传感器原理与应用习题及答案
- 格式:doc
- 大小:238.00 KB
- 文档页数:8
习题集1.1 什么是传感器?1.2 传感器由哪几部分组成?试述它们的作用及相互关系。
1.3 简述传感器主要发展趋势,并说明现代检测系统的特征。
1.4 传感器如何分类?1.5传感器的静态特性是什么?由哪些性能指标描述?它们一般可用哪些公式表示?1.6传感器的线性度是如何确定的?电阻应变式传感器3.1 何为电阻应变效应?怎样利用这种效应制成应变片?3.2 什么是应变片的灵敏系数?它与金属电阻丝的灵敏系数有何不同?为什么?3.3 金属应变片与半导体应变片在工作原理上有何不同?半导体应变片灵敏系数范围是多少,金属应变片灵敏系数范围是多少?为什么有这种差别,说明其优缺点。
3.4 一应变片的电阻R=120Ω,灵敏系数k =2.05,用作应变为800/m m μ的传感元件。
求:①R ∆和/R R ∆;② 若电源电压U =3V ,初始平衡时电桥的输出电压U 0。
3.5 在以钢为材料的实心圆柱形试件上,沿轴线和圆周方向各贴一片电阻为120Ω的金属应变片R 1和R 2(如图3-28a 所示),把这两应变片接入电桥(见图3-28b )。
若钢的泊松系数0.285μ=,应变片的灵敏系数k =2,电桥电源电压U =2V ,当试件受轴向拉伸时,测得应变片R 1的电阻变化值。
试求:①轴向应变;②电桥的输出电压。
3.6 图3-31为一直流电桥,负载电阻R L 趋于无穷。
图中E=4V ,R 1=R 2=R 3=R 4=120Ω,试求:① R 1为金属应变片,其余为外接电阻,当R 1的增量为ΔR 1=1.2Ω时,电桥输出电压U 0=? ② R 1、R 2为金属应变片,感应应变大小变化相同,其余为外接电阻,电桥输出电压U 0=? ③ R 1、R 2为金属应变片,如果感应应变大小相反,且ΔR 1=ΔR 2 =,电桥输出电压U 0=?电容式传感器4.1 如何改善单极式变极距型电容传感器的非线性?4.2 差动式变极距型电容传感器,若初始容量1280C C pF ==,初始距离04mm δ=,当动极板相对于定极板位移了0.75mm δ∆=时,试计算其非线性误差。
传感器复习题与答案传感器原理与应⽤复习题第⼀章传感器概述1.什么是传感器?传感器由哪⼏个部分组成?试述它们的作⽤和相互关系。
(1)传感器定义:⼴义的定义:⼀种能把特定的信息(物理、化学、⽣物)按⼀定的规律转换成某种可⽤信号输出的器件和装置。
⼴义传感器⼀般由信号检出器件和信号处理器件两部分组成;狭义的定义:能把外界⾮电信号转换成电信号输出的器件。
我国国家标准对传感器的定义是:能够感受规定的被测量并按照⼀定规律转换成可⽤输出信号的器件和装置。
以上定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的⼀种检测装置;能按⼀定规律将被测量转换成电信号输出;传感器的输出与输⼊之间存在确定的关系。
(2)组成部分:传感器由敏感元件,转换元件,转换电路组成。
(3)他们的作⽤和相互关系:敏感元件是直接感受被测量,并输出与被测量成确定关系的物理量;转换元件把敏感元件的输出作为它的输⼊,转换成电路参量;上述电路参数接⼊基本转换电路,便可转换成电量输出。
2.传感器的总体发展趋势是什么?现代传感器有哪些特征,现在的传感器多以什么物理量输出?(1)发展趋势:①发展、利⽤新效应;②开发新材料;③提⾼传感器性能和检测范围;④微型化与微功耗;⑤集成化与多功能化;⑥传感器的智能化;⑦传感器的数字化和⽹络化。
(2)特征:由传统的分⽴式朝着集成化。
数字化、多动能化、微型化、智能化、⽹络化和光机电⼀体化的⽅向发展,具有⾼精度、⾼性能、⾼灵敏度、⾼可靠性、⾼稳定性、长寿命、⾼信噪⽐、宽量程和⽆维护等特点。
(3)输出:电量输出。
3.压⼒、加速度、转速等常见物理量可⽤什么传感器测量?各有什么特点?本⾝发热⼩,缺点是输出⾮线性。
4(1)按传感器检测的量分类,有物理量、化学量,⽣物量;(2)按传感器的输出信号性质分裂,有模拟和数字;(3)按传感器的结构分类,有结构性、物性型、复合型;(4)按传感器功能分类,单功能,多功能,智能;(5)按传感器转换原理分类,有机电、光电、热电、磁电、电化学;(6)按传感器能源分类,有有源和⽆源;根据我国的传感器分类体系表,主要分为物理量传感器、化学量传感器、⽣物量传感器三⼤类。
传感器原理及其应用(李艳红、李海华主编)-部分课后习题第一章P10 1、2、5、61.传感器的定义答:传感器是一种以一定精确度把被测量(主要是非电量)转换为与之有确定关系、便于应用的某种物理量(主要是电量)的测量装置。
2.传感器组成及作用答:(1)传感器一般由敏感元件、转换元件、测量电路三部分组成;(2)敏感元件:直接感受被测量,并输出与被测量有确定关系的物理量;转换元件:将敏感元件输出的非电量转换为电量;测量电路:将转换元件输出的电量变换成便于显示、记录、控制和处理的信号3.开环测量系统和闭环测量系统区别答:开环测量系统(1)信息只沿着一个方向传递(2)系统相对误差等于各环节相对误差之和(3)结构简单,但每个环节特性变化都会造成测量误差闭环测量系统(1)有正向通道和反馈通道(2)输入输出关系由反馈环节特性决定,测量处理等环节造成的误差较小4.测量不确定度及其评定方法答:(1)测量不确定度:表征合理赋予被测量值的分散性,与测量结果相联系的参数即结果的可靠性和有效性的怀疑程度(2)不确定度按其评定方法可分为A类评定和B类评定A类评定是用统计方法进行评定。
即对某被测量进行等精度的独立多次重复测量,得到一系列的测得值。
B类评定用非统计分析法,它不是由一系列的测得确定,而是利用影响测得值分布变化的有关信息和资料进行分析,并对测量值进行概率分布估计和分布假设的科学评定B类评定的信息来源有以下6项:①以前的观测数据;②对有关技术资料和测量仪器特性的了解和经验;③生产部门提供的技术说明文件;④校准文件、检定证书或其他文件提供的数据、准确度的等级或级别,包括的输出,从而实现非电量的测量。
(2)金属在外力作用下产生机械形变,其电阻值也发生相应改变的现象。
(3)半导体由于应力的作用而使材料电阻率发生变化的现象称为压阻效应。
2.画出桥式测量电路,并推导直流电桥平衡条件,以及不对称电桥输出电压变化。
答:(1)(2)直流电桥平衡条件上图为负载电阻,→∞时,有:U0=0时,有为电桥平衡条件(3)把电桥平衡条件 代入上式化简,并忽略高阶无穷小量得:3.采用应变片进行测量时为什么要进行温度补偿?常用补偿方法有哪些?P34答:(1)应变片的阻值受环境(包括被测试件的温度)的影响很大。
温度传感器的原理及应用典型练习题1注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上1.传感器种类繁多,已广泛应用在生产生活中。
下列关于传感器的说法正确的是()A.酒精检测仪应用了葡萄糖生物传感器B.电子秤所使用的测力装置主要使用了磁传感器C.电饭锅使用温度传感器实现自动控制温度D.电脑所用的光电鼠标主要采用声传感器【答案】C【详解】A.酒精检测仪应用了酒精生物传感器,选项A错误;B.电子秤所使用的测力装置主要使用了压力传感器,选项B错误;C.电饭锅使用温度传感器实现自动控制温度,选项C正确;D.电脑所用的光电鼠标主要采用光传感器,选项D错误。
故选C。
2.下列关于传感器的说法中正确的是()A.电子秤应用的是光传感器B.自动调温的空调应用的是压力传感器C.霍尔元件能够把电学量转换为磁学量D.电饭锅通过温度传感器实现温度的自动控制【答案】D【详解】A.电子秤应用的是压力传感器,故A错误;B.自动调温的空调应用的是温度传感器,故B错误;C.霍尔元件能够把磁学量(磁感应强度)转换为电学量(霍尔电压),故C错误;D.电饭锅通过温度传感器实现温度的自动控制,故D正确。
故选D。
3.我国是新冠肺炎防疫工作做得最好的国家之一、进入公共场所,须查验“双码”并测量体温。
测量体温的体温枪使用的是()A.压力传感器B.声音传感器C.红外传感器D.烟雾传感器【详解】测量体温的体温枪使用的是红外传感器。
故选C。
4.关于传感器的应用,下列说法中正确的是()A.电熨斗是通过感温铁氧体的作用控制电路的通断的B.电子秤能通过应变片把力这个力学量转换为电学量进行测量C.话筒是一种常用的声传感器,其作用是将电信号转换为声信号D.热敏电阻是把光照强弱这个光学量转换为电阻这个电学量的【答案】B【详解】A.电熨斗是通过温度传感器来实现温度的自主控制,故A错误;B.电子秤是通过应变片这个压力传感器把力学量转换为电学量进行测量的,故B正确;C.话筒是一种常用的声传感器,其作用是将声信号转换为电信号,故C错误;D.热敏电阻是把光温度这个热学量转换为电阻这个电学量的,故D错误。
综合练习 一. 填空题1.根据传感器的功能要求,它一般应由三部分组成,即.敏感元件、转换元件、转换电路。
2.传感器按能量的传递方式分为有源的和无源的传感器。
3. 根据二阶系统相对阻尼系数ζ的大小,将其二阶响应分成三种情况. 1ζ>时过阻尼;1ζ=时临界阻尼;1ζ<时欠阻尼。
4. 应变计的灵敏系数k 并不等 于其敏感栅整长应变丝的灵敏度系数0k ,一般情况下,0k k <。
5. 减小应变计横向效应的方法.采用直角线栅式应变计或箔式应变计。
6. 应变式测力与称重传感器根据结构形式不同可分为:柱式﹑桥式﹑轮辐式﹑梁式和环式等。
7. 半导体材料受到应力作用时,其电阻率会发生变化,这种现象就称为压阻效应。
8. 光电传感器一般由光源、光学通路和光电元件三部分组成。
9. 光电效应是光照射到某些物质上,使该物质的电特性发生变化的一种物理现象,可分为外光电效应和内光电效应两类。
10. 基于外光电效应的光电敏感器件有光电管和光电倍增管。
基于光电导效应的有光敏电阻。
基于势垒效应的有光电二极管和光电三极管。
基于侧向光电效应的有反转光敏二极管。
11. 光电倍增管是一种真空器件。
它由光电发射阴极(光阴极)和聚焦电极、电子倍增极及电子收集极(阳极)等组成。
12. 光敏电阻器是利用半导体光电导效应制成的一种特殊电阻器,对光线十分敏感,它的电阻值能随着外界光照强弱(明暗)变化而变化。
它在无光照射时,呈高阻状态;当有光照射时,其电阻值迅速减小。
13. 光电二极管与光电三极管外壳形状基本相同,其判定方法如下.遮住窗口,选用万用表R*1K 挡,测两管脚引线间正、反向电阻,均为无穷大的为光电三极管。
14. 光电耦合器是发光元件和光电传感器同时封装在一个外壳内组合而成的转换元件。
以光为媒介进行耦合来传递电信号,可实现电隔离,在电气上实现绝缘耦合,因而提高了系统的抗干扰能力。
15. 电荷藕合器件图像传感器CCD (Charge Coupled Device ),它使用一种高感光度的半导体材料制成,能把光线转变成电荷。
第四章 思考题与习题1、简述磁电感应式传感器的工作原理。
磁电感应式传感器有哪几种类型?答:磁电感应式传感器是以电磁感应原理为基础的,根据法拉第电磁感应定律可知,N 匝线圈在磁场中运动切割磁力线或线圈所在磁场的磁通量变化时,线圈中所产生的感应电动势e 的大小取决于穿过线圈的磁通φ的变化率,即:dtd Ne Φ-= 根据这个原理,可将磁电感应式传感器分为恒定磁通式和变磁通式两类。
2、某些磁电式速度传感器中线圈骨架为什么采用铝骨架?答:某些磁电式速度传感器中线圈采用铝骨架是因为线圈在磁路系统气隙中运动时,铝骨架中感应产生涡流,形成系统的电磁阻尼力,此阻尼起到衰减固有振动和扩展频率响应范围的作用。
3、何谓磁电式速度传感器的线圈磁场效应,如何补偿?答:线圈磁场效应是指磁电式速度传感器的线圈中感应电流产生的磁场对恒定磁场作用,而使其变化。
如公式v BlN e 0-=知,由于B 的变化而产生测量误差。
补偿方法通常是采用补偿线圈与工作线圈串接,来抵消线圈中感应电流磁场对恒定磁场的影响。
4、为什么磁电感应式传感器在工作频率较高时的灵敏度,会随频率增加而下降? 答:由理论推到可得传感器灵敏度与频率关系是:42020220220)(1)(1)2()1()(ωωωωξωωξωωωω-===+-=NBl v e k v NBl e v 取 当振动频率低于传感器固有频率时,这种传感器的灵敏度是随振动频率变化;当振动频率远大于固有频率时,传感器的灵敏度基本上不随振动频率而变化,而近似为常数;当振动频率更高时,线圈阻抗增大,传感器灵敏度随振动频率增加而下降。
5、变磁通式传感器有哪些优缺点?答:变磁通式传感器的优点是对环境条件要求不高,能在-150—+900C 的温度条件下工作,而不影响测量精度,也能在油、水雾、灰尘等条件下工作。
缺点主要是它的工作频率下限较高,约为50Hz ,上限可达100kHz ,所以它只适用于动态量测量,不能测静态量。
第一章 思考题与习题1、什么是传感器的静态特性?它有哪些性能指标?答:输入量为常量或变化很慢情况下,输出与输入两者之间的关系称为传感器的静态特性。
它的性能指标有:线性度、迟滞、重复性、灵敏度与灵敏度误差、分辨率与阈值、稳定性、温度稳定性、抗干扰稳定性和静态误差(静态测量不确定性或精度).2、传感器动特性取决于什么因素?答:传感器动特性取决于传感器的组成环节和输入量,对于不同的组成环节(接触环节、模拟环节、数字环节等)和不同形式的输入量(正弦、阶跃、脉冲等)其动特性和性能指标不同。
3、某传感器给定相对误差为2%FS ,满度值输出为50mV ,求可能出现的最大误差δ(以mV 计).当传感器使用在满刻度的1/2和1/8时计算可能产生的百分误差。
并由此说明使用传感器选择适当量程的重要性。
已知:FS %2=γ, mV y FS 50=;求:δm =?解:∵ %100⨯=FS my δγ; ∴ mV y FS m 1%100=⨯•=γδ若: FS FS y y 211= 则: %4%100251%1001=⨯=⨯=FS m y δγ 若: FS FS y y 812=则: %16%10025.61%1002=⨯=⨯=FS m y δγ 由此说明,在测量时一般被测量接近量程(一般为量程的2/3以上),测得的值误差小一些。
4、有一个传感器,其微分方程为x y dt dy 15.03/30=+,其中y 为输出电压(mV ),x 为输入温度(0C ),试求该传感器的时间常数τ和静态灵敏度k 。
已知:x y dt dy 15.03/30=+;求:τ=?,k =?解:将x y dt dy 15.03/30=+化为标准方程式为:x y dt dy 05.0/10=+与一阶传感器的标准方程:kx y dt dy =+τ 比较有: ⎩⎨⎧==)/(05.0)(100C mV k s τ 5、已知某二阶系统传感器的自振频率f 0=20k Hz ,阻尼比ξ=0.1,若要求传感器的输出幅值误差小于3%,试确定该传感器的工作频率范围。
思考题与习题参考答案第1章1-1 什么叫传感器?它由哪几部分组成?它们的相互作用及相互关系如何? 答:传感器是把被测量转换成电化学量的装置,由敏感元件和转换元件组成。
其中,敏感元件是指传感器中能直接感受或响应被测量的部分;转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。
由于传感器输出信号一般都很微弱,需要信号调理与转换电路进行放大、运算调制等,此外信号调理转换电路以及传感器的工作必须有辅助电源,因此信号调理转换电路以及所需的电源都应作为传感器组成的一部分。
1-2 什么是传感器的静态特性?它有哪些性能指标?分别说明这些指标的含义?答:传感器的静态特性是指被测量的值处于稳定状态时的输入与输出的关系。
衡量静态特性的重要指标是线性度、 灵敏度,迟滞和重复性等。
灵敏度是输入量∆y 与引起输入量增量∆y 的相应输入量增量∆x 之比。
传感器的线性度是指传感器的输出与输入之间数量关系的线性程度。
迟滞是指传感器在输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入输出特性曲线不重合的现象。
重复性是指传感器在输入量按同一方向作全量程连续多次变化时,所得特性曲线不一致的程度。
漂移是指在输入量不变的情况下,传感器输出量随时间变化的现象。
精度是用来评价系统的优良程度。
1-3 某线性位移测量仪,当被测位移X 由3.0mm 变到4.0mm 时,位移测量仪的输出电压V 由3.0V 减至2.0V ,求该仪器的灵敏度。
解:该仪器的灵敏度为10.30.40.30.2X V -=--=∆∆=S (V/mm ) 1-4 用测量范围为-50~150KPa 的压力传感器测量140KPa 压力时,传感器测得示值为142KPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。
解:绝对误差:X L ∆=-=142-140=2 相对误差100%L δ∆=⨯=2100% 1.4285%140⨯= 标称相对误差即%100⨯∆=x ξ=2100% 1.4084%142⨯= 引用误差100%-γ∆=⨯测量范围上限测量范围下限 =22100%1%150(50)200=⨯=--1-5 某传感器给定精度为2%F·S ,满度值为50mV ,零位值为10mV ,求可能出现的最大误差δ(以mV 计)。
《第一章传感器的一般特性》1转速(r/min)0 500 1000 1500 2000 2500 3000输出电压(V)0 9.1 15.0 23.3 29.9 39.0 47.51)该测速发电机的灵敏度。
2)该测速发电机的线性度。
2.已知一热电偶的时间常数τ=10s,若用它来测量一台炉子的温度,炉内温度在540οC和500οC 之间按近似正弦曲线波动,周期为80s,静态灵敏度k=1,试求该热电偶输出的最大值和最小值,以及输入与输出信号之间的相位差和滞后时间。
3.用一只时间常数为0.355s 的一阶传感器去测量周期分别为1s、2s和3s的正弦信号,问幅值误差为多少?4.若用一阶传感器作100Hz正弦信号的测试,如幅值误差要求限制在5%以内,则时间常数应取多少?若在该时间常数下,同一传感器作50Hz正弦信号的测试,这时的幅值误差和相角有多大?5.已知某二阶系统传感器的固有频率f0=10kHz,阻尼比ξ=0.1,若要求传感器的输出幅值误差小于3%,试确定该传感器的工作频率范围。
6.某压力传感器属于二阶系统,其固有频率为1000Hz,阻尼比为临界值的50%,当500Hz的简谐压力输入后,试求其幅值误差和相位滞后。
《第二章应变式传感器》1.假设某电阻应变计在输入应变为5000με时电阻变化为1%,试确定该应变计的灵敏系数。
又若在使用该应变计的过程中,采用的灵敏系数为 1.9,试确定由此而产生的测量误差的正负和大小。
2.如下图所示的系统中:①当F=0和热源移开时,R l=R2=R3=R4,及U0=0;②各应变片的灵敏系数皆为+2.0,且其电阻温度系数为正值;③梁的弹性模量随温度增加而减小;④应变片的热膨胀系数比梁的大;⑤假定应变片的温度和紧接在它下面的梁的温度一样。
在时间t=0时,在梁的自由端加上一向上的力,然后维持不变,在振荡消失之后,在一稍后的时间t1打开辐射源,然后就一直开着,试简要绘出U0和t的关系曲线的一般形状,并通过仔细推理说明你给出这种曲线形状的理由。
3.一材料为钢的实心圆柱形试件,直径d=10 mm,材料的弹性模量E=2 ×1011N/m2,泊松比μ=0.285,试件上贴有一片金属电阻应变片,其主轴线与试件加工方向垂直,如图1所示,若已知应变片的轴向灵敏度k x =2,横向灵敏度C=4%,当试件受到压缩力F=3×104N作用时。
应变片的电阻相对变化ΔR/R为多少。
4.在材料为钢的实心圆柱形试件上,沿轴线和圆周方向各粘贴一片电阻120 Ω的金属电阻应变片,如图2所示,把这两片应变片接入差动电桥,已知钢的泊松比μ=0.285,应变片的灵敏系数k0=2,电桥电源电压U sr=6V(d.C.),当试件受轴向拉伸时,测得应变片R1的电阻变化值ΔR1=0.48 Ω,试求电桥的输出电压。
图1 图25.一台采用等强度梁的电子秤,在梁的上下两面各贴有二片电阻应变片,做成秤重传感器,如下图所示。
已知l=100 mm,b=11 mm,t=3 mm,E=2.1×104N/mm2,k0=2,接入直流四臂差动电桥,供桥电压 6 V,当秤重0.5 kg时,电桥的输出电压U sc为多大。
6.今在(110)晶面的〈001〉〈110〉晶面上各放置一电阻条,如下图所示,试求:l)在0.1MPa 压力作用下电阻条的σr和σt各为何值?2)此两电阻条为P型电阻条时ΔR/R=?3)若为N型电阻条时其ΔR/R?4)若将这两电阻条改为安置在距膜中心为4.l 7mm处,电阻条上的平均应力σr和σt各为多少?7.现有基长为10 mm与20 mm的两种丝式应变片,欲测钢构件频率为10kHz的动态应力,若要求应变波幅测量的相对误差小于0.5%,试问应选用哪一种?为什么?8.已知一测力传感器的电阻应变片的阻值R=120Ω,灵敏度系数k0= 2,若将它接入第一类对称电桥,电桥的供电电压U sr=10V(d.c.),要求电桥的非线性误差e f<0.5%,试求应变片的最大应变εmax应小于多少,并求最大应变时电桥的输出电压。
9.一个量程为10kN的应变式测力传感器,其弹性元件为薄壁圆筒轴向受力,外径20mm,内径18mm,在其表面粘贴八各应变片,四个沿周向粘贴,应变片的电阻值均为120Ω,灵敏度为2.0,波松比为0.3,材料弹性模量E=2.1×1011Pa。
要求:1)绘出弹性元件贴片位置及全桥电路;2)计算传感器在满量程时,各应变片电阻变化;3)当桥路的供电电压为10V时,计算传感器的输出电压。
10.如图所示电路是电阻应变仪中所用的不平衡电桥的简化电路,图中R2=R3=R是固定电阻,R1与R4是电阻应变片,工作时R1受拉,R4受压,ΔR表示应变片发生应变后,电阻值的变化量。
当应变片不受力,无应变时ΔR=0,桥路处于平衡状态,当应变片受力发生应变时,桥路失去了平衡,这时,就用桥路输出电压U cd表示应变片应变后的电阻值的变化量。
试证明: U cd=-(E/2)(ΔR/R)《第三章 电容式传感器》1.试计算带有固定圆周膜片电容压力传感器的灵敏度(ΔC /C )/p ,如下图。
已知在半径r 处的偏移量y 可用下式表示:()222321163r a Et p y --=μ 式中 P ——压力; a ——圆膜片半径;t ——膜片厚度; μ——膜片材料的泊松比。
2.在压力比指示系统中采用的电容传感元件及其电桥测量线路如图所示。
已知:δ0=0.25mm ,D =38.2mm ,R =5.1k Ω,U =60V (A.C ),f =400Hz 。
试求。
1) 该电容传感器的电压灵敏度(单位为V/m )k u ?2) 当电容传感器活动极板位移Δδ=10μm 时,输出电压U 0的值。
3.如图所示为油量表中的电容传感器简图,其中1、2为电容传感元件的同心圆筒(电极):3为箱体。
已知:R1=15mm,R2=12mm;油箱高度H=2m,汽油的介电常数εr=2.1。
求:同心圆套筒电容传感器在空箱和注满汽油时的电容量。
4.一只电容位移传感器如图所示,由四块置于空气中的平行平板组成。
板A,C和D是固定极板。
板B是活动极板,其厚度为t,它与固定极板的间距为d。
B,C和D极板的长度均为b,A板的长度为2 b,各板宽度为l,忽略板C和D的间隙及各板的边缘效应,试推导活动极板B从中间位置移动x=±b/2时电容C AC和C AD的表达式(x=0时为对称位置)。
5.试推导下图所示变电介质电容式位移传感器的特性方程C=f(x)。
设真空的介电系数为ε0, ε2>ε1,以及极板宽度为W。
其他参数如图所示。
《第四章电感式传感器》1.一个铁氧体环形磁心,平均长度为12cm,截面积为1.5cm2,平均相对磁导率μr=2000,求:1)均匀绕线5 00匝时的电感;2) 匝数增加1倍时的电感。
2.有一只螺管形差动式电感传感器,已知电源电压U=4V,f=400HZ,传感器线圈铜电阻和电感量分别为R=40Ω,L=30mH,用两只匹配电阻设计成4臂等阻抗电桥,如图1所示,试求:1)匹配电阻R1和R2的值为多大才能使电压灵敏度达到最大;2)当ΔZ=10Ω时,分别接成单臂和差动电桥后的输出电压值;3)用矢量图表明输出电压U0与电源电压U 之间的相位差;4)假设该传感器的两个线圈铜电阻不相等R4≠R3,在机械零位时便存在零位电压,用矢量图分析能否用调整衔铁位置的方法使U0=0。
图1 图2 a 图2 b 3.试计算图2a所示差动变压器式传感器接入桥式电路(顺接法)时的空载输出电压U0,一、二次侧线圈间的互感为M1、M2,两个二次侧线圈完全相同。
又若同一差动变压器式传感器接成图2b所示反串电路(对接法),问两种方法哪一种灵敏度高,高几倍?提示:①将图a所示的二次侧绕组边电路图简化如图2c所示等效电路(根据已知条件Z1=Z2;②求出图b空载输出电压与图a计算的结果进行比较。
)图2 c 图34.试推导图3所示差动型电感传感器电桥的输出特性U0= f(ΔL),已知电源角频率为ω,Z1、Z2为传感器两线圈的阻抗,零位时Z1=Z2= r+jωL,若以变间隙式传感器接入该电桥,求灵敏度表达式k=U0/Δδ多大(本题用有效值表示)。
5.图4中两种零点残余电压的补偿方法对吗?为什么?图中R为补偿电阻。
图46.某线性差动变压器式传感器采用的频率为100HZ、峰一峰值为6V的电源激励,假设衔铁的输入运动是频率为10Hz的正弦运动,它的位移幅值为±3mm,已知传感器的灵敏度为2V/mm,试画出激励电压、输入位移和输出电压的波形。
7.使用电涡流式传感器测量位移或振幅时对被测物体要考虑哪些因素,为什么?《第五章压电式传感器》1.分析压电式加速度传感器的频率响应特性。
又若测量电路的总电容C=1000PF,总电阻R=500 MΩ,传感器机械系统固有频率f0=30 kHz,相对阻尼系数ξ=0.5,求幅值误差在2%以内的使用频率范围。
2.用石英晶体加速度计及电荷放大器测量机器的振动,已知:加速度计灵敏度为5 pC /g,电荷放大器灵敏度为50 mV/pC,当机器达到最大加速度值时相应的输出电压幅值等于2 V,试计算该机器的振动加速度。
3.在某电荷放大器的说明书中有如下技术指标:输出电压为±10V,输入电阻大于1014Ω,输出电阻为0.1kΩ,频率响应:0~150kHz,噪声电压(有效值)最大为2mV(指输入信号为零时所出现的输出信号值),非线性误差:0.l%,温度漂移:±0.lmV/ºC。
l)如果用内阻为10 kΩ的电压表测量电荷放大器的输出电压,试求由于负载效应而减少的电压值。
2)假设用一输入电阻为2MΩ的示波器并接在电荷放大器的输入端,以便观察输入信号波形,此时对电荷放大器有何影响?3)噪声电压在什么时候会成为问题?4)试求当环境温度变化十15o C时,电荷放大器输出电压的变化值,该值对测量结果有否影响?5)当输入信号频率为180kHZ时,该电荷放大器是否适用?4.试用直角坐标系画出AT型,GT型,DT型,X-30º的晶体切型的方位图。
5.压电传感元件的电容为1000PF,k q=2.5C/cm,连接电缆电容C c=300 pF,示波器的输入阻抗为1MΩ和并联电容为50pF,试求:1)压电元件的电压灵敏度多大?2)测量系统的高频响应(V/cm)。
3)如系统测量的幅值误差为5%,最低频率是多少?4)如f j=10HZ,允许误差为5 %,用并联连接方式,电容量C值是多大?6.石英晶体压电传感元件,面积为1cm2,厚度为0.lcm,固定在两个金属板之间,用来测量通过晶体两面力的变化。
材料的杨氏模量为9×1010Pa,电荷灵敏度为2pC/N,相对介质常数为5,lcm2材料相对两面间电阻为1014Ω。