【精品】2018年湖北省武汉市江岸区八年级上学期期中数学试卷带解析答案
- 格式:doc
- 大小:578.50 KB
- 文档页数:26
**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**2017-2018学年湖北省武汉市江岸区八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.3.(3分)已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.124.(3分)下列各组条件中,能够判定△ABC≌△DEF的是()A.∠A=∠D,∠B=∠E,∠C=∠F B.AB=DE,BC=EF,∠A=∠DC.∠B=∠E=90°,BC=EF,AC=DF D.∠A=∠D,AB=DF,∠B=∠E5.(3分)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE 就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SSS B.ASA C.AAS D.SAS6.(3分)如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A.25°B.45°C.30°D.20°7.(3分)如图,△ABC中,∠A=50°,BD,CE是∠ABC,∠ACB的平分线,则∠BOC的度数为()A.105°B.115°C.125° D.135°8.(3分)如图,在△ADE中,线段AE,AD的中垂线分别交直线DE于B和C两点,∠B=α,∠C=β,则∠DAE的度数分别为()A.B.C.D.9.(3分)如图,△ABC中,CE平分∠ACB的外角,D为CE上一点,若BC=a,AC=b,DB=m,AD=n,则m﹣a与b﹣n的大小关系是()A.m﹣a>b﹣n B.m﹣a<b﹣nC.m﹣a=b﹣n D.m﹣a>b﹣n或m﹣a<b﹣n10.(3分)如图,∠AOB=30°,M,N分别是边OA,OB上的定点,P,Q分别是边OB,OA上的动点,记∠OPM=α,∠OQN=β,当MP+PQ+QN最小时,则关于α,β的数量关系正确的是()A.β﹣α=60°B.β+α=210°C.β﹣2α=30°D.β+2α=240°二、填空题(每题3分,共18分)11.(3分)已知点P关于x轴的对称点P1的坐标是(1,2),则点P的坐标是.12.(3分)若正多边形的内角和是外角和的4倍,则正多边形的边数为.13.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AB交边BC于点D,若CD=4,AB=15,则△ABD的面积是.14.(3分)如图,在平面直角坐标系中,△ABC是以C为直角顶点的直角三角形,且AC=BC,点A的坐标为(﹣1,0),点B的坐标为(0,4),则点C的坐标为.15.(3分)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为(3,0),则第17次碰到长方形边上的点的坐标为.16.(3分)如图,△ABC是直角三角形,记BC=a,分别以直角三角形的三边向外作正方形ABDE,正方形ACFG,正方形BCMN,过点C作BA边上的高CH并延长交正方形ABDE的边DE于K,则四边形BDKH的面积为.(用含a的式子表示)三、解答题(共8道小题,共72分)17.(8分)在△ABC中,∠B=∠A+10°,∠C=30°,求△ABC各内角的度数.18.(8分)如图:AC⊥BC,BD⊥AD,BD与AC交于E,AD=BC,求证:BD=AC.19.(8分)如图,已知点E,C在线段BF上,且BE=CF,AB∥DE,AC∥DF,AC与DE相交于=S四边形OCFD.点O,求证:S四边形ABEO20.(8分)如图,点E在AB上,△ABC≌△DEC,求证:CE平分∠BED.21.(8分)(1)如图1,已知△ABC,请画出△ABC关于直线AC对称的三角形.(2)如图2,若△ABC与△DEF关于直线l对称,请作出直线l(请保留作图痕迹)(3)如图3,在矩形ABCD中,已知点E,F分别在AD和AB上,请在边BC上作出点G,在边CD作出点H,使得四边形EFGH的周长最小.22.(10分)如图,四边形ABCD为正方形(各边相等,各内角为直角),E是BC边上一点,F 是CD上的一点.(1)若△CFE的周长等于正方形ABCD的周长的一半,求证:∠EAF=45°;(2)在(1)的条件下,若DF=2,CF=4,CE=3,求△AEF的面积.23.(10分)如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连接AE,作AF⊥AE且AF=AE.(1)如图1,过F点作FD⊥AC交AC于D点,求证:EC+CD=DF;(2)如图2,连接BF交AC于G点,若=3,求证:E点为BC中点;(3)当E点在射线CB上,连接BF与直线AC交于G点,若=,则=(直接写出结果)24.(12分)如图1,点A和点B分别在y轴正半轴和x轴负半轴上,且OA=OB,点C和点D 分别在第四象限和第一象限,且OC⊥OD,OC=OD,点D的坐标为(m,n),且满足(m﹣2n)2+|n﹣2|=0.(1)求点D的坐标;(2)求∠AKO的度数;(3)如图2,点P,Q分别在y轴正半轴和x轴负半轴上,且OP=OQ,直线ON⊥BP交AB于点N,MN⊥AQ交BP的延长线于点M,判断ON,MN,BM的数量关系并证明.2017-2018学年湖北省武汉市江岸区八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.2.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【解答】解:为△ABC中BC边上的高的是A选项.故选:A.3.(3分)已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.12【解答】解:根据三角形的三边关系,得第三边大于:8﹣3=5,而小于:3+8=11.则此三角形的第三边可能是:10.故选:B.4.(3分)下列各组条件中,能够判定△ABC≌△DEF的是()A.∠A=∠D,∠B=∠E,∠C=∠F B.AB=DE,BC=EF,∠A=∠DC.∠B=∠E=90°,BC=EF,AC=DF D.∠A=∠D,AB=DF,∠B=∠E【解答】解:如图:A、不符合全等三角形的判定定理,即不能推出△ABC≌△DEF,故本选项错误;B、不符合全等三角形的判定定理,即不能推出△ABC≌△DEF,故本选项错误;C、符合直角三角形全等的判定定理HL,即能推出△ABC≌△DEF,故本选项正确;D、不符合全等三角形的判定定理,即不能推出△ABC≌△DEF,故本选项错误;故选:C.5.(3分)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE 就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SSS B.ASA C.AAS D.SAS【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:A.6.(3分)如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A.25°B.45°C.30°D.20°【解答】解:∠C=∠C'=30°,则△ABC中,∠B=180°﹣105°﹣30°=45°.故选:B.7.(3分)如图,△ABC中,∠A=50°,BD,CE是∠ABC,∠ACB的平分线,则∠BOC的度数为()A.105°B.115°C.125° D.135°【解答】解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=130°,∵BO、CO分别是△ABC的角∠ABC、∠ACB的平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣65°=115°,故选:B.8.(3分)如图,在△ADE中,线段AE,AD的中垂线分别交直线DE于B和C两点,∠B=α,∠C=β,则∠DAE的度数分别为()A.B.C.D.【解答】解:∵∠B=α,∠C=β,∴∠BAC=180°﹣α﹣β,∵线段AE,AD的中垂线分别交直线DE于B和C两点,∴BA=BE,DA=DC,∴∠BEA=,∠CDA=,∴∠DAE=180°﹣﹣=,故选:A.9.(3分)如图,△ABC中,CE平分∠ACB的外角,D为CE上一点,若BC=a,AC=b,DB=m,AD=n,则m﹣a与b﹣n的大小关系是()A.m﹣a>b﹣n B.m﹣a<b﹣nC.m﹣a=b﹣n D.m﹣a>b﹣n或m﹣a<b﹣n【解答】解:在CM上截取CG=CA,连接DG.∵CD=CD,∠ACD=∠DCG,AC=CG,∴△ACD≌△GCD,∴AD=DG=n,在△BDG中,BD=m,BG=BC+CG=BC+AC=a+b,∴m+n>a+b,∴m﹣a>b﹣n.故选:A.10.(3分)如图,∠AOB=30°,M,N分别是边OA,OB上的定点,P,Q分别是边OB,OA上的动点,记∠OPM=α,∠OQN=β,当MP+PQ+QN最小时,则关于α,β的数量关系正确的是()A.β﹣α=60°B.β+α=210°C.β﹣2α=30°D.β+2α=240°【解答】解:如图,作M关于OB的对称点M′,N关于OA的对称点N′,连接M′N′交OA于Q,交OB于P,则MP+PQ+QN最小,易知∠OPM=∠OPM′=∠NPQ,∠OQP=∠AQN′=∠AQN,∵∠OQN=180°﹣30°﹣∠ONQ,∠OPM=∠NPQ=30°+∠OQP,∠OQP=∠AQN=30°+∠ONQ,∴α+β=180°﹣30°﹣∠ONQ+30°+30°+∠ONQ=210°.故选:B.二、填空题(每题3分,共18分)11.(3分)已知点P关于x轴的对称点P1的坐标是(1,2),则点P的坐标是(1,﹣2).【解答】解:点P关于x轴的对称点P1的坐标是(1,2),则点P的坐标是(1,﹣2).故答案为:(1,﹣2).12.(3分)若正多边形的内角和是外角和的4倍,则正多边形的边数为10.【解答】解:设这个多边形的边数是n,根据题意得,(n﹣2)•180°=4×360°,解得n=10,答:这个多边形的边数为10,故答案为:10.13.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AB交边BC于点D,若CD=4,AB=15,则△ABD的面积是30.【解答】解:作DE⊥AB于E,由基本尺规作图可知,AD是△A BC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=30,故答案为:30.14.(3分)如图,在平面直角坐标系中,△ABC是以C为直角顶点的直角三角形,且AC=BC,点A的坐标为(﹣1,0),点B的坐标为(0,4),则点C的坐标为(﹣,).【解答】解:作CE⊥x轴于E,CF⊥y轴于F,则∠ECF=90°,又∠ACB=90°,∴∠ECA=∠FCB,在△ECA和△FCB中,,∴△ECA≌△FCB,∴CE=CF,AE=BF,设AE=BF=x,则x+1=4﹣x,解得,x=,∴CE=CF=,∴点C的坐标为(﹣,),故答案为:(﹣,).15.(3分)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为(3,0),则第17次碰到长方形边上的点的坐标为(1,4).【解答】解:根据题意,如下图示:根据图形观察可知,每碰撞6次回到始点.∵17÷6=2…5,∴第17次碰到长方形边上的点的坐标为(1,4),故答案为(1,4).16.(3分)如图,△ABC是直角三角形,记BC=a,分别以直角三角形的三边向外作正方形ABDE,正方形ACFG,正方形BCMN,过点C作BA边上的高CH并延长交正方形ABDE的边DE于K,则四边形BDKH的面积为a2.(用含a的式子表示)【解答】解:∵BC⊥AC,CH⊥BA,∴BC2=BH•BA,即BH•BA=a2,∵四边形ABDE是正方形,∴BD=BA,∴四边形BDKH的面积=BH•BD=BH•BA=a2,故答案为:a2.三、解答题(共8道小题,共72分)17.(8分)在△ABC中,∠B=∠A+10°,∠C=30°,求△ABC各内角的度数.【解答】解:∵在△ABC中,∠B=∠A+10°,∠C=30°,∴∠B+∠A=150°,∴解得:,故∠A=70°,∠B=80°,∠C=30°.18.(8分)如图:AC⊥BC,BD⊥AD,BD与AC交于E,AD=BC,求证:BD=AC.【解答】证明:∵AC⊥AD,BC⊥BD,∴∠ADC=∠BCA=90°,在Rt△ABD和Rt△BAC中,,∴在Rt△ABD≌Rt△BAC(HL),∴BD=AC .19.(8分)如图,已知点E ,C 在线段BF 上,且BE=CF ,AB ∥DE ,AC ∥DF ,AC 与DE 相交于点O ,求证:S 四边形ABEO =S 四边形OCFD .【解答】证明:∵BE=CF , ∴BE +CE=CF +CE 即BC=EF .∵AB ∥DE ,AC ∥DF , ∴∠B=∠DEF ,∠C=∠DFE , 在△ABC 和△DEF 中,,∴△ABC ≌△DEF , ∴S △ABC 与S DEF ,∴S △ABC ﹣S △ECO =S DEF ﹣S △ECO , ∴S 四边形ABEO =S 四边形OCFD .20.(8分)如图,点E 在AB 上,△ABC ≌△DEC ,求证:CE 平分∠BED .【解答】证明:∵△ABC ≌△DEC , ∴∠B=∠DEC ,BC=EC , ∴∠B=∠BEC , ∴∠BEC=∠DEC , ∴CE 平分∠BED .21.(8分)(1)如图1,已知△ABC ,请画出△ABC 关于直线AC 对称的三角形.(2)如图2,若△ABC与△DEF关于直线l对称,请作出直线l(请保留作图痕迹)(3)如图3,在矩形ABCD中,已知点E,F分别在AD和AB上,请在边BC上作出点G,在边CD作出点H,使得四边形EFGH的周长最小.【解答】解:(1)如图1,△AB′C即为所求;(2)如图2,直线l即为所求;(3)如图3,四边形EFGH即为所求.22.(10分)如图,四边形ABCD为正方形(各边相等,各内角为直角),E是BC边上一点,F 是CD上的一点.(1)若△CFE的周长等于正方形ABCD的周长的一半,求证:∠EAF=45°;(2)在(1)的条件下,若DF=2,CF=4,CE=3,求△AEF的面积.【解答】(1)证明:延长CF至G,使DG=BE,连接AG,如图所示:∵四边形ABCD是正方形,∴∠BAD=∠ABE=∠ADF=90°,AB=BC=CD=AD,∴∠ADG=90°,∵△CFE的周长等于正方形ABCD的周长的一半,∴CE+CF+EF=CD+BC,∴DF+BE=EF,∴DF+DG=EF,即GF=EF,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∴∠EAG=90°,在△AEF和△AGF中,,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=×90°=45°;(2)解:∵DF=2,CF=4,CE=3,∴AB=AD=CD=BC=2+4=6,BE=BC﹣CE=3,由(1)得:△AEF的面积=△AGF的面积=△ABE的面积+△ADF的面积=×6×3+×6×2=15.23.(10分)如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连接AE,作AF⊥AE且AF=AE.(1)如图1,过F点作FD⊥AC交AC于D点,求证:EC+CD=DF;(2)如图2,连接BF交AC于G点,若=3,求证:E点为BC中点;(3)当E点在射线CB上,连接BF与直线AC交于G点,若=,则=(直接写出结果)【解答】证明:(1)如图1,∵∠FAD+∠CAE=90°,∠FAD+∠F=90°,∴∠CAE=∠F,在△ADF和△ECA中,,∴△ADF≌△ECA(AAS),∴AD=CD,FD=AC,∴CE+CD=AD+CD=AC=FD,即EC+CD=DF;证明:(2)如图2,过F点作FD⊥AC交AC于D点,∵△ADF≌△ECA,∴FD=AC=BC,在△FDG和△BCG中,,∴△FDG≌△BCG(AAS),∴GD=CG,∵=3,∴=2,∴=,∵AD=CE,AC=BC∴=,∴E点为BC中点;(3)过F作FD⊥AG的延长线交于点D,如图3,∵=,BC=AC,CE=CB+BE,∴=,由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,∴CG=GD,AD=CE,∴=,∴=,∴==,∴=.故答案为:.24.(12分)如图1,点A和点B分别在y轴正半轴和x轴负半轴上,且OA=OB,点C和点D 分别在第四象限和第一象限,且OC⊥OD,OC=OD,点D的坐标为(m,n),且满足(m﹣2n)2+|n﹣2|=0.(1)求点D的坐标;(2)求∠AKO的度数;(3)如图2,点P,Q分别在y轴正半轴和x轴负半轴上,且OP=OQ,直线ON⊥BP交AB于点N,MN⊥AQ交BP的延长线于点M,判断ON,MN,BM的数量关系并证明.【解答】解:(1)∵(m﹣2n)2+|n﹣2|=0,又∵(m﹣2n)2≥0,|n﹣2|≥0,∴n=2,m=4,∴点D坐标为(4,2).(2)如图1中,作OE⊥BD于E,OF⊥AC于F.∵OA=OB,OD=OC,∠AOB=∠COD=90°,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴EO=OF(全等三角形对应边上的高相等),∴OK平分∠BKC,∴∠OBD=∠OAC,易证∠AKB=∠BOA=90°,∴∠OKE=45°,∴∠AKO=135°.(3)结论:BM=MN+ON.理由:如图2中,过点B作BH∥y轴交MN的延长线于H.∵OQ=OP,OA=OA,∠AOQ=∠BOP=90°,∴△AOQ≌△BOP,∴∠OBP=∠OAQ,∵∠OBA=∠OAB=45°,∴∠ABP=∠BAP,∵NM⊥AQ,BM⊥ON,∴∠ANM+∠BAQ=90°,∠BNO+∠ABP=90°,∴∠ANM=∠BNO=∠HNB,∵∠HBN=∠OBN=45°,BN=BN,∴△BNH≌△BNO,∴HN=NO,∠H=∠BON,∵∠HBM+∠MBO=90°,∠BON+∠MBO=90°,∴∠HBM=∠BON=∠H,∴MH=MB,∴BM=MN+NH=MN+ON.**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文仅代表作者个人观点,作参考,并请自行核实相关内容.声明:本文部分内容来自网络,本司不为其真实性负责,如有异议请及时联系,本司将予以删除**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文仅代表作者个人观点,作参考,并请自行核实相关内容.声明:本文部分内容来自网络,本司不为其真实性负责,如有异议请及时联系,本司将予以删**==(转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文仅代表作者个人观点,作参考,并请自行核实相关内容.声明:本文部分内容来自网络,本司不为其真实性负责,如有异议请及时联系,本司将予以删**==(转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文仅代表作者个人观点,作参考,并请自行核实相关内容。
2018-2019学年湖北省武汉市江汉区八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.有4cm和6cm的两根小棒,请你再找一根小棒,并以这三根小棒为边围成一个三角形,下列长度的小棒可选的是()A.1cm B.2cm C.7cm D.10cm2.如图,∠ABC=∠ABD,还应补充一个条件,才能推出△ABC≌△ABD.补充下列其中一个条件后,不一定能推出△ABC≌△ABD的是()A.BC=BD B.AC=AD C.∠ACB=∠ADB D.∠CAB=∠DAB3.下列运算中,正确的是()A.x+x=x2B.3x2﹣2x=x C.(x2)3=x6D.x2•x3=x64.工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB是一个任意角,在边OA,OB上分别取OD=OE,移动角尺,使角尺两边相同的刻度分别与D,E重合,这时过角尺顶点P的射线OP就是∠AOB的平分线.你认为工人师傅在此过程中用到的三角形全等的判定方法是这种作法的道理是()A.SAS B.ASA C.AAS D.SSS5.计算(﹣4a2+12a3b)÷(﹣4a2)的结果是()A.1﹣3ab B.﹣3ab C.1+3ab D.﹣1﹣3ab6.如图,BE、CF是△ABC的角平分线,BE、CF相交于D,∠ABC=50°,∠ACB=70°,则∠CDE的度数是()A.50°B.60°C.70°D.120°7.如图,AD是△ABC的角平分线,过点D作DE⊥AB于E,DF⊥AC于F,则下列结论:①DE =DF;②BD=CD;③AE=AF;④∠ADE=∠ADF,其中正确结论的个数有()A.1个B.2个C.3个D.4个8.如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一矩形如图,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.(a﹣b)(a+2b)=a2﹣2b2+abB.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a﹣b)(a+b)=a2﹣b29.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个10.已知3m=a,81n=b,m、n为正整数,则33m+12n的值为()A.a3b3B.15ab C.3a+12b D.a3+b3二、填空题(共6小题,每小题3分,共18分)11.计算:(x﹣2)(2+x)=.12.八边形中过其中一个顶点有条对角线.13.如图,△ABC≌△DEF,则∠E的度数为.14.如果等腰三角形的两边长分别为3和7,那么它的周长为.15.若x2+kx﹣15=(x+3)(x+b),则k=.16.若一个多边形的每一个内角都等于156°,则这个多边形是边形.三、解答题(共5小题.第17至20题,每小题10分,第21题12分,共52分)17.(1)计算:(﹣4x)(2x2+3x﹣1)(2)解方程:(2x﹣3)(3x﹣2)=6(x﹣2)(x+2)18.已知:如图,E为BC上一点,AC∥BD,AC=BE,BC=BD.求证:AB=DE.19.已知:如图,在△ABC中,∠BAC=100°,AD⊥BC于D点,AE平分∠BAC交BC于点E.若∠C=28°,求∠DAE的度数.20.已知x2+y2=25,x+y=7,求xy和x﹣y的值.21.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图所示)就是一例这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方(左右)两数之和.事实上,这个三角形给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1、2、1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1、3、3、1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数等等.(1)根据上面的规律,(a+b)4展开式的各项系数中最大的数为;(2)直接写出25+5×24×(﹣3)+10×23×(﹣3)2+10×22×(﹣3)3+5×2×(﹣3)4+(﹣3)5的值;(3)若(2x﹣1)2018=a1x2018+a2x2017+a3x2016+……+a2017x2+a2018x+a2019,求a1+a2+a3+……+a2017+a2018的值.四、填空题(共4小题,每小题4分,共16分)22.若x2+2(m﹣4)x+25是一个完全平方式,那么m的值应为.23.如图,在△ABC中,∠C=46°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是.24.如图,在△ABD中,∠BAD=80°,C为BD延长线上一点,∠BAC=130°,△ABD的角平分线BE与AC交于点E,连接DE,则∠DEB=.25.如图,在△ABC中,BC=10,BC边上的高为3.将点A绕点B逆时针旋转90°得到点E,绕点C顺时针旋转90°得到点D.沿BC翻折得到点F,从而得到一个凸五边形BFCDE,则五边形BFCDE的面积为.五、解答题(共3小题.第26题10分,第27题12分,第28题12分共34分)26.(1)计算:(x3)2+x3•x5÷x2﹣(2x2)3(2)化简:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x.27.如图,在等腰Rt△ABC中,∠ACB=90°,∠CBA=∠CAB,AC=BC.点D在CB的延长线上,BD=CB.DF⊥BC,点E在BC的延长线上,EC=FD.(1)如图1,若点E、A、F三点共线,求证:∠FAB=∠FBA;(2)如图2,若线段EF与BA的延长线交于点M,求证:EM=FM.28.已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=0.(1)如图1,求证:OA是第一象限的角平分线;(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF的值.2018-2019学年湖北省武汉市江汉区八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.有4cm和6cm的两根小棒,请你再找一根小棒,并以这三根小棒为边围成一个三角形,下列长度的小棒可选的是()A.1cm B.2cm C.7cm D.10cm【分析】根据三角形的三边关系可得6﹣4<第三根小棒的长度<6+4,再解不等式可得答案.【解答】解:设第三根小棒的长度为xcm,由题意得:6﹣4<x<6+4,解得:2<x<10,故选:C.【点评】此题主要考查了三角形的三边关系,关键是掌握三边关系定理:三角形两边之和大于第三边.角形的两边差小于第三边.2.如图,∠ABC=∠ABD,还应补充一个条件,才能推出△ABC≌△ABD.补充下列其中一个条件后,不一定能推出△ABC≌△ABD的是()A.BC=BD B.AC=AD C.∠ACB=∠ADB D.∠CAB=∠DAB【分析】根据题意,∠ABC=∠ABD,AB是公共边,结合选项,逐个验证得出正确结果.【解答】解:A、补充BC=BD,根据SAS可以推出△ABC≌△ABD,故本选项错误;B、补充AC=AD,没有两边及其一边的对角相等的两三角形全等的判断方法,∴不能推出△ABC≌△ABD,故本选项正确;C、补充∠ACB=∠ADB,根据AAS可以推出△ABC≌△ABD,故本选项错误;D、补充∠CAB=∠DAB,根据ASA可以推出△ABC≌△ABD,故本选项错误.故选:B.【点评】本题考查了三角形全等判定,三角形全等的判定定理:有AAS,SSS,ASA,SAS.做题时要逐个验证,排除错误的选项.3.下列运算中,正确的是()A.x+x=x2B.3x2﹣2x=x C.(x2)3=x6D.x2•x3=x6【分析】直接利用合并同类项法则以及幂的乘方运算法则和同底数幂的乘法运算法则分别计算得出答案.【解答】解:A、x+x=2x,故此选项错误;B、3x2﹣2x,无法计算,故此选项错误;C、(x2)3=x6,正确;D、x2•x3=x5,故此选项错误;故选:C.【点评】此题主要考查了合并同类项以及幂的乘方运算和同底数幂的乘法运算,正确掌握相关运算法则是解题关键.4.工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB是一个任意角,在边OA,OB上分别取OD=OE,移动角尺,使角尺两边相同的刻度分别与D,E重合,这时过角尺顶点P的射线OP就是∠AOB的平分线.你认为工人师傅在此过程中用到的三角形全等的判定方法是这种作法的道理是()A.SAS B.ASA C.AAS D.SSS【分析】由三边对应相等得△DOF≌△EOF,即由SSS判定两个三角形全等.做题时要根据已知条件结合判定方法逐个验证.【解答】解:依题意知,在△DOF与△EOF中,,∴△DOF≌△EOF(SSS),∴∠AOF=∠BOF,即OF即是∠AOB的平分线.故选:D.【点评】本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.5.计算(﹣4a2+12a3b)÷(﹣4a2)的结果是()A.1﹣3ab B.﹣3ab C.1+3ab D.﹣1﹣3ab【分析】直接利用整式的除法运算法则计算得出答案.【解答】解:(﹣4a2+12a3b)÷(﹣4a2)=1﹣3ab.故选:A.【点评】此题主要考查了整式的除法,正确掌握运算法则是解题关键.6.如图,BE、CF是△ABC的角平分线,BE、CF相交于D,∠ABC=50°,∠ACB=70°,则∠CDE的度数是()A.50°B.60°C.70°D.120°【分析】根据角平分线定义求出∠FCB和∠EBC,根据三角形的外角性质求出即可.【解答】解:∵BE、CF是△ABC的角平分线,BE、CF相交于D,∠ABC=50°,∠ACB=70°,∴∠EBC=∠ABC==25°,∠FCB===35°,∴∠CDE=∠EBC+∠FCB=25°+35°=60°,故选:B.【点评】本题考查了三角形的角平分线定义和三角形的外角性质,能根据三角形的外角性质得出∠CDE=∠EBC+∠FCB是解此题的关键.7.如图,AD是△ABC的角平分线,过点D作DE⊥AB于E,DF⊥AC于F,则下列结论:①DE=DF;②BD=CD;③AE=AF;④∠ADE=∠ADF,其中正确结论的个数有()A.1个B.2个C.3个D.4个【分析】根据角平分线的性质可得①正确,即可证△ADE≌△ADF,可得③④正确.【解答】解:∵AD是△ABC的角平分线,过点D作DE⊥AB于E,DF⊥AC于F∴DE=DF∵DE=DF,AD=AD∴Rt△ADE≌Rt△ADF(HL)∴AE=AF,∠ADE=∠ADF故①③④正确∵只有等腰三角形顶角的角平分线才是底边的中线∴②错误故选:C.【点评】本题考查了全等三角形的判定和性质,角平分线的性质,熟练运用这些性质解决问题是本题的关键.8.如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一矩形如图,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.(a﹣b)(a+2b)=a2﹣2b2+abB.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a﹣b)(a+b)=a2﹣b2【分析】左图中阴影部分的面积=a2﹣b2,右图中矩形面积=(a+b)(a﹣b),根据二者相等,即可解答.【解答】解:由题可得:(a﹣b)(a+b)=a2﹣b2.故选:D.【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.9.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选:C.【点评】此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P的位置.10.已知3m=a,81n=b,m、n为正整数,则33m+12n的值为()A.a3b3B.15ab C.3a+12b D.a3+b3【分析】根据幂的乘方与积的乘方运算法则计算即可.【解答】解:33m+12n=(3m)3•(34n)3=(3m)3•(81n)3=a3b3,故选:A.【点评】本题考查的是幂的乘方与积的乘方运算,掌握幂的乘方与积的乘方的运算法则是解题的关键.二、填空题(共6小题,每小题3分,共18分)11.计算:(x﹣2)(2+x)=x2﹣4.【分析】依据平方差公式进行计算即可.【解答】解:(x﹣2)(2+x)=(x+2)(x﹣2)=x2﹣22=x2﹣4.故答案为:x2﹣4.【点评】本题主要考查的是平方差公式的应用,熟练掌握平方差公式是解题的关键.12.八边形中过其中一个顶点有5条对角线.【分析】根据从n边形的一个顶点可以作对角线的条数为(n﹣3),即可得解.【解答】解:∵一个八边形过一个顶点有5条对角线,故答案为:5.【点评】本题考查了多边形的对角线的公式,牢记公式是解题的关键.13.如图,△ABC≌△DEF,则∠E的度数为38°.【分析】利用全等三角形的性质以及三角形的内角和定理即可解决问题;【解答】解:∵△ABC≌△DEF,∴∠E=∠ABC,∵∠ABC=180°﹣∠A﹣∠C=38°,∴∠E=38°,故答案为38°.【点评】本题考查全等三角形的性质、三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考基础题.14.如果等腰三角形的两边长分别为3和7,那么它的周长为17.【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和7,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:(1)若3为腰长,7为底边长,由于3+3<7,则三角形不存在;(2)若7为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为7+7+3=17.故答案为:17.【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.15.若x2+kx﹣15=(x+3)(x+b),则k=﹣2.【分析】已知等式右边利用多项式乘以多项式法则计算,利用多项式相等的条件即可求出k的值.【解答】解:x2+kx﹣15=(x+3)(x+b)=x2+(b+3)x+3b,∴k=b+3,3b=﹣15,解得:b=﹣5,k=﹣2.故答案为:﹣2.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.16.若一个多边形的每一个内角都等于156°,则这个多边形是十五边形.【分析】先求出多边形一个外角的度数,然后根据多边形的外角和为360°,求出边数即可.【解答】解:∵多边形的每一个内角都等于156°,∴多边形的每一个外角都等于180°﹣156°=24°,∴边数n=360°÷24°=15.故答案为:十五.【点评】题主要考查了多边形的内角与外角的关系,解题的关键根据外角和定理求出多边形的边数.三、解答题(共5小题.第17至20题,每小题10分,第21题12分,共52分)17.(1)计算:(﹣4x)(2x2+3x﹣1)(2)解方程:(2x﹣3)(3x﹣2)=6(x﹣2)(x+2)【分析】(1)根据单项式乘多项式的运算法则计算可得;(2)依次去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)原式=﹣8x3﹣12x2+4x;(2)6x2﹣4x﹣9x+6=6x2﹣24,6x2﹣4x﹣9x﹣6x2=﹣24﹣6,﹣13x=﹣30,x=.【点评】此题考查了整式的混合运算,熟练掌握整式的混合运算顺序和运算法则是解本题的关键.18.已知:如图,E为BC上一点,AC∥BD,AC=BE,BC=BD.求证:AB=DE.【分析】由AC、BD平行,可知∠ACB=∠DBC,再根据已知条件,即可得到△ABC≌△EDB,即得结论AB=DE.【解答】证明:∵AC∥BD,∴∠ACB=∠DBC,∵AC=BE,BC=BD,∴△ABC≌△EDB,∴AB=DE.【点评】本题主要考查全等三角形的判定,涉及到平行线的性质知识点,比较简单.19.已知:如图,在△ABC中,∠BAC=100°,AD⊥BC于D点,AE平分∠BAC交BC于点E.若∠C=28°,求∠DAE的度数.【分析】先根据角平分线的定义求得∠EAC的度数,再由外角的性质得∠AED,最后由直角三角形的性质可得结论.【解答】解:∵AE平分∠BAC,∴∠EAC===50°,∵∠C=28°,∴∠AED=∠C+∠EAC=28°+50°=78°,∵AD⊥BC,∴∠ADE=90°,∴∠DAE=90°﹣78°=12°.【点评】此题主要考查了三角形内角和定理,角平分线的定义,关键是掌握三角形内角和为180°,直角三角形两锐角互余.20.已知x2+y2=25,x+y=7,求xy和x﹣y的值.【分析】先根据完全平方公式求出xy的值,再根据完全平方公式求出(x﹣y)2的值,再求出答案即可.【解答】解:∵x2+y2=(x+y)2﹣2xy,∴25=72﹣2xy,∴xy=12,∴(x﹣y)2=x2﹣2xy+y2=25﹣2×12=1,∴x﹣y=±1.【点评】本题考查了完全平方公式,能灵活运用完全平方公式进行变形是解此题的关键,注意:a2+2ab+b2=(a+b)2,a2﹣2ab+b2=(a﹣b)2.21.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图所示)就是一例这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方(左右)两数之和.事实上,这个三角形给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1、2、1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1、3、3、1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数等等.(1)根据上面的规律,(a+b)4展开式的各项系数中最大的数为6;(2)直接写出25+5×24×(﹣3)+10×23×(﹣3)2+10×22×(﹣3)3+5×2×(﹣3)4+(﹣3)5的值;(3)若(2x﹣1)2018=a1x2018+a2x2017+a3x2016+……+a2017x2+a2018x+a2019,求a1+a2+a3+……+a2017+a2018的值.【分析】(1)根据三角形的构造法则,确定出(a+b)4的展开式中各项系数最大的数;(2)原式变形后,计算即可得到结果;(3)当x=0时,得到a2019=1,当x=1时,得到a2019=1,于是得到结论.【解答】解:(1)根据题意得:(a+b)4的展开式中各项系数分别为1,4,6,4,1,即最大的数为6;故答案为:6;(2)原式=(2﹣3)5=﹣1;(3)当x=0时,a2019=1,当x=1时,a1+a2+a3+…+a2017+a2018+a2019=1,∴a1+a2+a3+…+a2017+a2018=0.【点评】本题考查了完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b)n中,相同字母a的指数是从高到低,相同字母b的指数是从低到高.四、填空题(共4小题,每小题4分,共16分)22.若x2+2(m﹣4)x+25是一个完全平方式,那么m的值应为﹣1或9.【分析】根据完全平方式得出2(m﹣4)x=±2•x•5,求出即可.【解答】解:∵x2+2(m﹣4)x+25是一个完全平方式,∴2(m﹣4)x=±2•x•5,解得:m=﹣1或9,故答案为:﹣1或9.【点评】本题考查了完全平方式,能熟记完全平方式的内容是解此题的关键,注意:完全平方式有两个:a2+2ab+b2和a2﹣2ab+b2.23.如图,在△ABC中,∠C=46°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是92°.【分析】由折叠的性质得到∠D=∠C,再利用外角性质即可求出所求角的度数.【解答】解:由折叠的性质得:∠D=∠C=46°,根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠D,则∠1=∠2+∠C+∠D=∠2+2∠C=∠2+92°,则∠1﹣∠2=92°.故答案为:92°.【点评】此题考查了翻折变换(折叠问题)以及三角形外角性质,熟练掌握折叠的性质是解本题的关键.24.如图,在△ABD中,∠BAD=80°,C为BD延长线上一点,∠BAC=130°,△ABD的角平分线BE与AC交于点E,连接DE,则∠DEB=40°.【分析】作辅助线,构建角平分线的距离,根据角平分线的性质和逆定理可得:EF=EG=EH,设∠DEG=y,∠GEB=x,根据三角形的内角和定理可得:∠GEA=∠FEA=40°,∠FEB=∠HEB,列方程为2y+x=80﹣x,y+x=40,可得结论:∠DEB=40°.【解答】解:过E作EF⊥AB于F,EG⊥AD于G,EH⊥BC于H,∵BE平分∠ABD,∴EH=EF,∵∠BAC=130°,∴∠FAE=∠CAD=50°,∴EF=EG,∴EG=EH,∴EH平分∠CDG,∴∠HED=∠DEG,设∠DEG=y,∠GEB=x,∵∠EFA=∠EGA=90°,∴∠GEA=∠FEA=40°,∵∠EFB=∠EHB=90°,∠EBF=∠EBH,∴∠FEB=∠HEB,∴2y+x=80﹣x,2y +2x =80,y +x =40,即∠DEB =40°,故答案为:40°.【点评】本题考查了三角形内角和定理和角平分线的性质,正确作辅助线是本题的关键,有难度. 25.如图,在△ABC 中,BC =10,BC 边上的高为3.将点A 绕点B 逆时针旋转90°得到点E ,绕点C 顺时针旋转90°得到点D .沿BC 翻折得到点F ,从而得到一个凸五边形BFCDE ,则五边形BFCDE 的面积为 80 .【分析】将点C 绕点B 逆时针旋转90°得到点G ,绕点C 顺时针旋转90°得到点H ,连接EG 、DH 、GH ,则△EBG ≌△ABC ≌△HDC ,四边形BCHG 是正方形,六边形BCDHGE 是中心对称图形,根据轴对称和中心对称的性质得出S △BEG =S △CDH =S △ABC ,S 四边形BCDE =S 六边形BCDHGE ,然后由S 五边形BFDE =S 四边形BCDE +S △BFC 即可求得.【解答】解:将点C 绕点B 逆时针旋转90°得到点G ,绕点C 顺时针旋转90°得到点H ,连接EG 、DH 、GH ,则△EBG ≌△ABC ≌△HDC ,四边形BCHG 是正方形,六边形BCDHGE 是中心对称图形,∴四边形BCDE ≌四边形HGED ,∵S △BEG =S △CDH =S △ABC =×10×3=15=S △BFC ,S 正方形BCHG =10×10=100,∴S 六边形BCDHGE =S △BEG +S △CDH +S 正方形BCHG =2×15+100=130,∴S 四边形BCDE =S 六边形BCDHGE =65,∴S 五边形BFDE =S 四边形BCDE +S △BFC =65+15=80,故答案为80.【点评】本题考查了图形的全等,熟练掌握轴对称和中心对称的性质是解题的关键.五、解答题(共3小题.第26题10分,第27题12分,第28题12分共34分)26.(1)计算:(x3)2+x3•x5÷x2﹣(2x2)3(2)化简:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x.【分析】(1)根据幂的乘方、同底数幂的乘除法和积的乘方可以解答本题;(2)根据完全平方公式和多项式乘多项式以及整式的除法可以解答本题.【解答】解:(1)(x3)2+x3•x5÷x2﹣(2x2)3=x6+x6﹣8x6=﹣6x6;(2)[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x=[x2+4xy+4y2﹣3x2﹣2xy+y2﹣5y2]÷2x=(﹣2x2+2xy)÷2x=﹣x+y.【点评】本题考查整式的混合运算,解答本题的关键是明确整式的混合运算的计算方法.27.如图,在等腰Rt△ABC中,∠ACB=90°,∠CBA=∠CAB,AC=BC.点D在CB的延长线上,BD=CB.DF⊥BC,点E在BC的延长线上,EC=FD.(1)如图1,若点E、A、F三点共线,求证:∠FAB=∠FBA;(2)如图2,若线段EF与BA的延长线交于点M,求证:EM=FM.【分析】(1)证明△ACE≌△BDF(SAS),得∠EAC=∠FBD,根据平角的定义可得∠FAB=∠FBA;(2)连接FB,EA,延长BM,分别过点E,F作BM的垂线,垂足分别为P,Q,同理得△EAC≌△FBD,所以AE=BF,再证明△EAP≌△FBQ和△EMP≌△FMQ,可得结论.【解答】证明:(1)连接BF,∵AC=BC,BC=BD,∴AC=BD,∵DF⊥BC,∴∠ACB=∠D=∠ACE=90°,在△ACE和△BDF中,∵,∴△ACE≌△BDF(SAS),∴∠EAC=∠FBD,∵∠FAB=180°﹣∠EAC﹣∠CAB,∠FBA=180°﹣∠FBD﹣∠CBA,∵∠CAB=∠ABC,∴∠FAB=∠FBA;(2)如图2,连接FB,EA,延长BM,分别过点E,F作BM的垂线,垂足分别为P,Q,同理得:△EAC≌△FBD,∴AE=BF,同理可知:∠EAP=∠FBQ,在△EAP和△FBQ中,,∴△EAP≌△FBQ(AAS),∴PE=FQ,在△EMP和△FMQ中,∴△EMP≌△FMQ(AAS),∴EM=FM.【点评】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质,正确作出辅助线、灵活运用定理是解题的关键.28.已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=0.(1)如图1,求证:OA是第一象限的角平分线;(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF的值.【分析】(1)根据非负性得出a=b=4,过点A分别作x轴,y轴的垂线,垂足分别为M、N,进而利用角平分线的性质解答即可;(2)过A作AH平分∠OAB,交BM于点H,根据全等三角形的判定和性质解答即可;(3)过H作HM⊥OF,HN⊥EF于M、N,根据全等三角形的判定和性质解答.【解答】解:(1)∵|a﹣b|+b2﹣8b+16=0∴|a﹣b|+(b﹣4)2=0∵|a﹣b|≥0,(b﹣4)2≥0∴|a﹣b|=0,(b﹣4)2=0∴a=b=4过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM ∴OA平分∠MON即OA是第一象限的角平分线(2)过A作AH平分∠OAB,交BM于点H∴∠OAH=∠HAB=45°∵BM⊥AE∴∠ABH=∠OAE在△AOE与△AHC中∴△AOE≌△AHC(ASA)∴AH=OE在△ONE和△AMH中∴△ONE≌△AMH(SAS)∴∠AMH=∠ONE设BM与NE交于K∴∠MKN=180°﹣2∠ONE=90°﹣∠NEA∴2∠ONE﹣∠NEA=90°(3)过H作HM⊥OF,HN⊥EF于M、N可证:△FMH≌△FNH(SAS)∴FM=FN同理:NE=EK∴OE+OF﹣EF=2HK过A作AP⊥y轴于P,AQ⊥x轴于Q可证:△APF≌△AQE(SAS)∴PF=EQ∴OE+OF=2OP=8∴2HK+EF=OE+OF=8【点评】此题是三角形综合题,主要考查了角平分线的性质,全等三角形的性质和判定,解本题的关键是全等三角形性质和判定的运用.。
2018-2019学年上学期武汉市江岸区八年级期中数学试卷一、选择题(本大题共6小题,每小题3分,共12分)1.以下轴对称图形中,对称轴条数最少的是()A.B.C.D.2.下列长度的三条线段能组成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.5,6,73.根据下列已知条件,能够画出唯一△ABC的是()A.AB=6,BC=5,∠A=50°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8D.∠A=40°,∠B=50°,∠C=90°4.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.40°B.30°C.50°D.60°5.如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A.5B.4C.10D.86.规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:①AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1;②AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1;③AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1;④AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1.其中能判定四边形ABCD和四边形A1B1C1D1全等有()个.A.1B.2C.3D.4二、填空题(本大题共10小题,每空3分,共30分)7.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若AD=13,AC=12,则点D到AB的距离为.8.如图,在△ABC中,∠ABC、∠ACB的角平分线交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.若MN=5cm,CN=2cm,则BM=cm.9.如图,在△ABC中,AB=4,AC=3,BC=5,AD是△ABC的角平分线,DE⊥AB于点E,则DE长是.10.如图,一块形如“Z”字形的铁皮,每个角都是直角,且AB=BC=EF=GF=1,CD=DE=GH=AH=3,现将铁片裁剪并拼接成一个和它等面积的正方形,则正方形的边长是.11.如图,△ABC,△ADE均是等腰直角三角形,BC与DE相交于F点,若AC=AE=1,则四边形AEFC的周长为.12.如图,△ABC 是边长为6的等边三角形,D 是BC 上一点,BD =2,DE ⊥BC 交AB 于点E ,则AE = .13.如图,在△ABC 中,∠C =90°,AB 的垂直平分线分别交AB 、AC 于点D 、E ,AE =5,AD =4,线段CE 的长为 .14.已知△ABC 为等边三角形,BD 为中线,延长BC 至E ,使CE =CD =1,连接DE ,则DE = .15.下面是“经过已知直线外一点作这条直线的垂线“的尺规作图过程. 已知:直线l 和l 外一点P .求作:直线l 的垂线,使它经过点P作法:如图,(1)在直线l 上任意两点A 、B ; (2)分别以点A ,B 为圆心,AP ,BP 长为半径作弧,两弧相交于点Q ; (3)作直线PQ ,所以直线PQ 就是所求作的垂线.该作图的依据是 .16.如图,在△ABC中,∠C=90°,∠A=34°,D,E分别为AB,AC上一点,将△BCD,△ADE沿CD,DE翻折,点A,B恰好重合于点P处,则∠ACP=.三、解答题(共6小题,满分52分)17.(9分)(1)请在图中画出三个以AB为腰的等腰△ABC.(要求:1.锐角三角形,直角三角形,钝角三角形各画一个;2.点C在格点上.)(2)如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证BC=AD.18.(8分)如图,甲、乙两艘轮船同时从港口O出发,甲轮船向南偏东45°方向航行,乙轮船以每小时15海里的速度向南偏西45°方向航行,2小时后两艘轮船之间的距离为50海里,问甲轮船平均每小时航行多少海里?19.(8分)如图,正方形网格中每个小正方形边长都是1.(1)画出△ABC关于直线l对称的图形△A1B1C1;(2)在直线l上找一点P,使PB=PC;(要求在直线l上标出点P的位置)(3)连接PA、PC,计算四边形PABC的面积.20.(7分)如图,在长方形ABCD中,AB=8,AD=10,点E为BC上一点,将△ABE沿AE折叠,使点B 落在长方形内点F处,且DF=6,求BE的长.21.(8分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.22.(12分)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.理解概念(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”.概念应用(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC的等角分割线.(3)在△ABC中,∠A=42°,CD是△ABC的等角分割线,直接写出∠ACB的度数.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共12分)1.以下轴对称图形中,对称轴条数最少的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、有四条对称轴,B、有六条对称轴,C、有四条对称轴,D、有二条对称轴,综上所述,对称轴最少的是D选项.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列长度的三条线段能组成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.5,6,7【分析】根据勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可.【解答】解:A、12+22≠32,不能组成直角三角形,故此选项错误;B、22+32≠42,不能组成直角三角形,故此选项错误;C、32+42=52,能组成直角三角形,故此选项正确;D、52+62≠72,不能组成直角三角形,故此选项错误;故选:C.【点评】此题主要考查了勾股定理的逆定理,要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.3.根据下列已知条件,能够画出唯一△ABC的是()A.AB=6,BC=5,∠A=50°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8D.∠A=40°,∠B=50°,∠C=90°【分析】根据全等三角形的判定方法可知只有C能画出唯一三角形.【解答】解:A、已知AB、BC和BC的对角,不能画出唯一三角形,故本选项错误;B、∵AB+BC=5+6=11<AC,∴不能画出△ABC;故本选项错误;C、已知两角和夹边,能画出唯一△ABC,故本选项正确;D、根据∠A=40°,∠B=50°,∠C=90°不能画出唯一三角形,故本选项错误;故选:C.【点评】本题考查了全等三角形的判定方法;一般三角形全等的判定方法有SSS、SAS、ASA、AAS,熟练掌握全等三角形的判定方法是解题的关键.4.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.40°B.30°C.50°D.60°【分析】根据邻补角的定义求出∠AED,再根据全等三角形对应边相等可得AD=AE,然后利用等腰三角形的两底角相等列式计算即可得解.【解答】解:∵∠AEC=110°,∴∠AED=180°﹣∠AEC=180°﹣110°=70°,∵△ABD≌△ACE,∴AD=AE,∴∠AED=∠ADE,∴∠DAE=180°﹣2×70°=180°﹣140°=40°.故选:A.【点评】本题考查了全等三角形的性质,等腰三角形的判定与性质,熟记性质并准确识图是解题的关键.5.如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A.5B.4C.10D.8【分析】根据等腰三角形的性质得到AD⊥BC,BD=CD,根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD==4,∴BC=2BD=8,故选:D.【点评】本题考查了等腰三角形的性质以及勾股定理的知识,熟练掌握等腰三角形的性质是解题的关键.6.规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:①AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1;②AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1;③AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1;④AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1.其中能判定四边形ABCD和四边形A1B1C1D1全等有()个.A.1B.2C.3D.4【分析】根据条件能证明△ABC≌△A1B1C1,和△AC D≌△A1B1C1,的条件.【解答】解:有一组邻边和三个角对应相等的两个四边形全等,故①②③正确.故选:C.【点评】本题考查了三角形全等的判定与性质,解题的关键是注意:多边形的全等可以通过作辅助线转化为证明三角形全等的问题.二、填空题(本大题共10小题,每空3分,共30分)7.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若AD=13,AC=12,则点D到AB的距离为5.【分析】根据勾股定理求CD,根据角平分线性质得出DE=CD,即可得出答案.【解答】解:在Rt△ACD中,AD=13,AC=12,由勾股定理得:CD=5,过D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=5,即点D到AB的距离为5,故答案为:5.【点评】本题考查了角平分线性质和勾股定理,能熟记角平分线性质的内容是解此题的关键,注意:在角的内部,角平分线上的点到角两边的距离相等.8.如图,在△ABC中,∠ABC、∠ACB的角平分线交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.若MN=5cm,CN=2cm,则BM=3cm.【分析】只要证明MN=BM+CN即可解决问题;【解答】解:∵∠ABC、∠ACB的平分线相交于点O,∴∠MBO=∠OBC,∠OCN=∠OCB,∵MN∥BC,∴∠OBC=∠MOB,∠NOC=∠OCB,∴∠MBO=∠MOB,∠NOC=∠OCN,∴BM=MO,ON=CN,∴MN=MO+ON,即MN=BM+CN,∵MN=5cm,CN=2cm,∴BM=5﹣2=3cm,故答案为3cm.【点评】此题考查学生对等腰三角形的判定与性质和平行线性质的理解与掌握.此题关键是证明△BMO,△CNO是等腰三角形.9.如图,在△ABC中,AB=4,AC=3,BC=5,AD是△ABC的角平分线,DE⊥AB于点E,则DE长是.【分析】由△ABC的三边长,可证明△ABC为直角三角形,作DH⊥AC于H,利用角平分线的性质得DH=DE,根据三角形的面积公式得×DE•AB+×DH•AC=AB•AC,于是可求出DE的值.【解答】解:作DH⊥AC于H,∵AD是△ABC的角平分线,DE⊥AB于点E,∴DH=DE,∵AB=4,AC=3,BC=5,∴△ABC为直角三角形,∴DE•AB+DH•AC=AB•AC,∴DH=DE=,故答案为:【点评】本题考查了勾股定理的逆定理运用以及角平分线的性质,能够证明ABC为直角三角形,得到DE•AB+ DH•AC=AB•AC是解题的关键.10.如图,一块形如“Z”字形的铁皮,每个角都是直角,且AB=BC=EF=GF=1,CD=DE=GH=AH=3,现将铁片裁剪并拼接成一个和它等面积的正方形,则正方形的边长是.【分析】延长BC交HG于点M,延长HG交DE于点N,先计算出不规则铁皮的面积,再计算面积相等的正方形的面积.【解答】解:如图所示,延长BC交HG于点M,延长HG交DE于点N,则四边形ABMH、CDNM为矩形,四边形GFEN为正方形.所以“Z”字形的铁皮的面积=S矩形ABMH+S矩形CDNM+S正方形GFEN=AH•AB+CD•DN+GF•EF=3×1+3×2+1×1=10.∴正方形的边长=故答案为:.【点评】本题考查了矩形、正方形的判定和面积及算术平方根.解决本题的关键是利用割补的办法计算出不规则铁皮的面积.11.如图,△ABC,△ADE均是等腰直角三角形,BC与DE相交于F点,若AC=AE=1,则四边形AEFC的周长为2.【分析】根据等腰直角三角形的性质和等腰三角形的判定得到BE=EF=CF=CD,于是得到四边形AEFC的周长=AB+AC.【解答】解:∵△ABC,△ADE均是等腰直角三角形,∴∠B=∠D=45°,∠BEF=∠DCF=90°,∴△BEF,△DCF均是等腰直角三角形,∴BE=EF=CF=CD,∴四边形AEFC的周长=AE+EF+AC+CD=AB+AC,∵AC=AE=1,∴AB=AD=,∴四边形AEFC的周长=AE+EF+AC+CD=AB+AC=2,故答案为:2.【点评】本题考查了等腰直角三角形的性质,熟练掌握等腰直角三角形的判定与性质是解题的关键.12.如图,△ABC是边长为6的等边三角形,D是BC上一点,BD=2,DE⊥BC交AB于点E,则AE=2.【分析】在Rt△BED中,求出BE即可解决问题;【解答】解:∵△ABC是等边三角形,∴∠B=60°,∵DE⊥BC,∴∠EDB=90°,∵BD=2,∴EB=2BD=4,∴AE=AB﹣BE=6﹣4=2,故答案为2【点评】本题考查等边三角形的性质、直角三角形的30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.如图,在△ABC中,∠C=90°,AB的垂直平分线分别交AB、AC于点D、E,AE=5,AD=4,线段CE 的长为 1.4.【分析】由AB的垂直平分线DE交AC于点D,垂足为E,根据线段垂直平分线的性质,求得AB,根据相似三角形的性质得到结论.【解答】解:∵DE是AB的垂直平分线,∴AB=2AD=8,∠ADE=∠C=90°,∴△ADE∽△ACB,∴,∴AC=6.4,∴CE=1.4,故答案为:1.4.【点评】此题考查了线段垂直平分线的性质、相似三角形的判定和性质,熟练掌握的线段垂直平分线性质是解决问题的关键.14.已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE=.【分析】根据等腰三角形和三角形外角性质求出BD=DE,求出BC,在Rt△BDC中,由勾股定理求出BD即可.【解答】解:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC,∵BD为中线,∴∠DBC=∠ABC=30°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB,∴∠E=30°=∠DBC,∴BD=DE,∵BD是AC中线,CD=1,∴AD=DC=1,∵△ABC是等边三角形,∴BC=AC=1+1=2,BD⊥AC,在Rt△BDC中,由勾股定理得:BD==,即DE=BD=,故答案为:.【点评】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD和求出BD的长.15.下面是“经过已知直线外一点作这条直线的垂线“的尺规作图过程.已知:直线l和l外一点P.求作:直线l的垂线,使它经过点P作法:如图,(1)在直线l上任意两点A、B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ,所以直线PQ就是所求作的垂线.该作图的依据是到线段两端点距离相等的点在线段的垂直平分线上.【分析】由AP=AQ、BP=BQ,依据到线段两端点距离相等的点在线段的垂直平分线上知点A、B在线段PQ 的中垂线上,据此可得PQ⊥l.【解答】解:由作图可知AP=AQ、BP=BQ,所以点A、B在线段PQ的中垂线上(到线段两端点距离相等的点在线段的垂直平分线上),所以PQ⊥l,故答案为:到线段两端点距离相等的点在线段的垂直平分线上.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握线段中垂线的性质及过直线外一点作已知直线的垂线的尺规作图.16.如图,在△ABC中,∠C=90°,∠A=34°,D,E分别为AB,AC上一点,将△BCD,△ADE沿CD,DE翻折,点A,B恰好重合于点P处,则∠ACP=22°.【分析】根据折叠的性质即可得到AD=PD=BD,可得CD=AB=AD=BD,根据∠ACD=∠A=34°,∠BCD=∠B=56°,即可得出∠BCP=2∠BCD=112°,即可得出∠ACP=112°﹣90°=22°.【解答】解:由折叠可得,AD=PD=BD,∴D是AB的中点,∴CD=AB=AD=BD,∴∠ACD=∠A=34°,∠BCD=∠B=56°,∴∠BCP=2∠BCD=112°,∴∠ACP=112°﹣90°=22°,故答案为:22°.【点评】本题主要考查了折叠的性质以及三角形内角和定理的运用,解题时注意:三角形内角和是180°.三、解答题(共6小题,满分52分)17.(9分)(1)请在图中画出三个以AB为腰的等腰△ABC.(要求:1.锐角三角形,直角三角形,钝角三角形各画一个;2.点C在格点上.)(2)如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证BC=AD.【分析】(1)根据等腰三角形、直角三角形、锐角三角形的特点和网格特点,再根据勾股定理画出即可;(2)根据直角三角形的全等判定证明即可.【解答】解:(1)如图所示:(2)证明:∵AC⊥BC,BD⊥AD,在Rt△ADB与Rt△BCA中,,∴Rt△ADB≌Rt△BCA(HL),∴BC=AD.【点评】此题考查了等腰三角形的性质,全等三角形的判定和性质,关键是根据直角三角形的全等判定即可.18.(8分)如图,甲、乙两艘轮船同时从港口O出发,甲轮船向南偏东45°方向航行,乙轮船以每小时15海里的速度向南偏西45°方向航行,2小时后两艘轮船之间的距离为50海里,问甲轮船平均每小时航行多少海里?【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,根据勾股定理解答即可.【解答】解:根据题意知∠AOB=90°,OB=2×15=30海里,AB=50海里,由勾股定理得,OA====40海里,则甲轮船每小时航行=20海里.答:甲轮船每小时航行20海里.【点评】本题考查了勾股定理的应用,熟练运用勾股定理进行计算,基础知识,比较简单.19.(8分)如图,正方形网格中每个小正方形边长都是1.(1)画出△ABC关于直线l对称的图形△A1B1C1;(2)在直线l上找一点P,使PB=PC;(要求在直线l上标出点P的位置)(3)连接PA、PC,计算四边形PABC的面积.【分析】(1)根据网格结构找出点A、B、C对应点A1、B1、C1的位置,然后顺次连接即可;(2)过BC中点D作DP⊥BC交直线l于点P,使得PB=PC;(3)S四边形PABC=S△ABC+S△APC,代入数据求解即可.【解答】解:(1)所作图形如图所示:(2)如图所示,过BC中点D作DP⊥BC交直线l于点P,此时PB=PC;(3)S四边形PABC=S△ABC+S△APC=×5×2+×5×1=.【点评】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出点A、B、C的对应点,然后顺次连接.20.(7分)如图,在长方形ABCD中,AB=8,AD=10,点E为BC上一点,将△ABE沿AE折叠,使点B 落在长方形内点F处,且DF=6,求BE的长.【分析】由折叠的性质可知BE=EF,设BE=EF=x,然后再依据勾股定理的逆定理可证明△ADF为直角三角形,则E、D、F在一条直线上,最后,在Rt△CED中,依据勾股定理列方程求解即可.【解答】解:∵将△ABE沿AE折叠,使点B落在长方形内点F处,∴∠AFE=∠B=90°,AB=AF=8,BE=FE.在△ADF中,∵AF2+DF2=62+82=100=102=AD2,∴△ADF是直角三角形,∠AFD=90°.∴D,F,E在一条直线上.设BE=x,则EF=x,DE=6+x,EC=10﹣x,在Rt△DCE中,∠C=90°,∴CE2+CD2=DE2,即(10﹣x)2+82=(6+x)2.∴x=4.∴BE=4.【点评】本题主要考查的是翻折的性质、勾股定理的逆定理、勾股定理的定理,依据勾股定理列出关于x的方程是解题的关键.21.(8分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.【分析】(1)根据线段垂直平分线和等腰三角形性质得出AB=AE=CE,求出∠AEB和∠C=∠EAC,即可得出答案;(2)根据已知能推出2DE+2EC=7cm,即可得出答案.【解答】解:(1)∵AD垂直平分BE,EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴∠C=∠AED=35°;(2)∵△ABC周长13cm,AC=6cm,∴AB+BE+EC=7cm,即2DE+2EC=7cm,∴DE+EC=DC=3.5cm.【点评】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形外角性质的应用,主要考查学生综合运行性质进行推理和计算的能力,题目比较好,难度适中.22.(12分)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.理解概念(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”.概念应用(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC的等角分割线.(3)在△ABC中,∠A=42°,CD是△ABC的等角分割线,直接写出∠ACB的度数.【分析】(1)根据“等角三角形”的定义解答;(2)根据三角形内角和定理求出∠ACB,根据角平分线的定义得到∠ACD=∠DCB=∠ACB=40°,根据“等角三角形”的定义证明;(3)分△ACD是等腰三角形,DA=DC、DA=AC和△BCD是等腰三角形,DB=BC、DC=BD四种情况,根据等腰三角形的性质、三角形内角和定理计算.【解答】解:(1)△ABC与△ACD,△ABC与△BCD,△ACD与△BCD是“等角三角形”;(2)∵在△ABC中,∠A=40°,∠B=60°∴∠ACB=180°﹣∠A﹣∠B=80°∵CD为角平分线,∴∠ACD=∠DCB=∠ACB=40°,∴∠ACD=∠A,∠DCB=∠A,∴CD=DA,∵在△DBC中,∠DCB=40°,∠B=60°,∴∠BDC=180°﹣∠DCB﹣∠B=80°,∴∠BDC=∠ACB,∵CD=DA,∠BDC=∠ACB,∠DCB=∠A,∠B=∠B,∴CD为△ABC的等角分割线;(3)当△ACD是等腰三角形,DA=DC时,∠ACD=∠A=42°,∴∠ACB=∠BDC=42°+42°=84°,当△ACD是等腰三角形,DA=AC时,∠ACD=∠ADC=69°,∠BCD=∠A=42°,∴∠ACB=69°+42°=111°,当△BCD是等腰三角形,DC=BD时,∠ACD=∠BCD=∠B=46°,∴∠ACB=92°,当△BCD是等腰三角形,DB=BC时,∠BDC=∠BCD,设∠BDC=∠BCD=x,则∠B=180°﹣2x,则∠ACD=∠B=180°﹣2x,由题意得,180°﹣2x+42°=x,解得,x=74°,∴∠ACD=180°﹣2x=32°,∴∠ACB=106°,∴∠ACB的度数为111°或84°或106°或92°.【点评】本题“等角三角形”的定义、等腰三角形的性质、三角形内角和定理,灵活运用分情况讨论思想是解题的关键.- 21 -。
2017~2018武汉市江岸区八年级上册期中数学试卷和答案一、选择题(每小题3分,共30分)下列各题中均有4个答案,其中有且只有一个正确,请在答题卡上将正确答案的字母代号一、选择题(每小题3分,共30分)下列各题中均有4个答案,其中有且只有一个正确,请在答题卡上将正确答案的字母代号涂黑一、选择题(每小题3分,共30分)1、下列几何图形不一定是轴对称图形的是()A.线段B.角C.三角形D.长方形2、下列长度的三条线段能组成三角形的是()A.1、2、3、B.4、5、10、C.5、6、7、D.5、8、15、3、在△ABC内确定一点到三边的距离相等,则这一点在△ABC的()A.两个内角的平分线的交点处B.两边高线的交点处C.肉边中线的交点处D.两边的垂直平分线的交点处4、若一个多边形的每一个处角都等于45°,则这个多边形的边数是()A.7、B.8、C.9、D.10、5、平面直角坐标系中点(-2,1)关于y轴对称的点的坐标为()A.(-2,-1)B.(2,1)C.(-1,2)D.(1,-2)6、一定能确定△ABC≌△DEF的条件是()A.∠A=∠D,AB=DE,∠B=∠EB.∠A=∠E,AB=EF,∠B=∠DC.∠A=∠D,AB=DE,BC=EFD.∠A=∠D,∠C=∠F,∠B=∠E7、如图,在△ABC中,点D是边AB、AC的垂直平分线的交点,已知∠A=80°则∠BDC=()A.80°B.100°C.150°D.160°8、奖矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图1);再沿过点E的直线折叠,使点D落在BE上的点D’处,折痕为EG(如图2);再展平纸片(如图3)则图3中∠α=()A.20°B.22.5°C.25.5°D.30°9、图中有三个正方形;正方形的边长为6,利用轴对称的相关知识,得到阴影部分有的面积为()A.16、B.17、C.18、D.20、10、如图,在3G3的正方形网络中,与△ABC关于某条直线对称的格点三角形(顶点在格线交点的三角形)共有()个A.5、B.6、C.7、D.8、二、填空题(每小题3分,共18分)11、五边形有条对角线12、如图,G= .13、图中有个三角形。
2017-2018学年湖北省武汉市汉阳区八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3.00分)下列“表情图”中,属于轴对称图形的是()A.B.C.D.【解答】解:A不属于轴对称图形,故错误;B不属于轴对称图形,故错误;C不属于轴对称图形,故错误;D属于轴对称图形,故正确;故选:D.2.(3.00分)下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.【解答】解:线段BE是△ABC的高的图是选项D.故选:D.3.(3.00分)下列长度的三条线段能组成三角形的是()A.1,2,3 B.1,,3 C.3,4,8 D.4,5,6【解答】解:A、1+2=3,不能组成三角形,故本选项错误;B、1+<3,不能组成三角形,故本选项错误;C、3+4<8,不能组成三角形,故本选项错误;D、4+5>6,能组成三角形,故本选项正确.故选:D.4.(3.00分)一定能确定△ABC≌△DEF的条件是()A.∠A=∠D,AB=DE,∠B=∠E B.∠A=∠E,AB=EF,∠B=∠DC.AB=DE,BC=EF,∠A=∠D D.∠A=∠D,∠B=∠E,∠C=∠F【解答】解:A、根据ASA即可推出△ABC≌△DEF,故本选项正确;B、根据∠A=∠E,∠B=∠D,AB=DE才能推出△ABC≌△DEF,故本选项错误;C、根据AB=DE,BC=EF,∠B=∠E才能推出△ABC≌△DEF,故本选项错误;D、根据AAA不能推出△ABC≌△DEF,故本选项错误;故选:A.5.(3.00分)如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()A.SSS B.SAS C.ASA D.AAS【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.6.(3.00分)已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或17【解答】解:①6是腰长时,三角形的三边分别为6、6、5,能组成三角形,周长=6+6+5=17;②6是底边时,三角形的三边分别为6、5、5,能组成三角形,周长=6+5+5=16.综上所述,三角形的周长为16或17.故选:D.7.(3.00分)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD 交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40°B.45°C.60°D.70°【解答】解:∵AE∥BD,∴∠CBD=∠E=35°,∵BD平分∠ABC,∴∠CBA=70°,∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选:A.8.(3.00分)如图,在△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E点,若△ABC与△EBC的周长分别是40,24,则AB为()A.8 B.12 C.16 D.20【解答】解:∵DE是AB的垂直平分线,∴AE=BE;∵△ABC的周长=AB+AC+BC,△EBC的周长=BE+EC+BC=AE+EC+BC=AC+BC,∴△ABC的周长﹣△EBC的周长=AB,∴AB=40﹣24=16.故选:C.9.(3.00分)如图,四边形ABCD是直角梯形,AB∥CD,AD⊥AB,点P是腰AD 上的一个动点,要使PC+PB最小,则点P应该满足()A.PB=PC B.PA=PD C.∠BPC=90°D.∠APB=∠DPC【解答】解:如图,作点C关于AD的对称点E,连接BE交AD于P,连接CP.根据轴对称的性质,得∠DPC=∠EPD,根据对顶角相等知∠APB=∠EPD,所以∠APB=∠DPC.故选:D.。
2018年武汉期中考试八年级数学试题一、选择题1.如图所示,图中不是轴对称图形的是()A B C D2.下列各组线段中能围城三角形的是()A.2cm,4cm,6cmB.8cm,4cm,6cmC.14cm,7cm,6cmD.2cm,3cm,6cm3.已知△ABC的三个内角∠A,∠B,∠C满足关系式∠B+∠C=3∠A,则此三角()A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形4.工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB是一个任意角,在边OA,OB上分别取OD=OE,移动角尺,使角尺两边相同的刻度分别与D,E重合,这时过角尺顶点P的射线OP就是∠AOB的平分线.你认为工人师傅在此过程中用到的三角形全等的判定方法是这种作法的道理是( )A.SASB.ASAC.AASD.SSS5.如图,点P是AB上任意一点,∠ABC=∠ABD,还应补充一个条件,才能推出△APC≌△APD、从下列条件中补充一个条件,不一定能推出△APC≌△APD的是()A、BC=BDB、AC=ADC、∠ACB=∠ADBD、∠CAB=∠DAB6.如图,在△PAB中,∠A=∠B,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°7.一个正多边形的每一个外角都等于30°,则这个多边形的边数是()A.6B.8C.9D.128.如图,直线l1,l2,l3表示三条公路.现要建造一个中转站P,使P到三条公路的距离都相等,则中转站P 可选择的点有()A.四处B.三处C.二处D.一处9.如图,已知△ABC中, AB=AC=12厘米, ∠B=∠C,BC=8厘米,点 D为AB的中点.如果点P在线段BC上以v厘米/秒的速度由B点向C点运动,同时,Q点在线段CA上由C点向A点运动. 若点Q的运动速度为3厘米/秒。
2018-2019学年湖北省武汉市八年级(上)期中数学模拟试卷一、选择题(本大题共6小题,每小题3分,共12分)1.以下轴对称图形中,对称轴条数最少的是()A.B.C.D.2.下列长度的三条线段能组成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.5,6,73.根据下列已知条件,能够画出唯一△ABC的是()A.AB=6,BC=5,∠A=50°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8D.∠A=40°,∠B=50°,∠C=90°4.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.40°B.30°C.50°D.60°5.如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A.5B.4C.10D.86.规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:①AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1;②AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1;③AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1;④AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1.其中能判定四边形ABCD和四边形A1B1C1D1全等有()个.A.1B.2C.3D.4二、填空题(本大题共10小题,每空3分,共30分)7.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若AD=13,AC=12,则点D 到AB的距离为.8.如图,在△ABC中,∠ABC、∠ACB的角平分线交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.若MN=5cm,CN=2cm,则BM=cm.9.如图,在△ABC中,AB=4,AC=3,BC=5,AD是△ABC的角平分线,DE⊥AB于点E,则DE长是.10.如图,一块形如“Z”字形的铁皮,每个角都是直角,且AB=BC=EF=GF=1,CD=DE=GH =AH=3,现将铁片裁剪并拼接成一个和它等面积的正方形,则正方形的边长是.11.如图,△ABC,△ADE均是等腰直角三角形,BC与DE相交于F点,若AC=AE=1,则四边形AEFC的周长为.12.如图,△ABC是边长为6的等边三角形,D是BC上一点,BD=2,DE⊥BC交AB于点E,则AE=.13.如图,在△ABC中,∠C=90°,AB的垂直平分线分别交AB、AC于点D、E,AE=5,AD=4,线段CE的长为.14.已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE=.15.下面是“经过已知直线外一点作这条直线的垂线“的尺规作图过程.16.如图,在△ABC 中,∠C =90°,∠A =34°,D ,E 分别为AB ,AC 上一点,将△BCD ,△ADE 沿CD ,DE 翻折,点A ,B 恰好重合于点P 处,则∠ACP = .三、解答题(共6小题,满分52分)17.(9分)(1)请在图中画出三个以AB 为腰的等腰△ABC .(要求:1.锐角三角形,直角三角形,钝角三角形各画一个;2.点C 在格点上.)(2)如图,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,AC =BD .求证BC =AD .18.(8分)如图,甲、乙两艘轮船同时从港口O 出发,甲轮船向南偏东45°方向航行,乙轮船以每小时15海里的速度向南偏西45°方向航行,2小时后两艘轮船之间的距离为50海里,问甲轮船平均每小时航行多少海里?19.(8分)如图,正方形网格中每个小正方形边长都是1.(1)画出△ABC关于直线l对称的图形△A1B1C1;(2)在直线l上找一点P,使PB=PC;(要求在直线l上标出点P的位置)(3)连接PA、PC,计算四边形PABC的面积.20.(7分)如图,在长方形ABCD中,AB=8,AD=10,点E为BC上一点,将△ABE沿AE折叠,使点B落在长方形内点F处,且DF=6,求BE的长.21.(8分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.22.(12分)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.理解概念(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”.概念应用(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC的等角分割线.(3)在△ABC中,∠A=42°,CD是△ABC的等角分割线,直接写出∠ACB的度数.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共12分)1.以下轴对称图形中,对称轴条数最少的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、有四条对称轴,B、有六条对称轴,C、有四条对称轴,D、有二条对称轴,综上所述,对称轴最少的是D选项.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列长度的三条线段能组成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.5,6,7【分析】根据勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可.【解答】解:A、12+22≠32,不能组成直角三角形,故此选项错误;B、22+32≠42,不能组成直角三角形,故此选项错误;C、32+42=52,能组成直角三角形,故此选项正确;D、52+62≠72,不能组成直角三角形,故此选项错误;故选:C.【点评】此题主要考查了勾股定理的逆定理,要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.3.根据下列已知条件,能够画出唯一△ABC的是()A.AB=6,BC=5,∠A=50°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8D.∠A=40°,∠B=50°,∠C=90°【分析】根据全等三角形的判定方法可知只有C能画出唯一三角形.【解答】解:A、已知AB、BC和BC的对角,不能画出唯一三角形,故本选项错误;B、∵AB+BC=5+6=11<AC,∴不能画出△ABC;故本选项错误;C、已知两角和夹边,能画出唯一△ABC,故本选项正确;D、根据∠A=40°,∠B=50°,∠C=90°不能画出唯一三角形,故本选项错误;故选:C.【点评】本题考查了全等三角形的判定方法;一般三角形全等的判定方法有SSS、SAS、ASA、AAS,熟练掌握全等三角形的判定方法是解题的关键.4.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.40°B.30°C.50°D.60°【分析】根据邻补角的定义求出∠AED,再根据全等三角形对应边相等可得AD=AE,然后利用等腰三角形的两底角相等列式计算即可得解.【解答】解:∵∠AEC=110°,∴∠AED=180°﹣∠AEC=180°﹣110°=70°,∵△ABD≌△ACE,∴AD=AE,∴∠AED=∠ADE,∴∠DAE=180°﹣2×70°=180°﹣140°=40°.故选:A.【点评】本题考查了全等三角形的性质,等腰三角形的判定与性质,熟记性质并准确识图是解题的关键.5.如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A.5B.4C.10D.8【分析】根据等腰三角形的性质得到AD⊥BC,BD=CD,根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD==4,∴BC=2BD=8,故选:D.【点评】本题考查了等腰三角形的性质以及勾股定理的知识,熟练掌握等腰三角形的性质是解题的关键.6.规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:①AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1;②AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1;③AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1;④AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1.其中能判定四边形ABCD和四边形A1B1C1D1全等有()个.A.1B.2C.3D.4【分析】根据条件能证明△ABC≌△A1B1C1,和△AC D≌△A1B1C1,的条件.【解答】解:有一组邻边和三个角对应相等的两个四边形全等,故①②③正确.故选:C.【点评】本题考查了三角形全等的判定与性质,解题的关键是注意:多边形的全等可以通过作辅助线转化为证明三角形全等的问题.二、填空题(本大题共10小题,每空3分,共30分)7.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若AD=13,AC=12,则点D 到AB的距离为5.【分析】根据勾股定理求CD,根据角平分线性质得出DE=CD,即可得出答案.【解答】解:在Rt△ACD中,AD=13,AC=12,由勾股定理得:CD=5,过D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=5,即点D到AB的距离为5,故答案为:5.【点评】本题考查了角平分线性质和勾股定理,能熟记角平分线性质的内容是解此题的关键,注意:在角的内部,角平分线上的点到角两边的距离相等.8.如图,在△ABC中,∠ABC、∠ACB的角平分线交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.若MN=5cm,CN=2cm,则BM=3cm.【分析】只要证明MN=BM+CN即可解决问题;【解答】解:∵∠ABC、∠ACB的平分线相交于点O,∴∠MBO=∠OBC,∠OCN=∠OCB,∵MN∥BC,∴∠OBC=∠MOB,∠NOC=∠OCB,∴∠MBO=∠MOB,∠NOC=∠OCN,∴BM=MO,ON=CN,∴MN=MO+ON,即MN=BM+CN,∵MN=5cm,CN=2cm,∴BM=5﹣2=3cm,故答案为3cm.【点评】此题考查学生对等腰三角形的判定与性质和平行线性质的理解与掌握.此题关键是证明△BMO,△CNO是等腰三角形.9.如图,在△ABC中,AB=4,AC=3,BC=5,AD是△ABC的角平分线,DE⊥AB于点E,则DE长是.【分析】由△ABC的三边长,可证明△ABC为直角三角形,作DH⊥AC于H,利用角平分线的性质得DH=DE,根据三角形的面积公式得×DE•AB+×DH•AC=AB•AC,于是可求出DE的值.【解答】解:作DH⊥AC于H,∵AD是△ABC的角平分线,DE⊥AB于点E,∴DH=DE,∵AB=4,AC=3,BC=5,∴△ABC为直角三角形,∴DE •AB +DH •AC =AB •AC ,∴DH =DE =,故答案为:【点评】本题考查了勾股定理的逆定理运用以及角平分线的性质,能够证明ABC 为直角三角形,得到DE •AB +DH •AC =AB •AC 是解题的关键.10.如图,一块形如“Z ”字形的铁皮,每个角都是直角,且AB =BC =EF =GF =1,CD =DE =GH=AH =3,现将铁片裁剪并拼接成一个和它等面积的正方形,则正方形的边长是 .【分析】延长BC 交HG 于点M ,延长HG 交DE 于点N ,先计算出不规则铁皮的面积,再计算面积相等的正方形的面积.【解答】解:如图所示,延长BC 交HG 于点M ,延长HG 交DE 于点N ,则四边形ABMH 、CDNM 为矩形,四边形GFEN 为正方形.所以“Z ”字形的铁皮的面积=S 矩形ABMH +S 矩形CDNM +S 正方形GFEN=AH •AB +CD •DN +GF •EF=3×1+3×2+1×1=10.∴正方形的边长=故答案为:.【点评】本题考查了矩形、正方形的判定和面积及算术平方根.解决本题的关键是利用割补的办法计算出不规则铁皮的面积.11.如图,△ABC,△ADE均是等腰直角三角形,BC与DE相交于F点,若AC=AE=1,则四边形AEFC的周长为2.【分析】根据等腰直角三角形的性质和等腰三角形的判定得到BE=EF=CF=CD,于是得到四边形AEFC的周长=AB+AC.【解答】解:∵△ABC,△ADE均是等腰直角三角形,∴∠B=∠D=45°,∠BEF=∠DCF=90°,∴△BEF,△DCF均是等腰直角三角形,∴BE=EF=CF=CD,∴四边形AEFC的周长=AE+EF+AC+CD=AB+AC,∵AC=AE=1,∴AB=AD=,∴四边形AEFC的周长=AE+EF+AC+CD=AB+AC=2,故答案为:2.【点评】本题考查了等腰直角三角形的性质,熟练掌握等腰直角三角形的判定与性质是解题的关键.12.如图,△ABC是边长为6的等边三角形,D是BC上一点,BD=2,DE⊥BC交AB于点E,则AE=2.【分析】在Rt△BED中,求出BE即可解决问题;【解答】解:∵△ABC是等边三角形,∴∠B=60°,∵DE⊥BC,∴∠EDB=90°,∵BD=2,∴EB=2BD=4,∴AE=AB﹣BE=6﹣4=2,故答案为2【点评】本题考查等边三角形的性质、直角三角形的30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.如图,在△ABC中,∠C=90°,AB的垂直平分线分别交AB、AC于点D、E,AE=5,AD=4,线段CE的长为 1.4.【分析】由AB的垂直平分线DE交AC于点D,垂足为E,根据线段垂直平分线的性质,求得AB,根据相似三角形的性质得到结论.【解答】解:∵DE是AB的垂直平分线,∴AB=2AD=8,∠ADE=∠C=90°,∴△ADE∽△ACB,∴,∴AC=6.4,∴CE=1.4,故答案为:1.4.【点评】此题考查了线段垂直平分线的性质、相似三角形的判定和性质,熟练掌握的线段垂直平分线性质是解决问题的关键.14.已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE=.【分析】根据等腰三角形和三角形外角性质求出BD=DE,求出BC,在Rt△BDC中,由勾股定理求出BD即可.【解答】解:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC,∵BD为中线,∴∠DBC=∠ABC=30°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB,∴∠E=30°=∠DBC,∴BD=DE,∵BD是AC中线,CD=1,∴AD=DC=1,∵△ABC是等边三角形,∴BC=AC=1+1=2,BD⊥AC,在Rt△BDC中,由勾股定理得:BD==,即DE=BD=,故答案为:.【点评】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD和求出BD的长.15.下面是“经过已知直线外一点作这条直线的垂线“的尺规作图过程.【分析】由AP =AQ 、BP =BQ,依据到线段两端点距离相等的点在线段的垂直平分线上知点A 、B 在线段PQ 的中垂线上,据此可得PQ ⊥l .【解答】解:由作图可知AP =AQ 、BP =BQ ,所以点A 、B 在线段PQ 的中垂线上(到线段两端点距离相等的点在线段的垂直平分线上), 所以PQ ⊥l ,故答案为:到线段两端点距离相等的点在线段的垂直平分线上.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握线段中垂线的性质及过直线外一点作已知直线的垂线的尺规作图.16.如图,在△ABC 中,∠C =90°,∠A =34°,D ,E 分别为AB ,AC 上一点,将△BCD ,△ADE 沿CD ,DE 翻折,点A ,B 恰好重合于点P 处,则∠ACP = 22° .【分析】根据折叠的性质即可得到AD =PD =BD ,可得CD =AB =AD =BD ,根据∠ACD =∠A =34°,∠BCD =∠B =56°,即可得出∠BCP =2∠BCD =112°,即可得出∠ACP =112°﹣90°=22°.【解答】解:由折叠可得,AD =PD =BD ,∴D 是AB 的中点,∴CD=AB=AD=BD,∴∠ACD=∠A=34°,∠BCD=∠B=56°,∴∠BCP=2∠BCD=112°,∴∠ACP=112°﹣90°=22°,故答案为:22°.【点评】本题主要考查了折叠的性质以及三角形内角和定理的运用,解题时注意:三角形内角和是180°.三、解答题(共6小题,满分52分)17.(9分)(1)请在图中画出三个以AB为腰的等腰△ABC.(要求:1.锐角三角形,直角三角形,钝角三角形各画一个;2.点C在格点上.)(2)如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证BC=AD.【分析】(1)根据等腰三角形、直角三角形、锐角三角形的特点和网格特点,再根据勾股定理画出即可;(2)根据直角三角形的全等判定证明即可.【解答】解:(1)如图所示:(2)证明:∵AC⊥BC,BD⊥AD,在Rt△ADB与Rt△BCA中,,∴Rt△ADB≌Rt△BCA(HL),∴BC=AD.【点评】此题考查了等腰三角形的性质,全等三角形的判定和性质,关键是根据直角三角形的全等判定即可.18.(8分)如图,甲、乙两艘轮船同时从港口O出发,甲轮船向南偏东45°方向航行,乙轮船以每小时15海里的速度向南偏西45°方向航行,2小时后两艘轮船之间的距离为50海里,问甲轮船平均每小时航行多少海里?【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,根据勾股定理解答即可.【解答】解:根据题意知∠AOB=90°,OB=2×15=30海里,AB=50海里,由勾股定理得,OA====40海里,则甲轮船每小时航行=20海里.答:甲轮船每小时航行20海里.【点评】本题考查了勾股定理的应用,熟练运用勾股定理进行计算,基础知识,比较简单.19.(8分)如图,正方形网格中每个小正方形边长都是1.(1)画出△ABC关于直线l对称的图形△A1B1C1;(2)在直线l上找一点P,使PB=PC;(要求在直线l上标出点P的位置)(3)连接PA、PC,计算四边形PABC的面积.【分析】(1)根据网格结构找出点A 、B 、C 对应点A 1、B 1、C 1的位置,然后顺次连接即可; (2)过BC 中点D 作DP ⊥BC 交直线l 于点P ,使得PB =PC ;(3)S 四边形PABC =S △ABC +S △APC ,代入数据求解即可.【解答】解:(1)所作图形如图所示:(2)如图所示,过BC 中点D 作DP ⊥BC 交直线l 于点P ,此时PB =PC ;(3)S 四边形PABC =S △ABC +S △APC=×5×2+×5×1=.【点评】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出点A 、B 、C 的对应点,然后顺次连接.20.(7分)如图,在长方形ABCD中,AB=8,AD=10,点E为BC上一点,将△ABE沿AE折叠,使点B落在长方形内点F处,且DF=6,求BE的长.【分析】由折叠的性质可知BE=EF,设BE=EF=x,然后再依据勾股定理的逆定理可证明△ADF 为直角三角形,则E、D、F在一条直线上,最后,在Rt△CED中,依据勾股定理列方程求解即可.【解答】解:∵将△ABE沿AE折叠,使点B落在长方形内点F处,∴∠AFE=∠B=90°,AB=AF=8,BE=FE.在△ADF中,∵AF2+DF2=62+82=100=102=AD2,∴△ADF是直角三角形,∠AFD=90°.∴D,F,E在一条直线上.设BE=x,则EF=x,DE=6+x,EC=10﹣x,在Rt△DCE中,∠C=90°,∴CE2+CD2=DE2,即(10﹣x)2+82=(6+x)2.∴x=4.∴BE=4.【点评】本题主要考查的是翻折的性质、勾股定理的逆定理、勾股定理的定理,依据勾股定理列出关于x的方程是解题的关键.21.(8分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.【分析】(1)根据线段垂直平分线和等腰三角形性质得出AB=AE=CE,求出∠AEB和∠C=∠EAC,即可得出答案;(2)根据已知能推出2DE+2EC=7cm,即可得出答案.【解答】解:(1)∵AD垂直平分BE,EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴∠C=∠AED=35°;(2)∵△ABC周长13cm,AC=6cm,∴AB+BE+EC=7cm,即2DE+2EC=7cm,∴DE+EC=DC=3.5cm.【点评】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形外角性质的应用,主要考查学生综合运行性质进行推理和计算的能力,题目比较好,难度适中.22.(12分)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.理解概念(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”.概念应用(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC的等角分割线.(3)在△ABC中,∠A=42°,CD是△ABC的等角分割线,直接写出∠ACB的度数.【分析】(1)根据“等角三角形”的定义解答;(2)根据三角形内角和定理求出∠ACB,根据角平分线的定义得到∠ACD=∠DCB=∠ACB=40°,根据“等角三角形”的定义证明;(3)分△ACD是等腰三角形,DA=DC、DA=AC和△BCD是等腰三角形,DB=BC、DC=BD四种情况,根据等腰三角形的性质、三角形内角和定理计算.【解答】解:(1)△ABC与△ACD,△ABC与△BCD,△ACD与△BCD是“等角三角形”;(2)∵在△ABC中,∠A=40°,∠B=60°∴∠ACB=180°﹣∠A﹣∠B=80°∵CD为角平分线,∴∠ACD=∠DCB=∠ACB=40°,∴∠ACD=∠A,∠DCB=∠A,∴CD=DA,∵在△DBC中,∠DCB=40°,∠B=60°,∴∠BDC=180°﹣∠DCB﹣∠B=80°,∴∠BDC=∠ACB,∵CD=DA,∠BDC=∠ACB,∠DCB=∠A,∠B=∠B,∴CD为△ABC的等角分割线;(3)当△ACD是等腰三角形,DA=DC时,∠ACD=∠A=42°,∴∠ACB=∠BDC=42°+42°=84°,当△ACD是等腰三角形,DA=AC时,∠ACD=∠ADC=69°,∠BCD=∠A=42°,∴∠ACB=69°+42°=111°,当△BCD是等腰三角形,DC=BD时,∠ACD=∠BCD=∠B=46°,∴∠ACB=92°,当△BCD是等腰三角形,DB=BC时,∠BDC=∠BCD,设∠BDC=∠BCD=x,则∠B=180°﹣2x,则∠ACD=∠B=180°﹣2x,由题意得,180°﹣2x+42°=x,解得,x=74°,∴∠ACD=180°﹣2x=32°,∴∠ACB=106°,∴∠ACB的度数为111°或84°或106°或92°.【点评】本题“等角三角形”的定义、等腰三角形的性质、三角形内角和定理,灵活运用分情况讨论思想是解题的关键.。
2017-2018学年湖北省武汉市江岸区八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.3.(3分)已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.124.(3分)下列各组条件中,能够判定△ABC≌△DEF的是()A.∠A=∠D,∠B=∠E,∠C=∠F B.AB=DE,BC=EF,∠A=∠DC.∠B=∠E=90°,BC=EF,AC=DF D.∠A=∠D,AB=DF,∠B=∠E5.(3分)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SSS B.ASA C.AAS D.SAS6.(3分)如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A.25°B.45°C.30°D.20°7.(3分)如图,△ABC中,∠A=50°,BD,CE是∠ABC,∠ACB的平分线,则∠BOC的度数为()A.105°B.115°C.125° D.135°8.(3分)如图,在△ADE中,线段AE,AD的中垂线分别交直线DE于B和C 两点,∠B=α,∠C=β,则∠DAE的度数分别为()A.B.C.D.9.(3分)如图,△ABC中,CE平分∠ACB的外角,D为CE上一点,若BC=a,AC=b,DB=m,AD=n,则m﹣a与b﹣n的大小关系是()A.m﹣a>b﹣n B.m﹣a<b﹣nC.m﹣a=b﹣n D.m﹣a>b﹣n或m﹣a<b﹣n10.(3分)如图,∠AOB=30°,M,N分别是边OA,OB上的定点,P,Q分别是边OB,OA上的动点,记∠OPM=α,∠OQN=β,当MP+PQ+QN最小时,则关于α,β的数量关系正确的是()A.β﹣α=60°B.β+α=210°C.β﹣2α=30°D.β+2α=240°二、填空题(每题3分,共18分)11.(3分)已知点P关于x轴的对称点P1的坐标是(1,2),则点P的坐标是.12.(3分)若正多边形的内角和是外角和的4倍,则正多边形的边数为.13.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AB交边BC于点D,若CD=4,AB=15,则△ABD 的面积是.14.(3分)如图,在平面直角坐标系中,△ABC是以C为直角顶点的直角三角形,且AC=BC,点A的坐标为(﹣1,0),点B的坐标为(0,4),则点C的坐标为.15.(3分)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为(3,0),则第17次碰到长方形边上的点的坐标为.16.(3分)如图,△ABC是直角三角形,记BC=a,分别以直角三角形的三边向外作正方形ABDE,正方形ACFG,正方形BCMN,过点C作BA边上的高CH并延长交正方形ABDE的边DE于K,则四边形BDKH的面积为.(用含a的式子表示)三、解答题(共8道小题,共72分)17.(8分)在△ABC中,∠B=∠A+10°,∠C=30°,求△ABC各内角的度数.18.(8分)如图:AC⊥BC,BD⊥AD,BD与AC交于E,AD=BC,求证:BD=AC.19.(8分)如图,已知点E,C在线段BF上,且BE=CF,AB∥DE,AC∥DF,AC=S四边形OCFD.与DE相交于点O,求证:S四边形ABEO20.(8分)如图,点E在AB上,△ABC≌△DEC,求证:CE平分∠BED.21.(8分)(1)如图1,已知△ABC,请画出△ABC关于直线AC对称的三角形.(2)如图2,若△ABC与△DEF关于直线l对称,请作出直线l(请保留作图痕迹)(3)如图3,在矩形ABCD中,已知点E,F分别在AD和AB上,请在边BC上作出点G,在边CD作出点H,使得四边形EFGH的周长最小.22.(10分)如图,四边形ABCD为正方形(各边相等,各内角为直角),E是BC 边上一点,F是CD上的一点.(1)若△CFE的周长等于正方形ABCD的周长的一半,求证:∠EAF=45°;(2)在(1)的条件下,若DF=2,CF=4,CE=3,求△AEF的面积.23.(10分)如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连接AE,作AF⊥AE且AF=AE.(1)如图1,过F点作FD⊥AC交AC于D点,求证:EC+CD=DF;(2)如图2,连接BF交AC于G点,若=3,求证:E点为BC中点;(3)当E点在射线CB上,连接BF与直线AC交于G点,若=,则=(直接写出结果)24.(12分)如图1,点A和点B分别在y轴正半轴和x轴负半轴上,且OA=OB,点C和点D分别在第四象限和第一象限,且OC⊥OD,OC=OD,点D的坐标为(m,n),且满足(m﹣2n)2+|n﹣2|=0.(1)求点D的坐标;(2)求∠AKO的度数;(3)如图2,点P,Q分别在y轴正半轴和x轴负半轴上,且OP=OQ,直线ON ⊥BP交AB于点N,MN⊥AQ交BP的延长线于点M,判断ON,MN,BM的数量关系并证明.2017-2018学年湖北省武汉市江岸区八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.2.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【解答】解:为△ABC中BC边上的高的是A选项.故选:A.3.(3分)已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.12【解答】解:根据三角形的三边关系,得第三边大于:8﹣3=5,而小于:3+8=11.则此三角形的第三边可能是:10.故选:B.4.(3分)下列各组条件中,能够判定△ABC≌△DEF的是()A.∠A=∠D,∠B=∠E,∠C=∠F B.AB=DE,BC=EF,∠A=∠DC.∠B=∠E=90°,BC=EF,AC=DF D.∠A=∠D,AB=DF,∠B=∠E【解答】解:如图:A、不符合全等三角形的判定定理,即不能推出△ABC≌△DEF,故本选项错误;B、不符合全等三角形的判定定理,即不能推出△ABC≌△DEF,故本选项错误;C、符合直角三角形全等的判定定理HL,即能推出△ABC≌△DEF,故本选项正确;D、不符合全等三角形的判定定理,即不能推出△ABC≌△DEF,故本选项错误;故选:C.5.(3分)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SSS B.ASA C.AAS D.SAS【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:A.6.(3分)如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A.25°B.45°C.30°D.20°【解答】解:∠C=∠C'=30°,则△ABC中,∠B=180°﹣105°﹣30°=45°.故选:B.7.(3分)如图,△ABC中,∠A=50°,BD,CE是∠ABC,∠ACB的平分线,则∠BOC的度数为()A.105°B.115°C.125° D.135°【解答】解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=130°,∵BO、CO分别是△ABC的角∠ABC、∠ACB的平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣65°=115°,故选:B.8.(3分)如图,在△ADE中,线段AE,AD的中垂线分别交直线DE于B和C 两点,∠B=α,∠C=β,则∠DAE的度数分别为()A.B.C.D.【解答】解:∵∠B=α,∠C=β,∴∠BAC=180°﹣α﹣β,∵线段AE,AD的中垂线分别交直线DE于B和C两点,∴BA=BE,DA=DC,∴∠BEA=,∠CDA=,∴∠DAE=180°﹣﹣=,故选:A.9.(3分)如图,△ABC中,CE平分∠ACB的外角,D为CE上一点,若BC=a,AC=b,DB=m,AD=n,则m﹣a与b﹣n的大小关系是()A.m﹣a>b﹣n B.m﹣a<b﹣nC.m﹣a=b﹣n D.m﹣a>b﹣n或m﹣a<b﹣n【解答】解:在CM上截取CG=CA,连接DG.∵CD=CD,∠ACD=∠DCG,AC=CG,∴△ACD≌△GCD,∴AD=DG=n,在△BDG中,BD=m,BG=BC+CG=BC+AC=a+b,∴m+n>a+b,∴m﹣a>b﹣n.故选:A.10.(3分)如图,∠AOB=30°,M,N分别是边OA,OB上的定点,P,Q分别是边OB,OA上的动点,记∠OPM=α,∠OQN=β,当MP+PQ+QN最小时,则关于α,β的数量关系正确的是()A.β﹣α=60°B.β+α=210°C.β﹣2α=30°D.β+2α=240°【解答】解:如图,作M关于OB的对称点M′,N关于OA的对称点N′,连接M′N′交OA于Q,交OB于P,则MP+PQ+QN最小,易知∠OPM=∠OPM′=∠NPQ,∠OQP=∠AQN′=∠AQN,∵∠OQN=180°﹣30°﹣∠ONQ,∠OPM=∠NPQ=30°+∠OQP,∠OQP=∠AQN=30°+∠ONQ,∴α+β=180°﹣30°﹣∠ONQ+30°+30°+∠ONQ=210°.故选:B.二、填空题(每题3分,共18分)11.(3分)已知点P关于x轴的对称点P1的坐标是(1,2),则点P的坐标是(1,﹣2).【解答】解:点P关于x轴的对称点P1的坐标是(1,2),则点P的坐标是(1,﹣2).故答案为:(1,﹣2).12.(3分)若正多边形的内角和是外角和的4倍,则正多边形的边数为10.【解答】解:设这个多边形的边数是n,根据题意得,(n﹣2)•180°=4×360°,解得n=10,答:这个多边形的边数为10,故答案为:10.13.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AB交边BC于点D,若CD=4,AB=15,则△ABD 的面积是30.【解答】解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=30,故答案为:30.14.(3分)如图,在平面直角坐标系中,△ABC是以C为直角顶点的直角三角形,且AC=BC,点A的坐标为(﹣1,0),点B的坐标为(0,4),则点C的坐标为(﹣,).【解答】解:作CE⊥x轴于E,CF⊥y轴于F,则∠ECF=90°,又∠ACB=90°,∴∠ECA=∠FCB,在△ECA和△FCB中,,∴△ECA≌△FCB,∴CE=CF,AE=BF,设AE=BF=x,则x+1=4﹣x,解得,x=,∴CE=CF=,∴点C的坐标为(﹣,),故答案为:(﹣,).15.(3分)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为(3,0),则第17次碰到长方形边上的点的坐标为(1,4).【解答】解:根据题意,如下图示:根据图形观察可知,每碰撞6次回到始点.∵17÷6=2…5,∴第17次碰到长方形边上的点的坐标为(1,4),故答案为(1,4).16.(3分)如图,△ABC是直角三角形,记BC=a,分别以直角三角形的三边向外作正方形ABDE,正方形ACFG,正方形BCMN,过点C作BA边上的高CH并延长交正方形ABDE的边DE于K,则四边形BDKH的面积为a2.(用含a的式子表示)【解答】解:∵BC⊥AC,CH⊥BA,∴BC2=BH•BA,即BH•BA=a2,∵四边形ABDE是正方形,∴BD=BA,∴四边形BDKH的面积=BH•BD=BH•BA=a2,故答案为:a2.三、解答题(共8道小题,共72分)17.(8分)在△ABC中,∠B=∠A+10°,∠C=30°,求△ABC各内角的度数.【解答】解:∵在△ABC中,∠B=∠A+10°,∠C=30°,∴∠B+∠A=150°,∴解得:,故∠A=70°,∠B=80°,∠C=30°.18.(8分)如图:AC⊥BC,BD⊥AD,BD与AC交于E,AD=BC,求证:BD=AC.【解答】证明:∵AC⊥AD,BC⊥BD,∴∠ADC=∠BCA=90°,在Rt△ABD和Rt△BAC中,,∴在Rt△ABD≌Rt△BAC(HL),∴BD=AC.19.(8分)如图,已知点E,C在线段BF上,且BE=CF,AB∥DE,AC∥DF,AC 与DE相交于点O,求证:S=S四边形OCFD.四边形ABEO【解答】证明:∵BE=CF,∴BE+CE=CF+CE即BC=EF.∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠C=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF,∴S△ABC与S DEF,∴S△ABC ﹣S△ECO=S DEF﹣S△ECO,∴S四边形ABEO=S四边形OCFD.20.(8分)如图,点E在AB上,△ABC≌△DEC,求证:CE平分∠BED.【解答】证明:∵△ABC≌△DEC,∴∠B=∠DEC,BC=EC,∴∠B=∠BEC,∴∠BEC=∠DEC,∴CE平分∠BED.21.(8分)(1)如图1,已知△ABC,请画出△ABC关于直线AC对称的三角形.(2)如图2,若△ABC与△DEF关于直线l对称,请作出直线l(请保留作图痕迹)(3)如图3,在矩形ABCD中,已知点E,F分别在AD和AB上,请在边BC上作出点G,在边CD作出点H,使得四边形EFGH的周长最小.【解答】解:(1)如图1,△AB′C即为所求;(2)如图2,直线l即为所求;(3)如图3,四边形EFGH即为所求.22.(10分)如图,四边形ABCD为正方形(各边相等,各内角为直角),E是BC 边上一点,F是CD上的一点.(1)若△CFE的周长等于正方形ABCD的周长的一半,求证:∠EAF=45°;(2)在(1)的条件下,若DF=2,CF=4,CE=3,求△AEF的面积.【解答】(1)证明:延长CF至G,使DG=BE,连接AG,如图所示:∵四边形ABCD是正方形,∴∠BAD=∠ABE=∠ADF=90°,AB=BC=CD=AD,∴∠ADG=90°,∵△CFE的周长等于正方形ABCD的周长的一半,∴CE+CF+EF=CD+BC,∴DF+BE=EF,∴DF+DG=EF,即GF=EF,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∴∠EAG=90°,在△AEF和△AGF中,,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=×90°=45°;(2)解:∵DF=2,CF=4,CE=3,∴AB=AD=CD=BC=2+4=6,BE=BC﹣CE=3,由(1)得:△AEF的面积=△AGF的面积=△ABE的面积+△ADF的面积=×6×3+×6×2=15.23.(10分)如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连接AE,作AF⊥AE且AF=AE.(1)如图1,过F点作FD⊥AC交AC于D点,求证:EC+CD=DF;(2)如图2,连接BF交AC于G点,若=3,求证:E点为BC中点;(3)当E点在射线CB上,连接BF与直线AC交于G点,若=,则=或(直接写出结果)【解答】证明:(1)如图1,∵∠FAD+∠CAE=90°,∠FAD+∠F=90°,∴∠CAE=∠F,在△ADF和△ECA中,,∴△ADF≌△ECA(AAS),∴AD=CD,FD=AC,∴CE+CD=AD+CD=AC=FD,即EC+CD=DF;证明:(2)如图2,过F点作FD⊥AC交AC于D点,∵△ADF≌△ECA,∴FD=AC=BC,在△FDG和△BCG中,,∴△FDG≌△BCG(AAS),∴GD=CG,∵=3,∴=2,∴=,∵AD=CE,AC=BC∴=,∴E点为BC中点;(3)过F作FD⊥AG的延长线交于点D,如图3,∵=,BC=AC,CE=CB+BE,∴=,由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,∴CG=GD,AD=CE,∴=,∴=,∴==,∴=.同理,当点E在线段BC上时,=.故答案为:或.24.(12分)如图1,点A和点B分别在y轴正半轴和x轴负半轴上,且OA=OB,点C和点D分别在第四象限和第一象限,且OC⊥OD,OC=OD,点D的坐标为(m,n),且满足(m﹣2n)2+|n﹣2|=0.(1)求点D的坐标;(2)求∠AKO的度数;(3)如图2,点P,Q分别在y轴正半轴和x轴负半轴上,且OP=OQ,直线ON ⊥BP交AB于点N,MN⊥AQ交BP的延长线于点M,判断ON,MN,BM的数量关系并证明.【解答】解:(1)∵(m﹣2n)2+|n﹣2|=0,又∵(m﹣2n)2≥0,|n﹣2|≥0,∴n=2,m=4,∴点D坐标为(4,2).(2)如图1中,作OE⊥BD于E,OF⊥AC于F.∵OA=OB,OD=OC,∠AOB=∠COD=90°,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴EO=OF(全等三角形对应边上的高相等),∴OK平分∠BKC,∴∠OBD=∠OAC,易证∠AKB=∠BOA=90°,∴∠OKE=45°,∴∠AKO=135°.(3)结论:BM=MN+ON.理由:如图2中,过点B作BH∥y轴交MN的延长线于H.∵OQ=OP ,OA=OA ,∠AOQ=∠BOP=90°, ∴△AOQ ≌△BOP , ∴∠OBP=∠OAQ , ∵∠OBA=∠OAB=45°, ∴∠ABP=∠BAP , ∵NM ⊥AQ ,BM ⊥ON ,∴∠ANM +∠BAQ=90°,∠BNO +∠ABP=90°, ∴∠ANM=∠BNO=∠HNB , ∵∠HBN=∠OBN=45°,BN=BN , ∴△BNH ≌△BNO , ∴HN=NO ,∠H=∠BON ,∵∠HBM +∠MBO=90°,∠BON +∠MBO=90°, ∴∠HBM=∠BON=∠H , ∴MH=MB ,∴BM=MN +NH=MN +ON .赠送初中数学几何模型【模型二】半角型:图形特征:AB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DFE-a1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa +b-aa45°ABE挖掘图形特征:x-aa-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.DE3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.A Array变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.F。
2018学年第一学期八年级期中考试数学试卷一、仔细选一选(本大题有10小题,每小题3分,共30分。
) 1.三根木条的长度如图,能组成三角形的是( ▲ )2.在下列各组图形中,是全等的图形是( ▲ )A. B. C. D. 3.把不等式x >2表示在数轴上,正确的是( ▲ )4. 下列命题属于真命题的是( ▲) A. 由a b >,得22a b -<-B. 由a b >,得22a b -<-C. 由a b>,得a b >D. 由a b >,得22a b >5.用直尺和圆规作线段的垂直平分线,下列作法正确的是2cm2cm 5cmA.2cm 2cm 4cmB.2cm 3cm 5cmC. 2cm 3cm 4cmD.A .B .C .D .B .D .C .6.若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角为( ▲ )A .50°B .80°C .50°或80°D .50°或65°7.如图,△ABC 内有一点D ,且DA =DB =DC ,若∠DAB =20°, ∠DAC =30°,则∠BDC 的大小是( ▲ ) A. 100° B. 80° C. 70°D. 50°8.如图,a 、b 、c 分别表示△ABC 的三边长,则下面与△ABC 一定..全等的三角形是( ▲ )A B C DA. 0B. 1C. 2D. 39.已知直角三角形的两条边长分别是6cm 和8cm ,则它的第三边长为( ▲ )A .5.5cmB .cmC .10cmD .10cm 或10.设a 、b 、c 均为正整数,且c b a ≥≥,满足15=++c b a ,则以a 、b 、c 为边长的三角形有( ▲ )A .5个B .7个C .10个D .12个 二、认真填一填(本题有6小题,每小题3分,共18分) 11.“x 减去y 小于4-”用不等式可表示为 ▲ . 12. 在Rt △ABC 中,∠A =25°,则锐角∠B = ▲ 度. 13.不等式2x >5x -6的正整数解是 ▲ .14. 如图,△ABC 中,AB +AC =6cm ,BC 的垂直平分线l 与AC 相交于点D ,则△ABD 的周长为 ▲ cm .15.如图,点P 在AOB ∠的平分线上,若使AOP BOP △≌△,则需添加的一个条件是 ▲ (只写一个即可,不 添加辅助线).AD 50° b a a 72° 50° a 50° b 58° ba AbC a c 72° B50°AB POABCDl(第14题图)21EDCBA16.如图,Rt △ABC ≌Rt △DEB ,点A ,B ,D 在同一直线上,AC=1,DE=3,则△BCE 的面积为 ▲ .三、解答题(本大题有8小题,共52分) 17.(本题4分)解不等式5x >3(x -2)+2.18.(本题4分)已知等腰△ABC 的腰长AB =AC =5,底边长BC =6,试求这个三角形的面积.19.(本题6分)如图,AD ∥BC ,∠A=90°,E 是AB 上一点,且AD=BE , ∠1=∠2. R t △ADE 与Rt △BEC 全等吗?请说明理由;20.(本题6分)如图,在6×6方格纸中(每个小正方形的边长均为1个单位长度),有直线MN 和线段AB ,其中点A ,B ,M ,N 均在小正方形的顶点上. (1)在方格纸中画出线段AB 关于直线MN 的轴对称图形CD ,点A 的对称点为点D ,点B 的对称点 为点C ,连接AD ,BC ; (2)求出四边形ABCD 的周长.B DC E(第16题图)(第20题图)AB M N21.(本题6分)将一副三角板按如图方式叠放在一起,(1)求∠AOD+∠BOC的度数;(2)当AB的中点E恰好落在CD的中垂线上时,求∠AOC的度数.22.(本题8分)如图,在△ABC和△DCB中,AB = DC,AC = DB,AC与DB交于点M.(1)求证:△ABC≌△DCB;(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,若∠AMB=70°,求∠N的度数.23.(本题8分)如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,求证:(1)ACE BCD△≌△;(2)222AD DB DE+=.24.(本题10分)△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q。
2017-2018学年湖北省武汉市江岸区八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.3.(3分)已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.124.(3分)下列各组条件中,能够判定△ABC≌△DEF的是()A.∠A=∠D,∠B=∠E,∠C=∠F B.AB=DE,BC=EF,∠A=∠DC.∠B=∠E=90°,BC=EF,AC=DF D.∠A=∠D,AB=DF,∠B=∠E5.(3分)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SSS B.ASA C.AAS D.SAS6.(3分)如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A.25°B.45°C.30°D.20°7.(3分)如图,△ABC中,∠A=50°,BD,CE是∠ABC,∠ACB的平分线,则∠BOC的度数为()A.105°B.115°C.125° D.135°8.(3分)如图,在△ADE中,线段AE,AD的中垂线分别交直线DE于B和C 两点,∠B=α,∠C=β,则∠DAE的度数分别为()A.B.C.D.9.(3分)如图,△ABC中,CE平分∠ACB的外角,D为CE上一点,若BC=a,AC=b,DB=m,AD=n,则m﹣a与b﹣n的大小关系是()A.m﹣a>b﹣n B.m﹣a<b﹣nC.m﹣a=b﹣n D.m﹣a>b﹣n或m﹣a<b﹣n10.(3分)如图,∠AOB=30°,M,N分别是边OA,OB上的定点,P,Q分别是边OB,OA上的动点,记∠OPM=α,∠OQN=β,当MP+PQ+QN最小时,则关于α,β的数量关系正确的是()A.β﹣α=60°B.β+α=210°C.β﹣2α=30°D.β+2α=240°二、填空题(每题3分,共18分)11.(3分)已知点P关于x轴的对称点P1的坐标是(1,2),则点P的坐标是.12.(3分)若正多边形的内角和是外角和的4倍,则正多边形的边数为.13.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AB交边BC于点D,若CD=4,AB=15,则△ABD 的面积是.14.(3分)如图,在平面直角坐标系中,△ABC是以C为直角顶点的直角三角形,且AC=BC,点A的坐标为(﹣1,0),点B的坐标为(0,4),则点C的坐标为.15.(3分)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为(3,0),则第17次碰到长方形边上的点的坐标为.16.(3分)如图,△ABC是直角三角形,记BC=a,分别以直角三角形的三边向外作正方形ABDE,正方形ACFG,正方形BCMN,过点C作BA边上的高CH并延长交正方形ABDE的边DE于K,则四边形BDKH的面积为.(用含a的式子表示)三、解答题(共8道小题,共72分)17.(8分)在△ABC中,∠B=∠A+10°,∠C=30°,求△ABC各内角的度数.18.(8分)如图:AC⊥BC,BD⊥AD,BD与AC交于E,AD=BC,求证:BD=AC.19.(8分)如图,已知点E,C在线段BF上,且BE=CF,AB∥DE,AC∥DF,AC=S四边形OCFD.与DE相交于点O,求证:S四边形ABEO20.(8分)如图,点E在AB上,△ABC≌△DEC,求证:CE平分∠BED.21.(8分)(1)如图1,已知△ABC,请画出△ABC关于直线AC对称的三角形.(2)如图2,若△ABC与△DEF关于直线l对称,请作出直线l(请保留作图痕迹)(3)如图3,在矩形ABCD中,已知点E,F分别在AD和AB上,请在边BC上作出点G,在边CD作出点H,使得四边形EFGH的周长最小.22.(10分)如图,四边形ABCD为正方形(各边相等,各内角为直角),E是BC 边上一点,F是CD上的一点.(1)若△CFE的周长等于正方形ABCD的周长的一半,求证:∠EAF=45°;(2)在(1)的条件下,若DF=2,CF=4,CE=3,求△AEF的面积.23.(10分)如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连接AE,作AF⊥AE且AF=AE.(1)如图1,过F点作FD⊥AC交AC于D点,求证:EC+CD=DF;(2)如图2,连接BF交AC于G点,若=3,求证:E点为BC中点;(3)当E点在射线CB上,连接BF与直线AC交于G点,若=,则=(直接写出结果)24.(12分)如图1,点A和点B分别在y轴正半轴和x轴负半轴上,且OA=OB,点C和点D分别在第四象限和第一象限,且OC⊥OD,OC=OD,点D的坐标为(m,n),且满足(m﹣2n)2+|n﹣2|=0.(1)求点D的坐标;(2)求∠AKO的度数;(3)如图2,点P,Q分别在y轴正半轴和x轴负半轴上,且OP=OQ,直线ON ⊥BP交AB于点N,MN⊥AQ交BP的延长线于点M,判断ON,MN,BM的数量关系并证明.2017-2018学年湖北省武汉市江岸区八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.2.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【解答】解:为△ABC中BC边上的高的是A选项.故选:A.3.(3分)已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.12【解答】解:根据三角形的三边关系,得第三边大于:8﹣3=5,而小于:3+8=11.则此三角形的第三边可能是:10.故选:B.4.(3分)下列各组条件中,能够判定△ABC≌△DEF的是()A.∠A=∠D,∠B=∠E,∠C=∠F B.AB=DE,BC=EF,∠A=∠DC.∠B=∠E=90°,BC=EF,AC=DF D.∠A=∠D,AB=DF,∠B=∠E【解答】解:如图:A、不符合全等三角形的判定定理,即不能推出△ABC≌△DEF,故本选项错误;B、不符合全等三角形的判定定理,即不能推出△ABC≌△DEF,故本选项错误;C、符合直角三角形全等的判定定理HL,即能推出△ABC≌△DEF,故本选项正确;D、不符合全等三角形的判定定理,即不能推出△ABC≌△DEF,故本选项错误;故选:C.5.(3分)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SSS B.ASA C.AAS D.SAS【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:A.6.(3分)如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A.25°B.45°C.30°D.20°【解答】解:∠C=∠C'=30°,则△ABC中,∠B=180°﹣105°﹣30°=45°.故选:B.7.(3分)如图,△ABC中,∠A=50°,BD,CE是∠ABC,∠ACB的平分线,则∠BOC的度数为()A.105°B.115°C.125° D.135°【解答】解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=130°,∵BO、CO分别是△ABC的角∠ABC、∠ACB的平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣65°=115°,故选:B.8.(3分)如图,在△ADE中,线段AE,AD的中垂线分别交直线DE于B和C 两点,∠B=α,∠C=β,则∠DAE的度数分别为()A.B.C.D.【解答】解:∵∠B=α,∠C=β,∴∠BAC=180°﹣α﹣β,∵线段AE,AD的中垂线分别交直线DE于B和C两点,∴BA=BE,DA=DC,∴∠BEA=,∠CDA=,∴∠DAE=180°﹣﹣=,故选:A.9.(3分)如图,△ABC中,CE平分∠ACB的外角,D为CE上一点,若BC=a,AC=b,DB=m,AD=n,则m﹣a与b﹣n的大小关系是()A.m﹣a>b﹣n B.m﹣a<b﹣nC.m﹣a=b﹣n D.m﹣a>b﹣n或m﹣a<b﹣n【解答】解:在CM上截取CG=CA,连接DG.∵CD=CD,∠ACD=∠DCG,AC=CG,∴△ACD≌△GCD,∴AD=DG=n,在△BDG中,BD=m,BG=BC+CG=BC+AC=a+b,∴m+n>a+b,∴m﹣a>b﹣n.故选:A.10.(3分)如图,∠AOB=30°,M,N分别是边OA,OB上的定点,P,Q分别是边OB,OA上的动点,记∠OPM=α,∠OQN=β,当MP+PQ+QN最小时,则关于α,β的数量关系正确的是()A.β﹣α=60°B.β+α=210°C.β﹣2α=30°D.β+2α=240°【解答】解:如图,作M关于OB的对称点M′,N关于OA的对称点N′,连接M′N′交OA于Q,交OB于P,则MP+PQ+QN最小,易知∠OPM=∠OPM′=∠NPQ,∠OQP=∠AQN′=∠AQN,∵∠OQN=180°﹣30°﹣∠ONQ,∠OPM=∠NPQ=30°+∠OQP,∠OQP=∠AQN=30°+∠ONQ,∴α+β=180°﹣30°﹣∠ONQ+30°+30°+∠ONQ=210°.故选:B.二、填空题(每题3分,共18分)11.(3分)已知点P关于x轴的对称点P1的坐标是(1,2),则点P的坐标是(1,﹣2).【解答】解:点P关于x轴的对称点P1的坐标是(1,2),则点P的坐标是(1,﹣2).故答案为:(1,﹣2).12.(3分)若正多边形的内角和是外角和的4倍,则正多边形的边数为10.【解答】解:设这个多边形的边数是n,根据题意得,(n﹣2)•180°=4×360°,解得n=10,答:这个多边形的边数为10,故答案为:10.13.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AB交边BC于点D,若CD=4,AB=15,则△ABD 的面积是30.【解答】解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=30,故答案为:30.14.(3分)如图,在平面直角坐标系中,△ABC是以C为直角顶点的直角三角形,且AC=BC,点A的坐标为(﹣1,0),点B的坐标为(0,4),则点C的坐标为(﹣,).【解答】解:作CE⊥x轴于E,CF⊥y轴于F,则∠ECF=90°,又∠ACB=90°,∴∠ECA=∠FCB,在△ECA和△FCB中,,∴△ECA≌△FCB,∴CE=CF,AE=BF,设AE=BF=x,则x+1=4﹣x,解得,x=,∴CE=CF=,∴点C的坐标为(﹣,),故答案为:(﹣,).15.(3分)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为(3,0),则第17次碰到长方形边上的点的坐标为(1,4).【解答】解:根据题意,如下图示:根据图形观察可知,每碰撞6次回到始点.∵17÷6=2…5,∴第17次碰到长方形边上的点的坐标为(1,4),故答案为(1,4).16.(3分)如图,△ABC是直角三角形,记BC=a,分别以直角三角形的三边向外作正方形ABDE,正方形ACFG,正方形BCMN,过点C作BA边上的高CH并延长交正方形ABDE的边DE于K,则四边形BDKH的面积为a2.(用含a的式子表示)【解答】解:∵BC⊥AC,CH⊥BA,∴BC2=BH•BA,即BH•BA=a2,∵四边形ABDE是正方形,∴BD=BA,∴四边形BDKH的面积=BH•BD=BH•BA=a2,故答案为:a2.三、解答题(共8道小题,共72分)17.(8分)在△ABC中,∠B=∠A+10°,∠C=30°,求△ABC各内角的度数.【解答】解:∵在△ABC中,∠B=∠A+10°,∠C=30°,∴∠B+∠A=150°,∴解得:,故∠A=70°,∠B=80°,∠C=30°.18.(8分)如图:AC⊥BC,BD⊥AD,BD与AC交于E,AD=BC,求证:BD=AC.【解答】证明:∵AC⊥AD,BC⊥BD,∴∠ADC=∠BCA=90°,在Rt△ABD和Rt△BAC中,,∴在Rt△ABD≌Rt△BAC(HL),∴BD=AC.19.(8分)如图,已知点E,C在线段BF上,且BE=CF,AB∥DE,AC∥DF,AC 与DE相交于点O,求证:S=S四边形OCFD.四边形ABEO【解答】证明:∵BE=CF,∴BE+CE=CF+CE即BC=EF.∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠C=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF,∴S△ABC与S DEF,∴S△ABC ﹣S△ECO=S DEF﹣S△ECO,∴S四边形ABEO=S四边形OCFD.20.(8分)如图,点E在AB上,△ABC≌△DEC,求证:CE平分∠BED.【解答】证明:∵△ABC≌△DEC,∴∠B=∠DEC,BC=EC,∴∠B=∠BEC,∴∠BEC=∠DEC,∴CE平分∠BED.21.(8分)(1)如图1,已知△ABC,请画出△ABC关于直线AC对称的三角形.(2)如图2,若△ABC与△DEF关于直线l对称,请作出直线l(请保留作图痕迹)(3)如图3,在矩形ABCD中,已知点E,F分别在AD和AB上,请在边BC上作出点G,在边CD作出点H,使得四边形EFGH的周长最小.【解答】解:(1)如图1,△AB′C即为所求;(2)如图2,直线l即为所求;(3)如图3,四边形EFGH即为所求.22.(10分)如图,四边形ABCD为正方形(各边相等,各内角为直角),E是BC 边上一点,F是CD上的一点.(1)若△CFE的周长等于正方形ABCD的周长的一半,求证:∠EAF=45°;(2)在(1)的条件下,若DF=2,CF=4,CE=3,求△AEF的面积.【解答】(1)证明:延长CF至G,使DG=BE,连接AG,如图所示:∵四边形ABCD是正方形,∴∠BAD=∠ABE=∠ADF=90°,AB=BC=CD=AD,∴∠ADG=90°,∵△CFE的周长等于正方形ABCD的周长的一半,∴CE+CF+EF=CD+BC,∴DF+BE=EF,∴DF+DG=EF,即GF=EF,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∴∠EAG=90°,在△AEF和△AGF中,,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=×90°=45°;(2)解:∵DF=2,CF=4,CE=3,∴AB=AD=CD=BC=2+4=6,BE=BC﹣CE=3,由(1)得:△AEF的面积=△AGF的面积=△ABE的面积+△ADF的面积=×6×3+×6×2=15.23.(10分)如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连接AE,作AF⊥AE且AF=AE.(1)如图1,过F点作FD⊥AC交AC于D点,求证:EC+CD=DF;(2)如图2,连接BF交AC于G点,若=3,求证:E点为BC中点;(3)当E点在射线CB上,连接BF与直线AC交于G点,若=,则=或(直接写出结果)【解答】证明:(1)如图1,∵∠FAD+∠CAE=90°,∠FAD+∠F=90°,∴∠CAE=∠F,在△ADF和△ECA中,,∴△ADF≌△ECA(AAS),∴AD=CD,FD=AC,∴CE+CD=AD+CD=AC=FD,即EC+CD=DF;证明:(2)如图2,过F点作FD⊥AC交AC于D点,∵△ADF≌△ECA,∴FD=AC=BC,在△FDG和△BCG中,,∴△FDG≌△BCG(AAS),∴GD=CG,∵=3,∴=2,∴=,∵AD=CE,AC=BC∴=,∴E点为BC中点;(3)过F作FD⊥AG的延长线交于点D,如图3,∵=,BC=AC,CE=CB+BE,∴=,由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,∴CG=GD,AD=CE,∴=,∴=,∴==,∴=.同理,当点E在线段BC上时,=.故答案为:或.24.(12分)如图1,点A和点B分别在y轴正半轴和x轴负半轴上,且OA=OB,点C和点D分别在第四象限和第一象限,且OC⊥OD,OC=OD,点D的坐标为(m,n),且满足(m﹣2n)2+|n﹣2|=0.(1)求点D的坐标;(2)求∠AKO的度数;(3)如图2,点P,Q分别在y轴正半轴和x轴负半轴上,且OP=OQ,直线ON ⊥BP交AB于点N,MN⊥AQ交BP的延长线于点M,判断ON,MN,BM的数量关系并证明.【解答】解:(1)∵(m﹣2n)2+|n﹣2|=0,又∵(m﹣2n)2≥0,|n﹣2|≥0,∴n=2,m=4,∴点D坐标为(4,2).(2)如图1中,作OE⊥BD于E,OF⊥AC于F.∵OA=OB,OD=OC,∠AOB=∠COD=90°,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴EO=OF(全等三角形对应边上的高相等),∴OK平分∠BKC,∴∠OBD=∠OAC,易证∠AKB=∠BOA=90°,∴∠OKE=45°,∴∠AKO=135°.(3)结论:BM=MN+ON.理由:如图2中,过点B作BH∥y轴交MN的延长线于H.∵OQ=OP,OA=OA,∠AOQ=∠BOP=90°,∴△AOQ≌△BOP,∴∠OBP=∠OAQ,∵∠OBA=∠OAB=45°,∴∠ABP=∠BAP,∵NM⊥AQ,BM⊥ON,∴∠ANM+∠BAQ=90°,∠BNO+∠ABP=90°,∴∠ANM=∠BNO=∠HNB,∵∠HBN=∠OBN=45°,BN=BN,∴△BNH≌△BNO,∴HN=NO,∠H=∠BON,∵∠HBM+∠MBO=90°,∠BON+∠MBO=90°,∴∠HBM=∠BON=∠H,∴MH=MB,∴BM=MN+NH=MN+ON.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。