线段射线直线--北师大版
- 格式:ppt
- 大小:902.50 KB
- 文档页数:21
第 12 讲线段、射线、直线及比较线段的长短.概述适用学科初中数学适用年级初一适用区域 北师版区域课时时长(分钟)120知识点 1、线段、射线、直线的概念5、线段的大小比较2、线段、射线、直线的表示方法6、线段的中点的定义3、两点一线的应用7、线段的中点的应用4、平面图形的找规律问题8、利用线段的性质说明点的位置教学目标 1、知识目标.使学生在了解直线概念的基础上,理解射线和线段的概念,并能理解它们的区别与联系.2、使学生在理解线段概念的基础上,了解线段的长度可以用正数来表示,因而线段可以度量、比较大小以及进行一些运算.使学生对几何图形与数之间的联系有一定的认识,从而初步了解数形结合的思想.3、使学生学会线段的两种比较方法及表示法.教学重点 1、直线、射线、线段的概念.2、对线段与数之间的关系的认识,掌握线段比较的正确方法.教学难点 1、对直线的“无限延伸”性的理解.2、对线段与数之间的关系的认识,掌握线段比较的正确方法.【教学建议】 本讲是初中几何的基础,在小学阶段已有相关知识的学习,结合小学知识,对各种线有一个更加深入的理解,将会使我们的几何学习事半功倍.【知识导图】教学过程一、导入【教学建议】 在这一部分对知识点的认知最为重要,在学习过程中要注意结合小学的几何知识,使学生熟练的认识各种线,为几何的学习打下牢固的基础. 本讲的知识是我们初中几何知识的基石,其中最为重要的是对各种线的认知,通过本讲会对几何有一个初步的认识.二、知识讲解 考点 1 线段、射线、直线1.线段的表示也有两种:一个小写字母或用端点的两个大写字母.但前面必须加“线段”两字,如:线 段 a;线段 AB.2.射线的表示同样有两种:一个小写字母或端点的大写字母和射线上的要给大写字母,前面必须加“射 线”两字3.直线的表示有两种:一个小写字母或两个大写字母.但前面必须加“直线”两字,如:直线 l ;直线m,直线 AB;直线 CD考点 2 比较线段的长短线段的两种度量方法: (1)直接用刻度尺. (2)圆规和刻度尺结合使用.三 、例题精析 类型一 线段、射线、直线的概念例题 1有下列说法:①电线杆可看做射线,②探照灯光线可看做射线,③A 地到 B 地的高速公路可看做一条直线.其 中正确的有( ) A.0 个 B.1 个 C.2 个 D.3 个 【解析】 【总结与反思】例题 2下列说法中,正确的有()①过两点有且只有一条直线;②连结两点的线段叫做两点的距离;③两点之间,线段最短;④若 AB=BC,则点 B 是线段 AC 的中点;A.1 个B.2 个C.3 个【解析】 【总结与反思】D.4 个例题 3下列结论正确的是( ) A. 直线比射线长 B. 一条直线就是一个平角 C. 过三点中的任两点一定能作三条直线 D.经过两点有且只有一条直线 【解析】【总结与反思】类型二 线段、射线、直线的表示方法例题 1下列四个图中的线段(或直线、射线)能相交的是()A.(1) 【解析】B.(2)【总结与反思】C.(3)D.(4)类型三 两点一线的应用 例题 1把弯曲的河道改直,能够缩短航程,这样做的道理是( )A.垂线段最短 B.两点确定一条直线 C.两点之间,线段最短 D.两点之间,直线最短 【解析】【总结与反思】 .类型四 平面图形的找规律问题 例例题题 11如图,平面内有公共端点的六条射线 OA、OB、OC、OD、OE、OF,从射线 OA 开始按逆时针依次在射线上写出 数字 1、2、3、4、5、6、7…,则数字“2015”在( )A.射线 OA 上B.射线 OB 上C.射线 OD 上D.射线 OE 上【解析】 【总结与反思】 根据题中的循环节即可解答.类型五 线段的大小比较例题 1下列说法中,不正确的是()(A)若点 C 在线段 BA 的延长线上,则 BA=AC-BC(B)若点 C 在线段 AB 上,则 AB=AC+BC(C)若 AC+BC>AB,则点 C 一定在线段 BA 外(D)若 A、B、C 三点不在一直线上,则 AB<AC+BC【解析】 【总结与反思】类型六 线段的中点的定义 例题 1下列说法中正确的是()A.若 AP= 1 AB,则 P 是 AB 的中点 2B.若 AB=2PB,则 P 是 AB 的中点C.若 AP=PB,则 P 为 AB 的中点D.若 AP=PB= 1 AB,则 P 是 AB 的中点 2【解析】 【总结与反思】类型七 线段的中点的应用例题 1已知线段 AB=16cm,C 是线段 AB 上的一点,且 AC=10cm,D 为 AC 的中点,E 是 BC 的中点,求线段 DE 的长 【解析】【总结与反思】四 、课堂运用基础1.下列说法正确的是( )A.延长射线 MN 到点 PB.延长直线 MN 到点 PC.延长线段 MN 到点 PD.以上说法都正确2.手电筒发射出来的光线,给我们的感觉是( )A.线段 B.射线 C.直线 D.折线3.下列叙述中,正确的是( )A.点 A 在直线 l 上 B.直线的一半是射线C.延长直线 AB 到 C D.射线 OA 与射线 AO 是同一条射线4.经过 A、B、C 三点的任意两点,可以画出的直线数为( )A.1 或 2 B.1 或 3 C.2 或 3 D.1 或 2 或 35.延长线段 AB 到 C,下列说法中正确的是( )A.点 C 在线段 AB 上B.点 C 在直线 AB 上C.点 C 不在直线 AB 上D.点 C 在直线 AB 的延长线上6.如图,共有_________条射线.巩固1.如图所示,由 A 到 B 有①、②、③三条路线,最短的路线选①的理由是( )A.因为它直B.两点确定一条直线C.两点间距离的定义 D.两点之间,线段最短2.点 C 是线段 AB 的中点,点 D 是线段 BC 的中点,下列等式不.正.确.的是 ()ACDBA.CD=AC-DB B.CD=AD-BC C.CD=AB-AD D.CD=AB-BD3.开学整理教室时,智慧老师总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,一会儿一列列整整齐齐的课桌就摆在一条线上了,这是因为.4.已知线段 AB 6 ,若 C 为 AB 中点,则 AC =.5.在数轴上有四个点 A、B、C、D,如图,请回答(1)A、C 两点间的距离是多少? (2)B、D 两点之间的距离是多少? (3)将 A 点向右移 4 各单位后,四个点所表示的数谁最小?拔高1.平面内的 9 条直线任两条都相交,交点数最多有 m 个,最少有 n 个,则 m+n 等于( )A.36 B.37 C.38 D.392.从哈尔滨开往某市的特快列车,途中要停靠两个站点,如果任意两站间的票价都不同,那么有多少种不同的票价( )A.3 B.4 C.6 D.123.已知线段 AB=12cm,在直线 AB 上有一点 C,且 BC=4cm,M 是线段 AC 的中点,求线段 AM 的长.4.已知数轴上有 A,B,C 三点,分别表示数-24,-10,10.两只电子蚂蚁甲、乙分别从 A,C 两点同时相向而行,甲的速度为 4 个单位/秒,乙的速度为 6 个单位/秒.(1)若甲、乙在数轴上的点 D 相遇,则点 D 表示的数;(2)问多少秒后甲到 A,B,C 三点的距离之和为 40 个单位?若此时甲调头往回走,问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.(3)若甲、乙两只电子蚂蚁(用 P 表示甲蚂蚁、Q 表示乙蚂蚁)分别从 A,C 两点同时相向而行,甲的速度 变为原来的 3 倍,乙的速度不变,直.接.写.出.它们爬行多少秒后,在原点 O、甲蚂蚁 P 与乙蚂蚁 Q 三点中,有一点恰好是另两点所连线段的中点.五 、课堂小结六、课后作业基础1.下列语句正确的是()A.画直线AB=10厘米B.画直线l的垂直平分线C.画射线OB=3厘米D.延长线段AB到点C,使得BC=AB2.下列说法错误的是()A.两点确定一条直线B.线段是直线的一部分C.一条直线是一个平角D.把线段向两边延长即是直线3.如图所示,关于线段、射线和直线的条数,下列说法正确的是()A.五条线段,三条射线B.一条直线,三条线段C.三条线段,两条射线,一条直线D.三条线段,三条射线,一条直线4.同一平面内有四点,每过两点画一条直线,则直线的条数是()A.1条 B.4条 C.6条 D.1条或4条或6条5.练习下列说法中,不正确的是()(A)若点C在线段BA的延长线上,则BA=AC-BC(B)若点C在线段AB上,则AB=AC+BC(C)若AC+BC>AB,则点C一定在线段BA外(D)若A、B、C三点不在一直线上,则AB<AC+BC6.如图,C、B是线段AD上的两点,若AB=CD,BC=2AC,那么AC与CD的关系是为()A.CD=2ACB.CD=3ACC.CD=4BDD.不能确定7.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A.3B.2C.3或5D.2或68.已知A、B、C三点在同一直线上,那么线段AB、BC、AC三者的关系是()A.AC=AB+BC B.AC>AB C.AC>AB>BC D.不能确定1.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直2.如图,是学校花圃的一角,有的同学为了省时间图方便,在花圃中踩出了一条“捷径”,“捷径”的数学道理是().A.两点确定一条直线 B.两点之间线段最短C.垂线段最短 D.两点之间直线最短3.如图,C、D是线段AB上两点,若CB=5cm,DB=9cm,且D是AC的中点,则AC的长等于()A.6cm B.9cm C.8cm D.13cm4.点C在线段AB上,下列条件中不能确定....点C是线段AB中点的是()A. AC =BCB. AC +BC= ABC. AB =2ACD. BC =21AB巩固5.如图,计划把河水引到水池A 中,先作CD AB ⊥,垂足为点B ,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是 .6.如图,已知点A 、B 、C 是数轴上三点,点C 表示的数为6,BC =4,AB =12.(1)数轴上点A 表示的数是 ,点B 表示的数是 ;(2)动点P 、Q 同时从A 、C 出发,点P 以每秒6个单位长度的速度沿数轴向右匀速运动,点Q 以3个单位长度的速度沿数轴向左匀速运动,M 为AP 的中点, N 在线段CQ 上,且CQ CN 31=,设运动时间为t (t>0)秒.①求数轴上点M 、N 表示的数(用含t 的式子表示);②t 为何值时,原点O 恰为线段PQ 的中点.1.由绵阳出发到成都的某一次列车,运行途中须停靠的车站依次是:绵阳→罗江→黄许→德阳→广汉→清白江→新都→成都.那么要为这次列车制作的车票一共有()A.7种B.8种C.56种D.28种2.如图,已知点O在线段AB上,点C、D分别是AO、BO的中点(1)AO= CO;BO= DO;(2)若CO=3cm,DO=2cm,求线段AB的长度;3.(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,求线段MN的长度.(2)若点C是线段AB上任意一点,且AC=a,BC=b,点M、N分别是AC、BC的中点,请直接写出线段MN 的长度;(用含a、b的代数式表示)(3)在(2)中,把点C是线段AB上任意一点改为:点C是直线AB上任意一点,其它条件不变,请求出线段MN的长度.(用含a、b的代数式表示).DOC BA七、教学反思拔高。
4.1线段、射线、直线1. 如图,已知线段,延长到,使,为的中点,,那么的长为.2. 已知点在直线上,且线段的长度为,线段的长度为,、分别为线段、的中点,则线段的长度为_________.3. 小宇同学在一次手工制作活动中,先把一张长方形纸片按如图所示的方式进行折叠,使折痕的左侧部分比右侧部分短;展开后按图的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长,再展开后,在纸上形成的两条折痕之间的距离是______.4. 如图,是的中点,是的中点,下列等式不正确的是()A. B. C. D.5. 如图,点、、顺次在直线上,是线段的中点,是线段的中点.若想求出的长度,则只需条件()A. B. C. D.6. 如图,有、、三户家用电路接人电表,相邻电路的电线等距排列,则三户所用电线()A. 户最长B. 户最长C. 户最长D. 三户一样长7. 已知线段,直线上有一点(l)若,求的长;(2)若是的中点,是的中点,求的长.8. (1)一条直线可以把平面分成两个部分(或区域),如图,两条直线可以把平面分成几个部分?三条直线可以把平面分成几个部分?试画图说明.(2)四条直线最多可以把平面分成几个部分?试画出示意图,并说明这四条直线的位置关系.(3)平面上有条直线,每两条直线都恰好相交,且没有三条直线交于一点,处于这种位置的条直线分一个平面所成的区域最多,记为,试研究与之间的关系.思维方法天地9. 如图,、、依次是上的三点,已知,,则图中以、、、、这个点为端点的所有线段长度的和为_______.10. 平面上不重合的两点确定一条直线,不同三点最多可确定条直线.若平面上不同的个点最多确定条直线,则的值为_______.11. 如图,一根长为、宽的长方形纸条,将它按图所示的过程折叠.为了美观,希望折叠完成后纸条端到点的距离等于端到点的距离,则最初折叠时,的长应为______.12. 某班名同学分别站在公路的、两点处,、两点相距米,处有人,处有人.要让两处的同学走到一起,并且使所有同学走的路程总和最小,那么集合地点应选在()A. 点处B. 线段的中点处C. 线段上,距点米处D. 线段上,距点米处13. 公园里准备修条直的通道,并在通道交叉路口处设一个报亭,这样的报亭最多设()A. 个B. 个C. 个D. 个14. 线段上选取种点,第种是将等分的点;第种是将等分的点;第种是将等分的点,这些点连同线段的端点可组成线段的条数是()A. B. C. D.15. 电子跳蚤游戏盘为.,,,如果电子跳蚤开始时在边上点,。
111第四章:基本平面图形知识梳理一、线段、射线、直线1、线段、射线、直线的定义(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。
线段可以量出长度。
(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。
射线无法量出长度。
(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。
直线无法量出长度。
: 联系:射线是直线的一部分。
线段是射线的一部分,也是直线的一部分。
2、点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
3、直线的性质(1)直线公理:经过两个点有且只有一条直线。
简称两点确定一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
4、线段的比较(1)叠合比较法(用圆规截取线段);(2)度量比较法(用刻度尺度量)。
5、线段的性质(1)线段公理:两点之间的所有连线中,线段最短。
(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
6、线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。
若C 是线段AB 的中点,则:AC=BC=21AB 或AB=2AC=2BC 。
二、角1、角的概念:(1)角可以看成是由两条有共同端点的射线组成的图形。
两条射线叫角的边,共同的端点叫角的顶点。
(2)角还可以看成是一条射线绕着它的端点旋转所成的图形。
2、角的表示方法:角用“∠”符号表示,角的表示方法有以下四种: ①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
C222③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C 等。
第四章 基本平面图形思维导图形图面平本基⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧=︒⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧︒︒︒︒︒"=''=︒⎩⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧)(36036018090909006016012为扇形的半径为圆心角的度数,π扇形面积:—用扇形所占百分比乘—圆心角的度数相关计算角叫做圆心角圆心角:顶点在圆心的形径所组成的图形叫做扇这条弧的端点的两条半扇形:由一条弧和经过的部分叫做圆弧圆弧:圆上任意两点间点形成的图形点旋转一周,另一个端段绕着它固定的一个端定义:平面上,一条线圆做正多边形各角也相等的多边形叫正多边形:各边相等,两个顶点的线段边形中,连接不相邻的多边形的对角线:在多图形次相连组成的封闭平面一直线上的线段首尾顺定义:由若干条不在同多边形大小比较线射线叫做这个角的平分的角,这条把这个角分成两个相等顶点引出的一条射线,角平分线:从一个角的的角,小于钝角:大于的角直角:等于的角,小于锐角:大于小于平角的角的分类,角的单位换算:希腊字母表示一个阿拉伯数字或一个字母或一个大写字母或表示方法:用三个大写而成的射线绕着它的端点旋转角也可以看成是由一条顶点的公共端点是这个角的的射线组成,两条射线角由两条具有公共端点定义角长短比较之间线段的长度两点之间的距离:两点最短性质:两点之间,线段点段分成两条相等线段的线段的中点:把一条线字母表示表示,也可用一个小写的两个端点的大写字母表示方法:用表示线段看做线段板的边沿都可以近似地定义:绷紧的琴弦、黑线段倒字母写在前面,不能颠字母表示,表示端点的表示方法:用两个大写限延长就形成了射线定义:将线段向一方无射线有一条直线性质:经过两点有且只个小写字母表示意两点的大写字母或一表示方法:用直线上任了直线个方向无限延长就形成定义:将线段向两个两直线扇形R n R n S考点精讲考点一线段、射线、直线线段、射线、直线的概念1.线段:期紧的琴弦、黑板的边沿都可以近似地看做线段.线段有两个特征:一是直的;二是有两个端点.2.射线:将线段向一个方向无限延长就形成了射线.手电筒、探照灯所射出的光线可以近似地看做射线.射线有三个特征:一是直的;二是有一个端点三是向一方无限延伸.3.直线:将线段向两个方向无限延长就形成了直线,直线有三个特征:一是直的;二是没有端点;三是向两方无限延伸.线段、射线、直线的表示方法名称图例表方方法线段用一个小写字母表示,如:线段a;用两个表示端点的字母表示,如:线段AB(或线段BA).射线用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA直线用一个小写字母表示,如:直线l;用直线上的两个大写字母表示,如直线AB(或直线BA).线段、射线、直线的区别与联系名称线段射线直线不同点端点个数2个1个无伸展性不可延长只能向一方无限延长向两方无限延长度量可以度量不可度量不可度量联系将线段向一个方向无限延长就形成了射线,向两个方向无限延长就形成了直线,线段和射线都可以看做直线的一部分共同点都是直的,不是曲的拓展:线段的延长线是有方向的,作延长线时要特别注意表示线段的字母的顺序,以便确定延长的方向.“线段BA”与“线段AB”是同一条线段,但“线段AB的延长线”与“线段BA的延长线”却不是同一条.如图,图中,线段AB的延长线如图(1),线段BA的延长线如图(2).直线的性质1.画直线的常用工具是直尺,经过一点A可以画出无数条直线.2.直线的基本性质:经过两点有且只有一条直线(这一事实可以简述为:两点确定一条直线)线段的性质两点的所有连线中,线段最短.简单说成:两点之间的所有连线中,线段最短.可简称为“两点之间线段最短”两点之间的距离两点之间线段的长度,叫做这两点之间的距离.特别提醒:考点二比较线段的长短(1)线段是一个图形;两点间的距离是指线段的长度,是一个数值.(2)线段的长度可用刻度尺测量.比较两条线段的长短已知线段AB和CD.1.叠合法:把它们放在同一条直线上比较.具体作法如下:画一条直线l,在l上先作出线段AB,再作出线段CD,并使点C与点A重合,点D与点B位于点A的同侧,则:(1)如果点D与点B重合,就说线段AB与线段CD相等,记作AB=CD,如图①所示;(2)如果点D在线段AB内部,就说线段AB大于线段CD,记作AB>CD,如图②所示;(3)如果点D在线段AB外部,就说线段AB小于线段CD,记作AB<CD,如图③所示.2.度量法:先用刻度尺量出线段AB与线段CD的长度,再进行比较.特别提醒:用测量法比较线段的长短时,要采用相同的测量标准,单位要统一.作一条线段等于已知线段如图所示,作图步骤为:(1)作一条射线AB;(2)用圆规量出已知线段的长度(记作a);(3)用圆规在射线AB上截取AC=a.则线段AC就是所求作的线段.线段的中点特别提醒:(1)线段的中点必须在线段上,线段的中点只有一个,三等分点有两个,四等分点有三个.(2)利用线段的中点可以写出线段相等或成倍分关系的等式.(3)若点C是线段AB的中点,则AC=BC;但若AC=BC,则点C不一定是线段AB的中点.角的定义1.角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点,这两条射线叫做角的边.构成角的两个基本条件;一是角的顶点,二是角的边.如图所示,角的顶点是点O,角的边是射线OA,OB.考点三角2.从运动的观点看,角也可以看成是由一条射线绕着它的端点旋转而成的图形.如图所示,∠BAC可以看成是以A为端点的射线,从AB的位置绕点A旋转到AC的位置而成的图形.3.一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角.终边继续旋转,当它又和始边重合时,所成的角叫做周角.如图(1)所示,射线OA绕点O旋转,当终止位置OB和起始位置OA成一条直线时,所成的角叫做平角:如图(2)所示,射线OA绕它的端点旋转一周所成的角叫做周角.在小学数学中,我们已经知道:1平角=180°,1周角=360°.拓展:平角与直线、周角与射线的区别:平角是一个角,它的始边和终边在同一条直线上,但方向相反;直线是一条线,没有端点,可以向两边无限延长,这是两个不同的概念,不能说“一条直线就是平角”或“平角是一条直线”.同样,周角是始边旋转360°后与终边重合而构成的角,这时构成角的两条边的两条射线重合,同样也不能说“一条射线是周角”或“周角是一条射线”.特别提醒:(1)平角和周角都是“角”,而不是”线”因此不能说“一条直线就是平角”,也不能说“一条射线就是周角.(2)没有特殊说明,我们只讨论大于等于0且小于等于180°的角.角的表示方法角的几何符号是“∠”,角的表示方法有以下几种:图例记法适用范围及注意事项用三个大写字母表示,如∠AOB或∠BOA任何情况都适用,用此方法表示角时,顶点的字母必须写在中间用一个大写字母表示,如∠O以这一点为顶点的角只有一个时才适用用数字1,2,3,…表示,如∠AOB可记作∠1任何情况都适用,用此方法表示角时,要用小弧线表示出角的范围,即从哪边到哪边用小写希腊字母α,β,…表示,如∠BOC可记作∠α任何情况都适用,用此方法表示角时,要用小弧线表示出角的范围,即从哪边到哪边考点三角特别提醒:当以某一点为顶点的角较多时,不能只用表示顶点的大写字母表示角,一般可用数字或希腊字母表示.角的分类小于平角的角可按大小分成三类:当一个角等于平角的一半时,这个角叫直角;大于零度角且小于直角的角叫锐角;大于直角且小于平角的角叫钝角.1周角=2平角=4直角=360°,1平角=2直角=180°,1直角=90°.角的度量及换算1.角的度量单位角的度量单位主要有度、分、秒,符号分别是“°”“′”“″”.把一个周角360等分,每一份就是1度的角,记作1°;把1度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″.以度、分、秒为单位的角的度量制,叫做角度制.此外,还有其他度量角的单位制.2.角度制的换算1周角=360°,1平角=180°,1°=60′,1′=160⎛⎫⎪⎝⎭,1′=60″,1″=160''⎛⎫⎪⎝⎭.3.角的度量方法最常用的量角的工具是量角器.用量角器量角时要注意对中(顶点对中心)、重合(一边与量角器的零刻度线重合)、读数(读出另一边所对的度数)这三点.考点四角的比较角的大小比较名称方法举例度量法用量角器量出两个角的度数,度数大的角大,度数小的角小,度数相等的角相等用量角器量得∠1=50°,∠2=45°,所以∠1>∠2.叠合法把两个角的一条边和顶点叠合在一起,另一条边在叠合边的同侧,通过观察另一条边的位置来比较两个角的大小如果EF与BC重合,如图),那么∠DEF等于∠ABC,记作∠DEF=∠ABC.如果EF落在∠ABC的外部,如图,那么∠DEF大于∠ABC,记作∠DEF>∠ABC.如果EF落在∠ABC的内部,如图,那么∠DEF小于∠ABC,记作∠DEF<∠ABC.注意:(1)角的大小与角的两边的长短、粗细无关,只与角的两边张开的程度有关;考点四角的比较(2)角的大小一旦确定,它的大小就不因图形的位置,图形的放大或缩小而改变.特别提醒:(1)比较角的大小时,有时也可用估测法,即直接通过观察的方法,比较角的大小.此方法较为直观,但不够准确,适用于角度差别较大或精确度要求不高的角的大小的比较.(2)“测量法”中角的大小关系和角的度数大小关系是一致的,是从“数的方面”来比较角的大小.“叠合法”中比较角的大小时,一定要使两个角的顶点及一边重合,将角的另一边落在重合的边的同侧,这是从“形”的方面来比较角的大小.两者比较大小的结果是一致的.角的平分线定义:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.如图所示,如图所示,射线OC是∠BOA的平分线,则∠BOC=∠COA=21∠BOA,∠BOA=2∠BOC=2∠C0A.特别提醒:(1)角的平分线是一条射线,不是线段,也不是直线.(2)若OC是∠AOB的平分线,则OC必然在∠AOB的内部.考点五多边形和圆的初步认识多边形的有关概念1.多边形:由若干条不在同一直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形.三角形、四边形、五边形、六边形等都是多边形,组成多边形的各条线段叫做多边形的边,相邻两条边的公共端点叫做多边形的顶点,相邻两条边所组成的角叫做多边形的内角,简称多边形的角.特别提醒:多边形的特征:①多边形是平面图形,要和立体图形区分开;②多边形是由不在同一直线上的线段组成的封闭图形;③组成多边形的各条线段首尾顺次相连.2.多边形的对角线:在多边形中,连接不相邻两个顶点的线段叫做多边形的对角线. 拓展:从n边形每一个顶点都能引出(n-3)条对角线,共有n个顶点,但每条对角线都重复计算了一次,从而对角线共有2)3(nn条.正多边形各边相等,各角也相等的多边形叫做正多边形.如图所示的多边形分别是正三角形、正四边形(正方形)、正五边形、正六边形、正八边形.拓展:多边形可分为凸多边形和凹多边形,如没有特别说明,本书所说的多边形都是指凸多边形,即多边形总在任何一条边所在直线的同一侧,凸多边形的每个内角都小于180°.圆、圆弧、扇形、圆心角的概念1.平面上,一条线段绕着它固定的一个端点旋转一周,另一个端点形成的图形叫做圆.固定的端点O称为圆心,线段OA称为半径(如图所示)2.圆上任意两点A ,B 间的部分叫做圆弧,简称弧,记作.读作圆弧AB 或“弧AB ”(现阶段一般研究小于半圆的弧)3.由一条弧AB 和经过这条弧的端点的两条半径OA ,OB 所组成的图形叫做扇形;顶点在圆心的角叫做圆心角.如图所示的阴影部分就是扇形AOB .∠AOB 就是圆中的一个圆心角,∠AOB 也可记作∠1.特别提醒:圆心和半径是确定一个圆的两个必须条件.圆心确定圆的位置,半径确定圆的大小,二者缺一不可.圆心角的度数(1)一个圆可以分割成若干个扇形,这些扇形的面积的和等于圆的面积(2)因为一个周角为360°,所以分成的几个扇形的圆心角的度数之和=360,每一个扇形圆心角的度数=360°×(每一个扇形圆心角占周角的百分比)拓展:半径为R 的圆,其面积S =πR 2,将圆等分为360个小扇形,则每个圆心角为1°的小扇形的面积是3602R π,所以圆心角为n 的扇形的面是3602R n π.。