⎭⎫2a -a <0.∴方程在⎝⎛⎭⎫1e ,1与⎝⎛⎭⎫1,2a 上各有一个根,∴若f (x )有两个零点,a 的取值范围为(0,1).。
第15讲-导数在不等式中的应用一、经典例题考点一 构造函数证明不等式 【例1】 已知函数f (x )=1-x -1ex,g (x )=x -ln x . (1)证明:g (x )≥1;(2)证明:(x -ln x )f (x )>1-1e2.证明 (1)由题意得g ′(x )=x -1x(x >0),当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0, 即g (x )在(0,1)上是减函数,在(1,+∞)上是增函数. 所以g (x )≥g (1)=1,得证. (2)由f (x )=1-x -1ex ,得f ′(x )=x -2ex, 所以当0<x <2时,f ′(x )<0,当x >2时,f ′(x )>0, 即f (x )在(0,2)上是减函数,在(2,+∞)上是增函数, 所以f (x )≥f (2)=1-1e2(当且仅当x =2时取等号).① 又由(1)知x -ln x ≥1(当且仅当x =1时取等号),② 且①②等号不同时取得, 所以(x -ln x )f (x )>1-1e2.规律方法 1.证明不等式的基本方法:(1)利用单调性:若f (x )在[a ,b ]上是增函数,则①∀x ∈[a ,b ],有f (a )≤f (x )≤f (b ),②∀x 1,x 2∈[a ,b ],且x 1<x 2,有f (x 1)<f (x 2).对于减函数有类似结论.(2)利用最值:若f (x )在某个范围D 内有最大值M (或最小值m ),则∀x ∈D ,有f (x )≤M (或f (x )≥m ). 2.证明f (x )<g (x ),可构造函数F (x )=f (x )-g (x ),证明F (x )<0.先通过化简、变形,再移项构造不等式就减少运算量,使得问题顺利解决.考点二 利用“若f (x )min >g (x )max ,则f (x )>g (x )”证明不等式 【例2】 已知函数f (x )=x ln x -ax .(1)当a =-1时,求函数f (x )在(0,+∞)上的最值; (2)证明:对一切x ∈(0,+∞),都有ln x +1>1ex +1-2e2x成立.(1)解 函数f (x )=x ln x -ax 的定义域为(0,+∞). 当a =-1时,f (x )=x ln x +x ,f ′(x )=ln x +2. 由f ′(x )=0,得x =1e2.当x ∈⎝⎛⎭⎪⎫0,1e2时,f ′(x )<0;当x >1e2时,f ′(x )>0. 所以f (x )在⎝ ⎛⎭⎪⎫0,1e2上单调递减,在⎝ ⎛⎭⎪⎫1e2,+∞上单调递增.因此f (x )在x =1e2处取得最小值,即f (x )min =f ⎝ ⎛⎭⎪⎫1e2=-1e2,但f (x )在(0,+∞)上无最大值.(2)证明 当x >0时,ln x +1>1ex +1-2e2x 等价于x (ln x +1)>x ex +1-2e2.由(1)知a =-1时,f (x )=x ln x +x 的最小值是-1e2,当且仅当x =1e2时取等号.设G (x )=x ex +1-2e2,x ∈(0,+∞),则G ′(x )=1-x ex +1,易知G (x )max =G (1)=-1e2,当且仅当x =1时取到,从而可知对一切x ∈(0,+∞),都有f (x )>G (x ),即ln x +1>1ex +1-2e2x.规律方法 1.在证明不等式中,若无法转化为一个函数的最值问题,则可考虑转化为两个函数的最值问题.2.在证明过程中,等价转化是关键,此处f (x )min >g (x )max 恒成立.从而f (x )>g (x ),但此处f (x )与g (x )取到最值的条件不是同一个“x 的值”.考点三 不等式恒成立或有解问题 角度1 不等式恒成立求参数【例3-1】 已知函数f (x )=sin xx(x ≠0). (1)判断函数f (x )在区间⎝⎛⎭⎪⎫0,π2上的单调性;(2)若f (x )<a 在区间⎝ ⎛⎭⎪⎫0,π2上恒成立,求实数a 的最小值.解 (1)f ′(x )=xcos x -sin xx2,令g (x )=x cos x -sin x ,x ∈⎝⎛⎭⎪⎫0,π2,则g ′(x )=-x sin x ,显然,当x ∈⎝ ⎛⎭⎪⎫0,π2时,g ′(x )=-x sin x <0,即函数g (x )在区间⎝⎛⎭⎪⎫0,π2上单调递减,且g (0)=0.从而g (x )在区间⎝ ⎛⎭⎪⎫0,π2上恒小于零,所以f ′(x )在区间⎝⎛⎭⎪⎫0,π2上恒小于零,所以函数f (x )在区间⎝⎛⎭⎪⎫0,π2上单调递减.(2)不等式f (x )<a ,x ∈⎝⎛⎭⎪⎫0,π2恒成立,即sin x -ax <0恒成立.令φ(x )=sin x -ax ,x ∈⎝⎛⎭⎪⎫0,π2,则φ′(x )=cos x -a ,且φ(0)=0.当a ≥1时,在区间⎝⎛⎭⎪⎫0,π2上φ′(x )<0,即函数φ(x )单调递减, 所以φ(x )<φ(0)=0,故sin x -ax <0恒成立.当0<a <1时,φ′(x )=cos x -a =0在区间⎝⎛⎭⎪⎫0,π2上存在唯一解x 0,当x ∈(0,x 0)时,φ′(x )>0,故φ(x )在区间(0,x 0)上单调递增,且φ(0)=0, 从而φ(x )在区间(0,x 0)上大于零,这与sin x -ax <0恒成立相矛盾.当a ≤0时,在区间⎝ ⎛⎭⎪⎫0,π2上φ′(x )>0,即函数φ(x )单调递增,且φ(0)=0,得sin x -ax >0恒成立,这与sin x -ax <0恒成立相矛盾. 故实数a 的最小值为1.规律方法 1.破解此类题需“一形一分类”,“一形”是指会结合函数的图象,对函数进行求导,然后判断其极值,从而得到含有参数的方程组,解方程组,即可求出参数的值;“一分类”是指对不等式恒成立问题,常需对参数进行分类讨论,求出参数的取值范围.2.利用导数研究含参数的不等式问题,若能够分离参数,则常将问题转化为形如a ≥f (x )(或a ≤f (x ))的形式,通过求函数y =f (x )的最值求得参数范围.角度2 不等式能成立求参数的取值范围【例3-2】 已知函数f (x )=x 2-(2a +1)x +a ln x (a ∈R ). (1)若f (x )在区间[1,2]上是单调函数,求实数a 的取值范围;(2)函数g (x )=(1-a )x ,若∃x 0∈[1,e]使得f (x 0)≥g (x 0)成立,求实数a 的取值范围. 解 (1)f ′(x )=(2x -1)(x -a )x,当导函数f ′(x )的零点x =a 落在区间(1,2)内时,函数f (x )在区间[1,2]上就不是单调函数,即a ∉(1,2),所以实数a 的取值范围是(-∞,1]∪[2,+∞). (2)由题意知,不等式f (x )≥g (x )在区间[1,e]上有解,即x 2-2x +a (ln x -x )≥0在区间[1,e]上有解.因为当x ∈[1,e]时,ln x ≤1≤x (不同时取等号),x -ln x >0,所以a ≤x2-2xx -ln x在区间[1,e]上有解. 令h (x )=x2-2x x -ln x ,则h ′(x )=(x -1)(x +2-2ln x )(x -ln x )2.因为x ∈[1,e],所以x +2>2≥2ln x , 所以h ′(x )≥0,h (x )在[1,e]上单调递增, 所以x ∈[1,e]时,h (x )max =h (e)=e(e -2)e -1, 所以a ≤e(e -2)e -1, 所以实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,e(e -2)e -1.规律方法 1.含参数的能成立(存在型)问题的解题方法a ≥f (x )在x ∈D 上能成立,则a ≥f (x )min ; a ≤f (x )在x ∈D 上能成立,则a ≤f (x )max .2.含全称、存在量词不等式能成立问题(1)存在x 1∈A ,任意x 2∈B 使f (x 1)≥g (x 2)成立,则f (x )max ≥g (x )max ;(2)任意x 1∈A ,存在x 2∈B ,使f (x 1)≥g (x 2)成立,则f (x )min ≥g (x )min . [方法技巧]1.证明不等式的关键是构造函数,将问题转化为研究函数的单调性、最值问题.2.恒(能)成立问题的转化策略.若f (x )在区间D 上有最值,则 (1)恒成立:∀x ∈D ,f (x )>0⇔f (x )min >0; ∀x ∈D ,f (x )<0⇔f (x )max <0.(2)能成立:∃x ∈D ,f (x )>0⇔f (x )max >0; ∃x ∈D ,f (x )<0⇔f (x )min <0.3.证明不等式,特别是含两个变量的不等式时,要注意合理的构造函数.4.恒成立与能成立问题,要注意理解“任意”与“存在”的不同含义,要注意区分转化成的最值问题的异同.二、 课时作业1.函数f (x )的定义域为,,对任意,,则的解集为( )A.B.C.D.【答案】C【解析】设,则,所以为减函数,又,所以根据单调性可知,即的解集是.2.下列三个数:,大小顺序正确的是()A.B.C.D.【答案】A【解析】构造函数,因为对一切恒成立,所以函数在上是减函数,从而有,即,故选A.3.设函数在R上存在导数,对任意的有,且在上. 若,则实数的范围是()A.B.C.D.【答案】A【解析】令,则,故为偶函数,在,上,,且,故在,上单调递增,根据偶函数的对称性可知,在上单调递减,由,可得,即,则,可转化为,解可得,,4.若关于x的不等式恒成立,则实数a的取值范围为()A.B.C.D.【答案】D【解析】因为关于x的不等式恒成立,所以恒成立,令,,当时,,当时,,所以当时,取得最大值2.又因为,所以故实数a的取值范围为.5.已知定义域为的函数满足(为函数的导函数),则不等式的解集为()A.B.C.D.【答案】D【解析】令,则,定义域为的函数满足,,函数在上单调递增,当时,由,知,当时,显然不等式成立.当时,则,所以,整理得,即,所以,,得,则;当时,则,所以,整理得,即,所以,,得,则.综上所述,原不等式的解集为.6.定义在上的函数,则满足的取值范围是()A.B.C.D.【答案】D【解析】因为为偶函数,且在上恒成立,所以在上单调递增,在上单调递减,且图象关轴对称,则由)得,解得;故选D.7.已知函数,若存在,使得,则实数的取值范围是()A.B.C.(﹣∞,3)D.【答案】B【解析】∵,,∴,∴,∵存在,使得,即∴,设,∴∴,当时,解得:,当时,即时,函数单调递增,当时,即时,函数单调递减,因为,所以∴,8.已知是可导的函数,且对于恒成立,则()A.,B.,C.,D.,【答案】D【解析】构造函数,则,所以,函数为上的减函数.对于A选项,,,则,,所以,,,A选项错误;对于B选项,,则,所以,,B选项错误;对于C选项,,则,所以,,C选项错误;对于D选项,,则,所以,,D选项正确.9.已知函数是定义在上的奇函数.当时,,则不等式的解集为()A.B.C.D.【答案】C【解析】令,,当,时,,,即函数单调递增.又,时,,是定义在,上的奇函数,是定义在,上的偶函数.不等式,即,即,,①,又,故②,由①②得不等式的解集是.10.关于函数,有下述四个结论:①是周期函数.②在上单调递增.③的值域为.④若函数有且仅有两个不同的零点,则.其中所有正确结论的序号是()A.①②B.②③C.②④D.③④【答案】C【解析】当时,,所以,令得:或,所以当时,,递增,当时,,递减,且,则的图象如图所示:由图可知:不是周期函数,故①错误;在上单调递增,故②正确;的值域为,故③错误;若函数有且仅有两个不同的零点,即函数与函数有两个交点,所以由图可知:,故④正确.综上,②④正确.11.已知函数,且,则实数的取值范围是()A.B.C.D.【答案】C【解析】构造函数,则函数的定义域为.当时,,,函数在区间上单调递增,则,所以,函数在区间上单调递减;当时,,则,所以,函数在区间上单调递减.,所以,函数在定义域上单调递减.由,得,即,所以,,解得.因此,实数的取值范围是.12.如果关于的不等式在上恒成立,则实数的取值范围为()A.B.C.D.【答案】D【解析】当时,不等式成立.当时,不等式在上恒成立等价于恒成立.令则.又,令,解得所以在上单调递增,在上单调递减, 单调递增.又因为.所以.所以.13.函数,若存在唯一整数使得,则的取值范围是().A.B.C.D.【答案】B【解析】,令,则,当;当,在单调递增,在单调递减,且,如图所示:恒过定点,且,,,,存在唯一整数使得,当时,存在唯一的整数使得命题成立,14.若对于任意的,都有,则的最大值为()A.B.C.1 D.【答案】C【解析】由已知有,两边同时除以,化简有,而,构造函数,令令,所以函数在上为增函数,在上为减函数,由对于恒成立,即在为增函数,则,故的最大值为1,选C. 15.已知为常数,函数有两个极值点,(),则()A.,B.,C.,D.,【答案】C【解析】因为,令,由题意可得有两个解,即函数有且只有两个零点,即在上的唯一极值不等于0,又由,①当时,单调递增,因此至多有一个零点,不符合题意;②当时,令,解得,因为,,函数单调递增;,,函数单调递减,所以是函数的极大值点,则,即,所以,所以,即,故当时,的两个根,且,又,所以,从而可知函数在区间上递减,在区间上递增,在区间上递减,所以,故选C.16.对于任意正实数,都有,则实数的取值范围为()A.B.C.D.【答案】A【解析】,则,设,,,则,,恒成立,导函数单调递减,故时,,函数单调递增;当时,,函数单调递减.故,故,故.17.(多选题)已知是可导的函数,且,对于恒成立,则下列不等关系正确的是()A.,B.,C.,D.,【答案】AC【解析】设,所以,因为,所以,所以在R上是减函数,所以,,,即,,,18.(多选题)若满足,对任意正实数,下面不等式恒成立的是()A.B.C.D.【答案】BD【解析】设,,因为,所以,在R上是增函数,因为是正实数,所以,所以,因为,大小不确定,故A错误,因为,所以,即,故B正确.因为,所以,因为,大小不确定.故C错误.,因为,所以,故D正确.19.(多选题)设定义在上的函数满足,且当时,.己知存在,且为函数(为自然对数的底数)的一个零点,则实数的取值可能是()A.B.C.D.【答案】BCD【解析】令函数,因为,,为奇函数,当时,,在上单调递减,在上单调递减.存在,得,,即,;,为函数的一个零点;当时,,函数在时单调递减,由选项知,取,又,要使在时有一个零点,只需使,解得,的取值范围为,20.定义在上的函数满足,,则不等式的解集为______.【答案】【解析】由,设,则.故函数在上单调递增,又,故的解集为,即的解集为.21.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)+xf'(x)>0,且f(3)=0,则不等式xf(x)>0的解集是_____.【答案】(﹣∞,﹣3)∪(3,+∞)【解析】令,当x>0时,∴x∈(0,+∞)上,函数单调递增.,∴.∵函数是定义在R上的奇函数,∴函数是定义在R上的偶函数.由,即,∴|x|>3,解得x>3,或x<﹣3.∴不等式的解集是.故答案为:.22.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,,则f(x)>2x+4的解集为____.【答案】(-1,+∞)【解析】构造函数F(x)=f(x)-2x,,所以即求F(x)>4=F(-1)的解集,而F(x)在R上是单调递增函数,所以x>-1,填.23.设函数,.(1)当时,判断函数的单调性;(2)当时,恒成立,求实数的取值范围.【解析】(1)当时,所以.令,,由,可得.当时,,单调递减,当时,,单调递增,当时,,即,,则在是增函数;(2)解:设,所以.令,则.①当时,,在上单调递增,.,在上单调递增,则,结论成立;②当时,由,可得,当时,,单调递减,又,时,恒成立,即.时,单调递减,此时,结论不成立.综上,即为所求.24.已知函数.(1)若函数在上恰有两个零点,求实数的取值范围.(2)记函数,设是函数的两个极值点,若,且恒成立,求实数的最大值.【解析】(1)因为,∴函数,令,则,令得,,列表得:12单调递减极小值单调递增∴当时,的极小值为,又,.∵函数在上恰有两个零点,∴即,解得.(2),∴,令得,∵,是的极值点,∴,,∴,∵,∴解得:,.∴,.令,则,∴在上单调递减;∴当时,,根据恒成立,可得,∴的最大值为.25.已知函数,,曲线在点处的切线与轴垂直;(1)求的值;(2)求证:【解析】(1)曲线在点处的切线与轴垂直,该切线的斜率(2)由(1)可得只需证设令,得当时,,当时,即函数在上单调递减,在上单调递增。
导数中的不等式证明问题
一、常见基本题型:
(1) 结合问题之间的联系,利用函数的单调性证明;
(2) 构造新的函数,求导,结合函数的单调性去证。
例1:已知函数()ln f x x =,21()22g x x x =
-. (1)设/()(1)()h x f x g x =+-(其中/()g x 是()g x 的导函数),求()h x 的最大值;
(2)证明: 当0b a <<时,求证:()(2)2b a f a b f a a -+-<
; 解:(1)/()(1)()ln(1)2h x f x g x x x =+-=+-+,1x >-
所以 1()111
x h x x x -'=-=++. 当10x -<<时,()0h x '>;当0x >时,()0h x '<.
因此,()h x 在(1,0)-上单调递增,在(0,)+∞上单调递减. 因此,当0x =时,()h x 取得最大值(0)2h =;
(2)当0b a <<时,102b a a
--<
<. 由(1)知:当10x -<<时,()2h x <,即ln(1)x x +<. 因此,有()(2)ln ln 1222a b b a b a f a b f a a a a +--⎛⎫+-==+< ⎪⎝⎭
. 例2:已知221()ln ,02
f x x a x a =->. (I )求函数f (x )的最小值;
(II )(i )设0t a <<,证明:()()f a t f a t +<-;
(ii )若12()()f x f x =,且12,x x ≠证明:122.x x a +>
解:(Ⅰ)f '(x )=x -a 2x =(x +a )(x -a )x
. 当x ∈(0,a )时,f '(x )<0,f (x )单调递减;
当x ∈(a ,+∞)时,f '(x )>0,f (x )单调递增.
当x =a 时,f (x )取得极小值也是最小值f (a )= 1 2
a 2-a 2ln a .
(Ⅱ)(ⅰ)设g (t )=f (a +t )-f (a -t ),则
当0<t <a 时,
g '(t )=f '(a +t )+f '(a -t )=a +t -a 2a +t +a -t -a 2a -t =2at 2t 2-a 2
<0, 所以g (t )在(0,a )单调递减,g (t )<g (0)=0,
即f (a +t )-f (a -t )<0,
故f (a +t )<f (a -t ). (ⅱ)由(Ⅰ),f (x )在(0,a )单调递减,在(a ,+∞)单调递增,
不失一般性,设0<x 1<a <x 2,
因0<a -x 1<a ,则由(ⅰ),得
f (2a -x 1)=f (a +(a -x 1))<f (a -(a -x 1))=f (x 1)=f (x 2),
又2a -x 1,x 2∈(a ,+∞),
故2a -x 1<x 2,即x 1+x 2>2a .
(3)与数列相结合的问题 例3.设曲线32132
ax y bx cx =++在点x 处的切线斜率为()k x ,且(1)0k -=,对一切实数x ,不等式12()(1)2
x k x x ≤≤+恒成立(0a ≠). (1)求()1k 的值; (2)求函数()k x 的表达式;
(3)求证:11112(1)(2)(3)()2
n k k k k n n ++++>+L . 解:(1)2()k x ax bx c =++,()21(21)x k x x ≤≤+Q , 11(1)(11)12
k ∴≤≤+=, ()11k ∴= (2)1(1)002(1)1112
b k a b
c k a b c a c ⎧=⎧⎧-=-+=⎪⎪⎪⇒∴⎨⎨⎨=++=⎪⎪⎩⎩⎪+=⎩ ()k x x ≥Q ,122
ax x c x ∴++≥ 11120,40,2416ax x c ac ac -+≥∆=-≤∴≥,
又
2
()1
416
a c
ac
+
≤=即
1111
,,
1616164
ac ac a c
≤≤∴=∴== (
)()
1111
22
1
4244
k x x x x
∴=++=+
(3)证明:()()
14
2
1
k x x
=
+
.
∴原式
()()()
444
222
112131
=+++
+++
…
()
4
2
1
n
+
+
111
4
222
234
⎡
=+++
⎢
⎢⎣
…
()
1
2
1
n
⎤
⎥
+
⎥
+⎦
11
1
4
3445
23
⎡
>+++
⎢⨯⨯
⨯
⎣
…
()()
1
12
n n
⎤
+⎥
++⎥⎦
111111
4
233445
⎛
=-+-+-+
⎝
…
11
12
n n
⎫
++⎪
++⎭
()
2
11
44
222
22
n n
n n
n
⎛⎫
=-=⨯=
⎪++
+
⎝⎭
针对性练习:
2.已知函数()()
ln3
f x a x ax a R
=--∈.
(1)当0
a<时,求函数()
f x的最小值;
(2)求证:()2
,
1
ln
4
4
ln
3
3
ln
2
2
ln
≥
∈
<
⋅
⋅
⋅
⋅n
N
n
n
n
n
Λ.
解:(1)当1
x=时,函数()
f x的最小值3
a
--,
(2)令1,
a=-此时()ln3
f x x x
=-+-∴(1)2
f=-
2.已知函数1
ln
)1
(
)
(+
-
+
=x
x
x
b
x
f,斜率为1的直线与)
(x
f相切于(1,0)点.
(1)求()()ln
h x f x x x
=-的单调区间;(2)证明:(1)()0
x f x
-≥.
解:(1)由题意知:1)1(ln )
(-++
='x
x x b x f 1,112)1(==-='b b f
()()ln ln 1h x f x x x x x =-=-+
1()1h x x '=-
1()10h x x '=->解得:01x <<;1()10h x x '=-<解得:1x > 所以()h x 在(0,1)上单调递增,在(1,)+∞上单调递减, (2)由(1)知:。