《DNA的分子结构》教学设计

  • 格式:doc
  • 大小:72.00 KB
  • 文档页数:16

下载文档原格式

  / 16
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《DNA的分子结构》教学设计

1 教学理念

本节课通过设计不同层次的问题,尝试让学生亲历思考与探究过程的理念,培养学生的科学探究精神和方法,及解决实际问题的能力。

2 教材分析

本节教材的地位和作用

《DNA分子的结构》是编写在高中新教材(人教版)生物必修2的第3章第2节,需要2个课时,本教学设计是第1课时。它在教材中起着承前启后的作用,一方面,本节内容是从分子水平上进一步认识基因的本质,是在前两章的基础上完成的;另一方面,又为后面基因的表达、生物的变异和进化进行了必要的知识铺垫。所以说《DNA分子结构》是高中生物重要内容之一。

教材内容的结构特点

与原教材比较,最大的变化是:没有直接讲述DNA分子的结构特点,而是首先采取讲故事的形式,以科学家沃森、克里克的研究历程为主线,逐步呈现DNA 双螺旋结构模型的特点。这样使学生不仅能自然的了解到DNA双螺旋结构的主要特点,还能感悟科学家锲而不舍的科学精神,从而在情感、能力等多方面得到启示和升华。

3 学生分析

DNA分子是一个微观的化学反应过程,学生理解起来可能有一定的困难,需要借助于多媒体课件及模型建构等手段把DNA直观形象地表示出来,帮助学生理解。

4 教学目标

知识目标:

(1)识记构成DNA分子的基本单位、核苷酸种类、碱基种类、元素种类

(2)讨论DNA双螺旋结构模型的构建历程

(3)DNA分子的平面结构和空间结构

能力目标:

(1)培养观察能力、分析理解能力:通过计算机多媒体课件和DNA结构模型观察来提高观察能力、分析和理解能力。

(2)培养创造性思维的能力:通过探索求知、讨论交流激发独立思考、主动获取新知识的能力。

情感、态度、价值观目标:

(1)认识到与人合作的在科学研究中的重要性,讨论技术的进步在探索遗传物质奥秘中的重要作用。

(2)认同人类对遗传物质的认识是不断深化、不断完善的过程。

5 重点·实施方案

重点:(1)DNA分子的结构。(2)DNA分子的复制。

实施方案

(1)使用挂图、模型进行直观教学。

(2)用多媒体课件显示DNA分子结构

6 难点·突破策略

.难点:DNA分子的结构特点。

.突破策略

教师指导学生制作DNA分子的结构模型,让学生充分理解它的结构特点。

8 教具准备

DNA分子的结构模型、DNA分子的结构挂图、DNA分子结构的多媒体课件等9 教法和学法

教法:借助多媒体课件帮助学生理解DNA的分子结构。观察法、讨论法、实验法、探究法、问答法等教学方法。

学法:以小组合作的形式尝试自主构建模型概述DNA分子的结构特点,发现并体会碱基互补配对原则以合作学习、模拟探究方式通过讨论来获取新知

10 课时安排

1课时

11 教学过程

11 教学反思

在教学中我觉得通过DNA结构模型的制作实验后,对学生理解脱氧核苷酸的结构和DNA的结构非常有益。学生在实践中能准确理解脱氧核苷酸是如何构成DNA 双螺旋结构的,而且其中的碱基互补配对的原则,和数量关系以及DNA的排序等教学难点也能轻松的突破。

但从时间安排上内容有些多,需要一节半的时间方能完成教学任务,所以在实际教学中可以把这节和DNA的复制结合在一起,继续用模型制作的方法探究DNA 的复制规律,组成两节实验连排的课,这样知识比较完整,而且有知识深度的递进,学生的思考空间也比较大,能锻炼他们的思维品质和科研意识。

在准备这节课的授课内容和授课过程时,我无数次的被科学家的机智、聪慧和大胆的创造性思维所打动,作为教师我不只要激励我的学生勇攀科学的高峰,同时也要不断鞭策自己,使自己在教学教研领域有所建树。

【知识扩展】

生命科学的伟大发现

1953年美国遗传学家沃森和英国物理学家克里克在英国《自然》杂志上发表论文,提出了DNA双螺旋结构模型。这一发现在生物科学史上翻开了划时代的一页,从此生物学步入了分子科学的新时代。有人称这一发现为继达尔文创立进化论后生物学发展史上的第二次革命、二战后最伟大的科学发现,把它和相对论、量子力学视为20世纪最富创新力的三大科学发现。

一、dna双螺旋结构提出的背景

1866年孟德尔发表“植物杂交试验”一文,1900年孟德尔定律被重新发现,为遗传学界所关注。但当时的研究仅限于生物体的整体水平,并不知道遗传因子位于何处、是何物质、如何传递和起作用。美国遗传学家萨顿注意到染色体的行为

与孟德尔所说的遗传因子的行为相似,于1902年提出遗传因子在染色体上的假说。1909年丹麦遗传学家约翰提出“基因”一词,用来代替孟德尔的遗传因子。同年,摩尔根通过果蝇杂交实验证实了基因在染色体上,把遗传学推进到了染色体水平。1928年,英国科学家格里菲思进行了肺炎双球菌转化实验,拉开了发现dna是遗传物质的序幕。在他的启发下,1944年美国科学家艾弗里通过细菌转化实验首次证明dna是遗传物质。1952年美国的赫尔希和查斯用噬菌体侵染细菌的实验进一步证明DNA是遗传物质。1945年美国的比德尔和塔特姆通过对链孢霉突变型的研究提出了“一个基因一个酶”理论,用来说明基因是通过酶控制性状发育的观点。至此,什么是遗传物质及遗传物质的作用机制已基本明确,但它的结构怎样?怎样储存和传递信息?信息又怎样到酶(蛋白质)的合成过程?结构决定功能,要回答这些问题,搞清DNA的结构是关键。

二、dna双螺旋结构提出的过程

1938年,欧洲结构学派的先驱者阿斯特伯里提出了DNA的第一个结构假说。他发表了一张DNA的x射线衍射照片,并指出DNA是一个具有较强刚性的纤维结构。1945年他采用x射线衍射技术,测出了两种碱基的间隔,提出了碱基与DNA 长轴垂直,得出了DNA具有晶体结构的结论。这些发现大大加快了揭示DNA结构的进程。20世纪50年代初,世界上有三个研究小组继承阿斯特伯里开创的工作,围绕DNA的结构展开了一场激烈的竞赛。这三个小组分别是:

1.美国加州理工学院的鲍林小组鲍林,美国化学家,是研究化学结构的无可争议的世界权威(因对蛋白质空间结构的研究而获1954年诺贝尔化学奖,1962年又获和平奖)。他测定并解释了x射线通过晶体时在底片上形成的反射图象。50年代初,他毅然把自己的注意力从他已有许多成就的蛋白质结构方面转向了DNA。他在x射线晶体学方面的贡献,给了沃森和克里克以很大的启发。同时,他对DNA 表现出来的兴趣也给沃森和克里克指明了目标。

2.英国伦敦皇家学院的威尔金斯小组威尔金斯在20世纪40年代末就开始采用x射线衍射技术去研究DNA的晶体结构,并测得了一些数据,但由于x射线衍射图谱不清楚,没有获得成功。在这关键时刻,女物理学家富兰克林参加了他的研究小组,她极有才华,研究风格严谨,在x射线晶体学方面有特殊才能。她在1951年底获得了一张极好的DNA的x射线衍射照片。只是由于脾气、性格等方面