湖南省长沙市长郡中学2021届高考数学(理)一轮复习:4.5 第1课时 简单的三角恒等变换
- 格式:docx
- 大小:73.74 KB
- 文档页数:15
3.2导数的应用 第1课时导数与函数的单调性同步练习 1.函数f (x )=(x -3)e x 的单调递增区间是( ) A .(-∞,2) B .(0,3) C .(1,4) D .(2,+∞)答案 D解析 函数f (x )=(x -3)e x 的导数为f ′(x )=[(x -3)e x ]′=e x +(x -3)e x =(x -2)e x .由函数导数与函数单调性的关系,得当f ′(x )>0时,函数f (x )单调递增,此时由不等式f ′(x )=(x -2)e x >0,解得x >2. 2.已知函数f (x )=12x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 f ′(x )=32x 2+a ,当a ≥0时,f ′(x )≥0恒成立,故“a >0”是“f (x )在R 上单调递增”的充分不必要条件.3.已知f (x )=1+x -sin x ,则f (2),f (3),f (π)的大小关系正确的是( )A .f (2)>f (3)>f (π)B .f (3)>f (2)>f (π)C .f (2)>f (π)>f (3)D .f (π)>f (3)>f (2) 答案 D解析 因为f (x )=1+x -sin x ,所以f ′(x )=1-cos x ,当x ∈(0,π]时,f ′(x )>0,所以f (x )在(0,π]上是增函数,所以f (π)>f (3)>f (2).故选D.4.已知函数f (x )=x +1ax在(-∞,-1)上单调递增,则实数a 的取值范围是( ) A .[1,+∞) B .(-∞,0)∪(0,1] C .(0,1] D .(-∞,0)∪[1,+∞)答案 D解析 函数f (x )=x +1ax的导数为f ′(x )=1-1ax 2,由于f (x )在(-∞,-1)上单调递增, 则f ′(x )≥0在(-∞,-1)上恒成立, 即1a≤x 2在(-∞,-1)上恒成立,由于当x <-1时,x 2>1, 则有1a≤1,解得a ≥1或a <0.5.(2020·中山模拟)已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d ) 答案 C解析 依题意得,当x ∈(-∞,c )时,f ′(x )>0, 所以函数f (x )在(-∞,c )上是增函数,因为a <b <c ,所以f (c )>f (b )>f (a ),因此C 正确.6.(2020·课标全国Ⅱ)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x的取值范围是( ) A .(-∞,-1)∪(0,1) B .(-1,0)∪(1,+∞) C .(-∞,-1)∪(-1,0) D .(0,1)∪(1,+∞) 答案 A解析 因为f (x )(x ∈R )为奇函数,f (-1)=0, 所以f (1)=-f (-1)=0.当x ≠0时,令g (x )=f x x,则g (x )为偶函数,g (1)=g (-1)=0.则当x >0时,g ′(x )=[f xx ]′=xf ′x -f x x 2<0,故g (x )在(0,+∞)上为减函数,在(-∞,0)上为增函数. 所以在(0,+∞)上,当0<x <1时,g (x )>g (1)=0⇔f x x >0⇔f (x )>0;在(-∞,0)上,当x <-1时,g (x )<g (-1)=0⇔f xx<0⇔f (x )>0.综上,知使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),故选A.7.(2020·青岛模拟)若函数f (x )=x 3+bx 2+cx +d 的单调减区间为(-1,3),则b +c =________. 答案 -12解析 f ′(x )=3x 2+2bx +c ,由题意知-1<x <3是不等式3x 2+2bx +c <0的解集,∴-1,3是f ′(x )=0的两个根, ∴b =-3,c =-9,b +c =-12.8.(2020·衡水中学模拟)已知函数f (x )(x ∈R )满足f (1)=1,f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________________.答案 (-∞,-1)∪(1,+∞) 解析 设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R 上单调递减, ∵f (x 2)<x 22+12, ∴f (x 2)-x 22<f (1)-12,∴F (x 2)<F (1),而函数F (x )在R 上单调递减, ∴x 2>1,即x ∈(-∞,-1)∪(1,+∞).9.若函数f (x )=-13x 3+12x 2+2ax 在[23,+∞)上存在单调递增区间,则a 的取值范围是________. 答案 (-19,+∞)解析 对f (x )求导,得f ′(x )=-x 2+x +2a =-(x -12)2+14+2a .当x ∈[23,+∞)时,f ′(x )的最大值为f ′(23)=29+2a .令29+2a >0,解得a >-19, 所以a 的取值范围是(-19,+∞).10.若函数f (x )=2x 3-3mx 2+6x 在区间(2,+∞)上为增函数,则实数m 的取值范围为________. 答案 (-∞,52]解析 ∵f ′(x )=6x 2-6mx +6, 当x ∈(2,+∞)时,f ′(x )≥0恒成立, 即x 2-mx +1≥0恒成立,∴m ≤x +1x恒成立.令g (x )=x +1x ,g ′(x )=1-1x2,∴当x >2时,g ′(x )>0,即g (x )在(2,+∞)上单调递增,∴m ≤2+12=52.11.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.解 (1)对f (x )求导得f ′(x )=14-a x 2-1x(x >0),由f (x )在点(1,f (1))处的切线垂直于直线y =12x ,知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x 2(x >0).令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f ′(x )<0, 故f (x )在(0,5)内为减函数; 当x ∈(5,+∞)时,f ′(x )>0, 故f (x )在(5,+∞)内为增函数.综上,f (x )的单调增区间为(5,+∞),单调减区间为(0,5). 12.已知函数f (x )=ln x ,g (x )=12ax +b .(1)若f (x )与g (x )在x =1处相切,求g (x )的表达式;(2)若φ(x )=m x -1x +1-f (x )在[1,+∞)上是减函数,求实数m 的取值范围.解 (1)由已知得f ′(x )=1x,∴f ′(1)=1=12a ,∴a =2.又∵g (1)=0=12a +b ,∴b =-1,∴g (x )=x -1.(2)∵φ(x )=m x -1x +1-f (x )=m x -1x +1-ln x 在[1,+∞)上是减函数.∴φ′(x )=-x 2+2m -2x -1x x +12≤0在[1,+∞)上恒成立.即x 2-(2m -2)x +1≥0在[1,+∞)上恒成立, 则2m -2≤x +1x,x ∈[1,+∞),∵x +1x∈[2,+∞),∴2m -2≤2,m ≤2.故实数m 的取值范围是(-∞,2].*13.(2020·辽宁鞍山一中高三月考)已知函数f (x )=13x 3-a 2x 2.(1)求函数f (x )的单调区间;(2)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)上存在单调递减区间,求实数a 的取值范围. 解 (1)f ′(x )=x 2-ax =x (x -a ), ①当a =0时,f ′(x )=x 2≥0恒成立, ∴f (x )在R 上单调递增.②当a >0时,当x ∈(-∞,0)时,f ′(x )>0;当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0, ∴f (x )的增区间为(-∞,0),(a ,+∞),减区间为(0,a ). ③当a <0时,当x ∈(-∞,a )时,f ′(x )>0;当x ∈(a,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0, ∴f (x )的增区间为(-∞,a ),(0,+∞),减区间为(a,0). (2)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1), 使不等式g ′(x )=x 2-ax +2<0成立,即当x ∈(-2,-1)时,a <(x +2x)max =-22即可.所以满足要求的a 的取值范围是(-∞,-22).。
第四章三角函数、解三角形4.44.4 y=Asin(ωx+φ)的图像与应用课内基础通关1.y=A sin(ωx+φ)的有关概念2.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个特征点如下表所示:3.函数y=sin x的图象经变换得到y=A sin(ωx+φ) (A>0,ω>0)的图象的步骤如下:课外知识延伸1.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.2.函数y =A sin(ωx +φ)的对称轴由ωx +φ=k π+π2,k ∈Z 确定;对称中心由ωx +φ=k π,k ∈Z确定其横坐标. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)y =sin ⎝⎛⎭⎫x -π4的图象是由y =sin ⎝⎛⎭⎫x +π4的图象向右平移π2个单位得到的.( √ ) (2)将函数y =sin ωx 的图象向右平移φ(φ>0)个单位长度,得到函数y =sin(ωx -φ)的图象.( × )(3)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( × )(4)函数y =A sin(ωx +φ)的最小正周期为T =2πω.( × )(5)把y =sin x 的图象上各点纵坐标不变,横坐标缩短为原来的12,所得图象对应的函数解析式为y =sin 12x .( × )(6)若函数y =A cos(ωx +φ)的最小正周期为T ,则函数图象的两个相邻对称中心之间的距离为T2.( √ )点自查1.(教材改编)y =2sin(12x -π3)的振幅,频率和初相分别为( )A .2,4π,π3B .2,14π,π3C .2,14π,-π3D .2,4π,-π3答案 C解析 由题意知A =2,f =1T =ω2π=14π,初相为-π3.2.(2020·山东)要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象( ) A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位答案 B解析 ∵y =sin ⎝⎛⎭⎫4x -π3=sin ⎣⎡⎦⎤4⎝⎛⎭⎫x -π12, ∴要得到y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象向右平移π12个单位. 3.(2020·青岛质检)将函数y =sin x 的图象上所有的点向右平行移动π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( ) A .y =sin(2x -π10)B .y =sin(2x -π5)C .y =sin(12x -π10)D .y =sin(12x -π20)答案 C解析 y =sin x π10−−−−−→右移个单位y =sin(x -π10)―――――→横坐标伸长到原来的2倍y =sin(12x -π10). 4.若函数y =sin(ωx +φ) (ω>0)的部分图象如图所示,则ω等于( )A .5B .4C .3D .2答案 B解析 由函数图象知T =π4×2=π2,ω=2πT =2ππ2=4.5.若将函数f (x )=sin(2x +π4)的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是________. 答案3π8解析 ∵函数f (x )=sin(2x +π4)的图象向右平移φ个单位得到g (x )=sin[2(x -φ)+π4]=sin(2x +π4-2φ),又∵g (x )是偶函数,∴π4-2φ=k π+π2(k ∈Z ),∴φ=-k π2-π8(k ∈Z ).当k =-1时,φ取得最小正值3π8.高考题型分类精讲题型一 函数y =A sin(ωx +φ)的图象及变换例1 (2020·湖北)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1) 请将上表数据补充完整,并直接写出函数f (x )的解析式;(2) 将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值.解 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数解析式为f (x )=5sin ⎝⎛⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6, 得g (x )=5sin ⎝⎛⎭⎫2x +2θ-π6. 因为函数y =sin x 图象的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝⎛⎭⎫5π12,0成中心对称, 所以令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z .由θ>0可知,当k =1时,θ取得最小值π6.引申探究在本例(2)中,将f (x )图象上所有点向左平移π6个单位长度,得到g (x )的图象,求g (x )的解析式,并写出g (x )图象的对称中心. 解 由(1)知f (x )=5sin(2x -π6),因此g (x )=5sin[2(x +π6)-π6]=5sin(2x +π6).因为y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +π6=k π,k ∈Z ,解得x =k π2-π12,k ∈Z .即y =g (x )图象的对称中心为(k π2-π12,0),k ∈Z .思维升华 (1)五点法作简图:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.把函数y =sin x 的图象上所有点的横坐标缩小到原来的一半,纵坐标保持不变,再把所得函数图象向左平移π4个单位,得到的函数图象的解析式是( ) A .y =cos 2x B .y =-sin 2x C .y =sin(2x -π4)D .y =sin(2x +π4)答案 A解析 由y =sin x 图象上所有点的横坐标缩小到原来的一半,纵坐标保持不变,所得图象的解析式为y =sin 2x ,再向左平移π4个单位得y =sin2(x +π4),即y =cos 2x .题型二 由图象确定y =A sin(ωx +φ)的解析式例2 已知函数f (x )=A sin(ωx +φ) (A >0,|φ|<π2,ω>0)的图象的一部分如图所示.(1)求f (x )的表达式; (2)试写出f (x )的对称轴方程.解 (1)观察图象可知A =2且点(0,1)在图象上, ∴1=2sin(ω·0+φ),即sin φ=12.∵|φ|<π2,∴φ=π6,又∵1112π是函数的一个零点且是图象递增穿过x 轴形成的零点,∴11π12ω+π6=2π,∴ω=2. ∴f (x )=2sin(2x +π6).(2)设2x +π6=B ,则函数y =2sin B 的对称轴方程为B =π2+k π,k ∈Z ,即2x +π6=π2+k π(k ∈Z ),解得x =k π2+π6(k ∈Z ),∴f (x )=2sin(2x +π6)的对称轴方程为x =k π2+π6(k ∈Z ).思维升华 求y =A sin(ωx +φ)+B (A >0,ω>0)解析式的步骤 (1)求A ,B ,确定函数的最大值M 和最小值m ,则A =M -m 2,B =M +m2. (2)求ω,确定函数的周期T ,则ω=2πT.(3)求φ,常用方法如下:①代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入.②五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.具体如下:“第一点”(即图象上升时与x 轴的交点)为ωx +φ=0;“第二点”(即图象的“峰点”)为ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)为ωx +φ=π;“第四点”(即图象的“谷点”)为ωx +φ=3π2;“第五点”为ωx +φ=2π.(2020·太原模拟)已知函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,则y =f (x +π6)取得最小值时x 的集合为( )A .{x |x =k π-π6,k ∈Z }B .{x |x =k π-π3,k ∈Z }C .{x |x =2k π-π6,k ∈Z }D .{x |x =2k π-π3,k ∈Z }答案 B解析 根据所给图象,周期T =4×(7π12-π3)=π,故π=2πω,∴ω=2,因此f (x )=sin(2x +φ),另外图象经过点(7π12,0),代入有2×7π12+φ=k π(k ∈Z ),再由|φ|<π2,得φ=-π6,∴f (x +π6)=sin(2x+π6),当2x +π6=-π2+2k π (k ∈Z ),即x =-π3+k π(k ∈Z )时,y =f (x +π6)取得最小值. 题型三 三角函数图象性质的应用 命题点1 三角函数模型的应用例3 (2020·陕西)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .10答案 C解析 由题干图易得y min =k -3=2,则k =5. ∴y max =k +3=8.命题点2 函数零点(方程根)问题例4 已知关于x 的方程2sin 2x -3sin 2x +m -1=0在⎝⎛⎭⎫π2,π上有两个不同的实数根,则m 的取值范围是________.答案 (-2,-1)解析 方程2sin 2x -3sin 2x +m -1=0可转化为 m =1-2sin 2x +3sin 2x =cos 2x +3sin 2x =2sin ⎝⎛⎭⎫2x +π6,x ∈⎝⎛⎭⎫π2,π. 设2x +π6=t ,则t ∈⎝⎛⎭⎫76π,136π, ∴题目条件可转化为m2=sin t ,t ∈⎝⎛⎭⎫76π,136π有两个不同的实数根. ∴y =m2和y =sin t ,t ∈⎝⎛⎭⎫76π,136π的图象有两个不同交点,如图:由图象观察知,m 2的范围为(-1,-12),故m 的取值范围是(-2,-1). 引申探究例4中,若将“有两个不同的实数根”改成“有实根”,则m 的取值范围是__________. 答案 [-2,1)解析 由例4知,m2的范围是⎣⎡⎭⎫-1,12, ∴-2≤m <1,∴m 的取值范围是[-2,1). 命题点3 图象与性质的综合应用例5 已知函数f (x )=3sin(ωx +φ)(ω>0,-π2≤φ<π2)的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)当x ∈[0,π2]时,求函数y =f (x )的最大值和最小值.解 (1)因为f (x )的图象上相邻两个最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2. 又因为f (x )的图象关于直线x =π3对称,所以2·π3+φ=k π+π2,k ∈Z ,由-π2≤φ<π2,得k =0,所以φ=π2-2π3=-π6.综上,ω=2,φ=-π6.(2)由(1)知f (x )=3sin(2x -π6),当x ∈[0,π2]时,-π6≤2x -π6≤5π6,∴当2x -π6=π2,即x =π3时,f (x )最大值=3;当2x -π6=-π6,即x =0时,f (x )最小值=-32.思维升华 (1)三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,建立数学模型,再利用三角函数的有关知识解决问题. (2)方程根的个数可转化为两个函数图象的交点个数.(3)研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.已知函数f (x )=cos(3x +π3),其中x ∈[π6,m ],若f (x )的值域是[-1,-32],则m 的取值范围是__________. 答案 [2π9,5π18]解析 画出函数的图象.由x ∈[π6,m ],可知5π6≤3x +π3≤3m +π3,因为f (π6)=cos 5π6=-32且f (2π9)=cos π=-1,要使f (x )的值域是[-1,-32], 只要2π9≤m ≤5π18,即m ∈[2π9,5π18].规范答题4.三角函数图象与性质的综合问题典例 (12分)已知函数f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π).(1)求f (x )的最小正周期;(2)若将f (x )的图象向右平移π6个单位长度,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.思维点拨 (1)先将f (x )化成y =A sin(ωx +φ)的形式再求周期;(2)将f (x )解析式中的x 换成x -π6,得g (x ),然后利用整体思想求最值.解 (1)f (x )=23sin(x 2+π4)cos(x 2+π4)-sin(x +π)=3cos x +sin x [3分]=2sin(x +π3),[5分]于是T =2π1=2π.[6分](2)由已知得g (x )=f (x -π6)=2sin(x +π6),[8分]∵x ∈[0,π],∴x +π6∈[π6,7π6],∴sin(x +π6)∈[-12,1],[10分]∴g (x )=2sin(x +π6)∈[-1,2].[11分]故函数g (x )在区间[0,π]上的最大值为2,最小值为-1.[12分]题模板解决三角函数图象与性质的综合问题的一般步骤: 第一步:(化简)将f (x )化为a sin x +b cos x 的形式; 第二步:(用辅助角公式)构造f (x )=a 2+b 2·(sin x ·a a 2+b 2+cos x ·ba 2+b2); 第三步:(求性质)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质; 第四步:(反思)反思回顾,查看关键点、易错点和答题规范.后作业认真做1.为了得到函数y =cos(2x +π3)的图象,可将函数y =sin 2x 的图象( )A .向左平移5π6个单位长度B .向右平移5π6个单位长度C .向左平移5π12个单位长度D .向右平移5π12个单位长度答案 C解析 由题意,得y =cos(2x +π3)=sin(2x +π3+π2)=sin 2(x +5π12),则它是由y =sin 2x 向左平移5π12个单位得到的,故选C. 2.若f (x )=sin(2x +φ)+b ,对任意实数x 都有f ⎝⎛⎭⎫x +π3=f (-x ),f ⎝⎛⎭⎫2π3=-1,则实数b 的值为( ) A .-2或0 B .0或1 C .±1 D .±2答案 A解析 由f ⎝⎛⎭⎫x +π3=f (-x )可得f (x )的图象关于直线x =π6对称,∴2×π6+φ=π2+k π,k ∈Z .当直线x =π6经过最高点时,φ=π6;当直线x =π6经过最低点时,φ=-56π.若f (x )=sin ⎝⎛⎭⎫2x +π6+b ,由f ⎝⎛⎭⎫23π=-1,得b =0;若f (x )=sin ⎝⎛⎭⎫2x -56π+b ,由f ⎝⎛⎭⎫23π=-1,得b =-2.所以b =-2或b =0.3.已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( )A.π2B.2π3 C .π D .2π 答案 C解析 f (x )=3sin ωx +cos ωx =2sin(ωx +π6)(ω>0).由2sin(ωx +π6)=1,得sin(ωx +π6)=12,∴ωx +π6=2k π+π6或ωx +π6=2k π+56π(k ∈Z ).令k =0,得ωx 1+π6=π6,ωx 2+π6=56π,∴x 1=0,x 2=2π3ω.由|x 1-x 2|=π3,得2π3ω=π3,∴ω=2.故f (x )的最小正周期T =2π2=π.4.函数f (x )=sin(ωx +φ) (x ∈R ,ω>0,|φ|<π2)的部分图象如图所示,如果x 1,x 2∈(-π6,π3)且f (x 1)=f (x 2),则f (x 1+x 2)等于( )A.12 B.32C.22D .1答案 B解析 观察图象可知,A =1,T =π, ∴ω=2,f (x )=sin(2x +φ).将(-π6,0)代入上式得sin(-π3+φ)=0,由|φ|<π2,得φ=π3,则f (x )=sin(2x +π3).函数图象的对称轴为x =-π6+π32=π12.又x 1,x 2∈(-π6,π3),且f (x 1)=f (x 2),∴x 1+x 22=π12,∴x 1+x 2=π6,∴f (x 1+x 2)=sin(2×π6+π3)=32.故选B.5.函数f (x )=sin(2x +φ)⎝⎛⎭⎫|φ|<π2的图象向左平移π6个单位后所得函数图象的解析式是奇函数,则函数f (x )在⎣⎡⎦⎤0,π2上的最小值为( ) A .-32B .-12C.12 D.32答案 A解析 由函数f (x )的图象向左平移π6个单位得g (x )=sin ⎝⎛⎭⎫2x +φ+π3的图象, 因为是奇函数,所以φ+π3=k π,k ∈Z ,又因为|φ|<π2,所以φ=-π3,所以f (x )=sin ⎝⎛⎭⎫2x -π3. 又x ∈⎣⎡⎦⎤0,π2,所以2x -π3∈⎣⎡⎦⎤-π3,2π3, 所以当x =0时,f (x )取得最小值为-32. 6.(2020·太原模拟)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期是π,若将f (x )的图象向右平移π3个单位后得到的图象关于原点对称,则函数f (x )的图象( )A .关于直线x =π12对称B .关于直线x =5π12对称C .关于点⎝⎛⎭⎫π12,0对称 D .关于点⎝⎛⎭⎫5π12,0对称答案 B解析 由题意知2πω=π,∴ω=2;又由f (x )的图象向右平移π3个单位后得到y =sin[2⎝⎛⎭⎫x -π3+φ]=sin ⎝⎛⎭⎫2x +φ-23π,此时关于原点对称,∴-2π3+φ=k π,k ∈Z ,∴φ=2π3+k π,k ∈Z ,又|φ|<π2,∴φ=-π3,∴f (x )=sin ⎝⎛⎭⎫2x -π3. 当x =π12时,2x -π3=-π6,∴A 、C 错误; 当x =5π12时,2x -π3=π2,∴B 正确,D 错误.7.(2020·全国丙卷)函数y =sin x -3cos x 的图象可由函数y =sin x +3cos x 的图象至少向右平移________个单位长度得到. 答案2π3解析 y =sin x -3cos x =2sin ⎝⎛⎭⎫x -π3,y =sin x +3cos x =2sin ⎝⎛⎭⎫x +π3,因此至少向右平移2π3个单位长度得到.8.(2020·长春质检)设偶函数f (x )=A sin(ωx +φ) (A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f (16)的值为________.答案34解析 由题意知,点M 到x 轴的距离是12,根据题意可设f (x )=12cos ωx ,又由题图知12·2πω=1,所以ω=π,所以f (x )=12cos πx ,故f (16)=12cos π6=34.9.(2020·天津)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________. 答案π2解析 f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π4, 因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z ,所以ω2=π4+2k π,k ∈Z .又ω-(-ω)≤2πω2,即ω2≤π2,即ω2=π4,所以ω=π2.10.(2020·邢台模拟)先把函数f (x )=sin(x -π6)的图象上各点的横坐标变为原来的12(纵坐标不变),再把新得到的图象向右平移π3个单位,得到y =g (x )的图象.当x ∈(π4,3π4)时,函数g (x )的值域为________. 答案 (-32,1] 解析 依题意得 g (x )=sin[2(x -π3)-π6]=sin(2x -5π6),当x ∈(π4,3π4)时,2x -5π6∈(-π3,2π3),此时sin(2x -5π6)∈(-32,1],故g (x )的值域是(-32,1]. 11.已知函数y =A sin(ωx +φ) (A >0,ω>0)的图象过点P (π12,0),图象上与点P 最近的一个最高点是Q (π3,5).(1)求函数的解析式; (2)求函数f (x )的递增区间.解 (1)依题意得A =5,周期T =4(π3-π12)=π,∴ω=2ππ=2.故y =5sin(2x +φ),又图象过点P (π12,0),∴5sin(π6+φ)=0,由已知可得π6+φ=0,∴φ=-π6,∴y =5sin(2x -π6).(2)由-π2+2k π≤2x -π6≤π2+2k π,k ∈Z ,得-π6+k π≤x ≤π3+k π,k ∈Z ,故函数f (x )的递增区间为[k π-π6,k π+π3] (k ∈Z ).12.已知函数f (x )=3cos 2x +sin x ·cos x -32. (1)求函数f (x )的最小正周期T 和函数f (x )的单调递增区间; (2)若函数f (x )的对称中心为(x,0),求x ∈[0,2π)的所有x 的和. 解 (1)由题意得f (x )=sin(2x +π3),∴T =2π2=π,令-π2+2k π≤2x +π3≤π2+2k π,k ∈Z .可得函数f (x )的单调递增区间为[-5π12+k π,π12+k π],k ∈Z .(2)令2x +π3=k π,k ∈Z ,可得x =-π6+k π2,k ∈Z .∵x ∈[0,2π),∴k 可取1,2,3,4. ∴所有满足条件的x 的和为2π6+5π6+8π6+11π6=13π3. *13.(2020·潍坊模拟)函数f (x )=A sin(ωx +φ) (A >0,ω>0,0<φ<π2)的部分图象如图所示.(1)求f (x )的解析式;(2)设g (x )=[f (x -π12)]2,求函数g (x )在x ∈[-π6,π3]上的最大值,并确定此时x 的值. 解 (1)由题图知A =2,T 4=π3, 则2πω=4×π3,∴ω=32. 又f (-π6)=2sin[32×(-π6)+φ] =2sin(-π4+φ)=0, ∴sin(φ-π4)=0, ∵0<φ<π2,∴-π4<φ-π4<π4, ∴φ-π4=0,即φ=π4, ∴f (x )的解析式为f (x )=2sin(32x +π4). (2)由(1)可得f (x -π12)=2sin[32(x -π12)+π4] =2sin(32x +π8), ∴g (x )=[f (x -π12)]2=4×1-cos (3x +π4)2=2-2cos(3x +π4),∵x ∈[-π6,π3],∴-π4≤3x +π4≤5π4, ∴当3x +π4=π,即x =π4时,g (x )max =4.。
4.3三角函数的图像与性质同步练习1.已知函数f (x )=sin(ωx +π4) (ω>0)的最小正周期为π,则f (π8)等于( )A .1 B.12 C .-1 D .-12答案 A解析 ∵T =π,∴ω=2,∴f (π8)=sin(2×π8+π4)=sin π2=1.2.若函数f (x )=-cos 2x ,则f (x )的一个递增区间为( ) A .(-π4,0)B .(0,π2)C .(π2,3π4)D .(3π4,π)答案 B解析 由f (x )=-cos 2x 知递增区间为[k π,k π+π2],k ∈Z ,故只有B 项满足.3.关于函数y =tan(2x -π3),下列说法正确的是( )A .是奇函数B .在区间(0,π3)上单调递减C .(π6,0)为其图象的一个对称中心D .最小正周期为π 答案 C解析 函数y =tan(2x -π3)是非奇非偶函数,A 错误;在区间(0,π3)上单调递增,B 错误;最小正周期为π2,D 错误.∵当x =π6时,tan(2×π6-π3)=0,∴(π6,0)为其图象的一个对称中心,故选C.4.(2020·潍坊模拟)已知函数f (x )=2sin(ωx -π6)+1(x ∈R )的图象的一条对称轴为x =π,其中ω为常数,且ω∈(1,2),则函数f (x )的最小正周期为( ) A.3π5 B.6π5 C.9π5 D.12π5答案 B解析 由函数f (x )=2sin(ωx -π6)+1 (x ∈R )的图象的一条对称轴为x =π,可得ωπ-π6=k π+π2,k ∈Z ,∴ω=k +23,∴ω=53,从而得函数f (x )的最小正周期为2π53=6π5.5.已知函数f (x )=-2sin(2x +φ)(|φ|<π),若f (π8)=-2,则f (x )的一个单调递减区间是( )A .[-π8,3π8]B .[π8,9π8]C .[-3π8,π8]D .[π8,5π8]答案 C解析 由f (π8)=-2,得f (π8)=-2sin(2×π8+φ)=-2sin(π4+φ)=-2, 所以sin(π4+φ)=1.因为|φ|<π,所以φ=π4.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z .当k =0时,-3π8≤x ≤π8,故选C.6.若函数f (x )=sin(ωx +φ)(ω>0且|φ|<π2)在区间[π6,2π3]上是单调减函数,且函数值从1减少到-1,则f (π4)等于( )A.12B.22C.32 D .1答案 C解析 由题意得函数f (x )的周期T =2(2π3-π6)=π,所以ω=2,此时f (x )=sin(2x +φ),将点(π6,1)代入上式得sin(π3+φ)=1 (|φ|<π2),所以φ=π6,所以f (x )=sin(2x +π6), 于是f (π4)=sin(π2+π6)=cos π6=32.7.函数y =2sin x -1的定义域为______________. 答案 [2k π+π6,2k π+56π],k ∈Z解析 由2sin x -1≥0,得sin x ≥12,∴2k π+π6≤x ≤2k π+56π,k ∈Z .8.函数y =cos 2x +sin x (|x |≤π4)的最小值为___________________.答案 1-22解析 令t =sin x ,∵|x |≤π4,∴t ∈⎣⎢⎢⎡⎦⎥⎥⎤-22,22. ∴y =-t 2+t +1=-⎝⎛⎭⎪⎫t -122+54,∴当t =-22时,y min =1-22.9.函数y =cos(π4-2x )的单调减区间为______________.答案 [k π+π8,k π+5π8](k ∈Z )解析 由y =cos(π4-2x )=cos(2x -π4),得2k π≤2x -π4≤2k π+π (k ∈Z ),解得k π+π8≤x ≤k π+5π8(k ∈Z ),所以函数的单调减区间为[k π+π8,k π+5π8](k ∈Z ).10.(2020·威海模拟)若f (x )=2sin ωx +1 (ω>0)在区间[-π2,2π3]上是增函数,则ω的取值范围是__________. 答案 (0,34]解析 方法一 由2k π-π2≤ωx ≤2k π+π2,k ∈Z ,得f (x )的增区间是[2k πω-π2ω,2k πω+π2ω],k ∈Z .因为f (x )在[-π2,2π3]上是增函数,所以[-π2,2π3]⊆[-π2ω,π2ω].所以-π2≥-π2ω且2π3≤π2ω,所以ω∈(0,34].方法二 因为x ∈[-π2,2π3],ω>0.所以ωx ∈[-ωπ2,2πω3],又f (x )在区间[-π2,2π3]上是增函数,所以[-ωπ2,2πω3]⊆[-π2,π2],则⎩⎪⎨⎪⎧-ωπ2≥-π2,2πω3≤π2,又ω>0,得0<ω≤34.11.设函数f (x )=sin ()2x +φ(-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8.(1)求φ;(2)求函数y =f (x )的单调递增区间. 解 (1)令2×π8+φ=k π+π2,k ∈Z ,∴φ=k π+π4,k ∈Z ,又-π<φ<0,则φ=-3π4.(2)由(1)得f (x )=sin ⎝⎛⎭⎪⎫2x -3π4,令-π2+2k π≤2x -3π4≤π2+2k π,k ∈Z ,可解得π8+k π≤x ≤5π8+k π,k ∈Z ,因此y =f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤π8+k π,5π8+k π,k ∈Z .12.(2020·北京)已知函数f (x )=sin x -23sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值.解 (1)因为f (x )=sin x +3cos x - 3=2sin ⎝⎛⎭⎪⎫x +π3-3,所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3,所以π3≤x +π3≤π.当x +π3=π,即x =2π3时,f (x )取得最小值.所以f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值为f ⎝ ⎛⎭⎪⎫2π3=- 3.*13.已知a >0,函数f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1. (1)求常数a ,b 的值;(2)设g (x )=f ⎝ ⎛⎭⎪⎫x +π2且lg g (x )>0,求g (x )的单调区间.解 (1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,∴sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1,∴-2a sin ⎝⎛⎭⎪⎫2x +π6∈[-2a ,a ],∴f (x )∈[b,3a +b ],又∵-5≤f (x )≤1, ∴b =-5,3a +b =1,因此a =2,b =-5.(2)由(1)得f (x )=-4sin ⎝⎛⎭⎪⎫2x +π6-1,g (x )=f ⎝ ⎛⎭⎪⎫x +π2=-4sin ⎝ ⎛⎭⎪⎫2x +7π6-1=4sin ⎝⎛⎭⎪⎫2x +π6-1,又由lg g (x )>0,得g (x )>1,∴4sin ⎝ ⎛⎭⎪⎫2x +π6-1>1,∴sin ⎝⎛⎭⎪⎫2x +π6>12,∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝⎛⎦⎥⎤k π,k π+π6,k ∈Z .又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .∴g (x )的单调减区间为⎝⎛⎭⎪⎫k π+π6,k π+π3,k ∈Z .。
4.4.4 y =Asin(ωx +φ)的图像与应用同步练习1.为了得到函数y =cos(2x +π3)的图象,可将函数y =sin 2x 的图象( )A .向左平移5π6个单位长度B .向右平移5π6个单位长度C .向左平移5π12个单位长度D .向右平移5π12个单位长度答案 C解析 由题意,得y =cos(2x +π3)=sin(2x +π3+π2)=sin 2(x +5π12),则它是由y =sin 2x 向左平移5π12个单位得到的,故选C. 2.若f (x )=sin(2x +φ)+b ,对任意实数x 都有f ⎝ ⎛⎭⎪⎫x +π3=f (-x ),f ⎝ ⎛⎭⎪⎫2π3=-1,则实数b 的值为( ) A .-2或0 B .0或1 C .±1 D .±2答案 A解析 由f ⎝ ⎛⎭⎪⎫x +π3=f (-x )可得f (x )的图象关于直线x =π6对称,∴2×π6+φ=π2+k π,k ∈Z .当直线x =π6经过最高点时,φ=π6;当直线x =π6经过最低点时,φ=-56π.若f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6+b ,由f ⎝ ⎛⎭⎪⎫23π=-1,得b =0;若f (x )=sin ⎝ ⎛⎭⎪⎫2x -56π+b ,由f ⎝ ⎛⎭⎪⎫23π=-1,得b =-2.所以b =-2或b =0.3.已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( ) A.π2 B.2π3 C .π D .2π答案 C解析 f (x )=3sin ωx +cos ωx =2sin(ωx +π6)(ω>0).由2sin(ωx +π6)=1,得sin(ωx +π6)=12,∴ωx +π6=2k π+π6或ωx +π6=2k π+56π(k ∈Z ).令k =0,得ωx 1+π6=π6,ωx 2+π6=56π,∴x 1=0,x 2=2π3ω.由|x 1-x 2|=π3,得2π3ω=π3,∴ω=2.故f (x )的最小正周期T =2π2=π.4.函数f (x )=sin(ωx +φ) (x ∈R ,ω>0,|φ|<π2)的部分图象如图所示,如果x 1,x 2∈(-π6,π3)且f (x 1)=f (x 2),则f (x 1+x 2)等于( )A.12B.32C.22D .1答案 B解析 观察图象可知,A =1,T =π, ∴ω=2,f (x )=sin(2x +φ).将(-π6,0)代入上式得sin(-π3+φ)=0,由|φ|<π2,得φ=π3,则f (x )=sin(2x +π3).函数图象的对称轴为x =-π6+π32=π12.又x 1,x 2∈(-π6,π3),且f (x 1)=f (x 2),∴x 1+x 22=π12, ∴x 1+x 2=π6,∴f (x 1+x 2)=sin(2×π6+π3)=32.故选B.5.函数f (x )=sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2的图象向左平移π6个单位后所得函数图象的解析式是奇函数,则函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最小值为( ) A .-32B .-12C.12D.32答案 A解析 由函数f (x )的图象向左平移π6个单位得g (x )=sin ⎝⎛⎭⎪⎫2x +φ+π3的图象,因为是奇函数,所以φ+π3=k π,k ∈Z ,又因为|φ|<π2,所以φ=-π3,所以f (x )=sin ⎝⎛⎭⎪⎫2x -π3.又x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,所以当x =0时,f (x )取得最小值为-32.6.(2020·太原模拟)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期是π,若将f (x )的图象向右平移π3个单位后得到的图象关于原点对称,则函数f (x )的图象( )A .关于直线x =π12对称B .关于直线x =5π12对称C .关于点⎝ ⎛⎭⎪⎫π12,0对称D .关于点⎝ ⎛⎭⎪⎫5π12,0对称 答案 B解析 由题意知2πω=π,∴ω=2;又由f (x )的图象向右平移π3个单位后得到y =sin[2⎝ ⎛⎭⎪⎫x -π3+φ]=sin ⎝⎛⎭⎪⎫2x +φ-23π,此时关于原点对称,∴-2π3+φ=k π,k ∈Z ,∴φ=2π3+k π,k ∈Z ,又|φ|<π2,∴φ=-π3,∴f (x )=sin ⎝⎛⎭⎪⎫2x -π3.当x =π12时,2x -π3=-π6,∴A 、C 错误; 当x =5π12时,2x -π3=π2,∴B 正确,D 错误.7.(2020·全国丙卷)函数y =sin x -3cos x 的图象可由函数y =sin x +3cos x 的图象至少向右平移________个单位长度得到. 答案2π3解析 y =sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3,y =sin x +3cos x =2sin ⎝⎛⎭⎪⎫x +π3,因此至少向右平移2π3个单位长度得到.8.(2020·长春质检)设偶函数f (x )=A sin(ωx +φ) (A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f (16)的值为________.答案 34解析 由题意知,点M 到x 轴的距离是12,根据题意可设f (x )=12cos ωx ,又由题图知12·2πω=1,所以ω=π,所以f (x )=12cos πx ,故f (16)=12cos π6=34.9.(2020·天津)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________. 答案π2解析 f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎪⎫ωx +π4,因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2kπ+π2,k ∈Z ,所以ω2=π4+2k π,k ∈Z .又ω-(-ω)≤2πω2,即ω2≤π2,即ω2=π4,所以ω=π2. 10.(2020·邢台模拟)先把函数f (x )=sin(x -π6)的图象上各点的横坐标变为原来的12(纵坐标不变),再把新得到的图象向右平移π3个单位,得到y =g (x )的图象.当x ∈(π4,3π4)时,函数g (x )的值域为________. 答案 (-32,1]解析 依题意得g (x )=sin[2(x -π3)-π6]=sin(2x -5π6),当x ∈(π4,3π4)时,2x -5π6∈(-π3,2π3),此时sin(2x -5π6)∈(-32,1],故g (x )的值域是(-32,1]. 11.已知函数y =A sin(ωx +φ) (A >0,ω>0)的图象过点P (π12,0),图象上与点P 最近的一个最高点是Q (π3,5).(1)求函数的解析式; (2)求函数f (x )的递增区间.解 (1)依题意得A =5,周期T =4(π3-π12)=π,∴ω=2ππ=2.故y =5sin(2x +φ),又图象过点P (π12,0),∴5sin(π6+φ)=0,由已知可得π6+φ=0,∴φ=-π6,∴y =5sin(2x -π6).(2)由-π2+2k π≤2x -π6≤π2+2k π,k ∈Z ,得-π6+k π≤x ≤π3+k π,k ∈Z ,故函数f (x )的递增区间为[k π-π6,k π+π3] (k ∈Z ).12.已知函数f (x )=3cos 2x +sin x ·cos x -32.(1)求函数f (x )的最小正周期T 和函数f (x )的单调递增区间; (2)若函数f (x )的对称中心为(x,0),求x ∈[0,2π)的所有x 的和. 解 (1)由题意得f (x )=sin(2x +π3),∴T =2π2=π,令-π2+2k π≤2x +π3≤π2+2k π,k ∈Z .可得函数f (x )的单调递增区间为[-5π12+k π,π12+k π],k ∈Z .(2)令2x +π3=k π,k ∈Z ,可得x =-π6+k π2,k ∈Z .∵x ∈[0,2π),∴k 可取1,2,3,4.∴所有满足条件的x 的和为2π6+5π6+8π6+11π6=13π3.*13.(2020·潍坊模拟)函数f (x )=A sin(ωx +φ) (A >0,ω>0,0<φ<π2)的部分图象如图所示.(1)求f (x )的解析式;(2)设g (x )=[f (x -π12)]2,求函数g (x )在x ∈[-π6,π3]上的最大值,并确定此时x 的值.解 (1)由题图知A =2,T 4=π3,则2πω=4×π3,∴ω=32.又f (-π6)=2sin[32×(-π6)+φ] =2sin(-π4+φ)=0, ∴sin(φ-π4)=0, ∵0<φ<π2,∴-π4<φ-π4<π4, ∴φ-π4=0,即φ=π4, ∴f (x )的解析式为f (x )=2sin(32x +π4). (2)由(1)可得f (x -π12)=2sin[32(x -π12)+π4] =2sin(32x +π8), ∴g (x )=[f (x -π12)]2=4×1-cos 3x +π42=2-2cos(3x +π4), ∵x ∈[-π6,π3],∴-π4≤3x +π4≤5π4, ∴当3x +π4=π,即x =π4时,g (x )max =4.。
1.1集合及其运算同步练习1.(2020·四川)设集合A ={x |-2≤x ≤2},Z 为整数集,则集合A ∩Z 中元素的个数是( )A .3B .4C .5D .62.设集合A ={2,3,4},B ={2,4,6},若x ∈A 且x ∉B ,则x 等于( )A .2B .3C .4D .63.已知集合A ={x |1<x <3},B ={x |2m <x <1-m },若A ∩B =∅,则实数m 的取值范围是( )A .[13,+∞) B .[0,13) C .(-∞,0] D .[0,+∞)4.(2020·潍坊调研)已知全集U =R ,集合A ={1,2,3,4,5},B ={x ∈R |x ≥2},则下图中阴影部分所表示的集合为( )A .{0,1}B .{1}C .{1,2}D .{0,1,2}5.若集合A ={(1,2),(3,4)},则集合A 的真子集的个数是( )A .16B .8C .4D .36.已知集合A ={x |x 2-x -2<0},B ={x |-1<x <1},则( )A .AB B .B AC .A =BD .A ∩B =∅7.(2020·宁夏银川二中考试)已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是( )A .(0,1]B .[1,+∞)C .(0,1)D .(1,+∞)8.(2019·浙江)已知集合P ={x |x 2-2x ≥0},Q ={x |1<x ≤2},则(∁R P )∩Q 等于( )A .[0,1)B .(0,2]C .(1,2)D .[1,2]9.设集合Q ={x |2x 2-5x ≤0,x ∈N },且P ⊆Q ,则满足条件的集合P 的个数是( )A .3B .4C .7D .810.设集合M =⎩⎨⎧⎭⎬⎫x |m ≤x ≤m +34,N =⎩⎨⎧⎭⎬⎫x |n -13≤x ≤n ,且M ,N 都是集合{x |0≤x ≤1}的子集,如果把b -a 叫作集合{x |a ≤x ≤b }的“长度”,那么集合M ∩N 的“长度”的最小值是( )A.13B.23C.112D.51211.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为__________.12.(2020·南阳月考)设全集U =R ,集合A ={x |y =x 2-2x -3},B ={y |y =e x +1},则A ∪B =__________.13.已知集合A ={x |x 2-2x +a >0},且1∉A ,则实数a 的取值范围是__________.14.已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是________.15.已知集合A ={x |4≤2x ≤16},B =[a ,b ],若A ⊆B ,则实数a -b 的取值范围是________.。
第一章集合与常用逻辑用语1.2命题及其关系、充分条件与必要条件课内基础通关1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,同时q是p的必要条件;(2)如果p⇒q,但q⇏p,则p是q的充分不必要条件;(3)如果p⇒q,且q⇒p,则p是q的充要条件;(4)如果q⇒p,且p⇏q,则p是q的必要不充分条件;(5)如果p⇏q,且q⇏p,则p是q的既不充分也不必要条件.课外知识延伸从集合角度理解充分条件与必要条件若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则关于充分条件、必要条件又可以叙述为(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件;(4)若A B,则p是q的充分不必要条件;(5)若A B,则p是q的必要不充分条件;(6)若A B且A⊉B,则p是q的既不充分也不必要条件.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)“x2+2x-3<0”是命题.( ×)(2)命题“若p,则q”的否命题是“若p,则綈q”.( ×)(3)若一个命题是真命题,则其逆否命题也是真命题.( √ ) (4)当q 是p 的必要条件时,p 是q 的充分条件.( √ )(5)当p 是q 的充要条件时,也可说成q 成立当且仅当p 成立.( √ ) (6)若p 是q 的充分不必要条件,则綈p 是綈q 的必要不充分条件.( √ )点自查1.下列命题为真命题的是( ) A .若1x =1y,则x =yB .若x 2=1,则x =1 C .若x =y ,则x =y D .若x <y ,则x 2<y 2答案 A2.(教材改编)命题“若x 2>y 2,则x >y ”的逆否命题是( ) A .若x <y ,则x 2<y 2B .若x ≤y ,则x 2≤y 2C .若x >y ,则x 2>y 2D .若x ≥y ,则x 2≥y 2答案 B解析根据原命题和其逆否命题的条件和结论的关系,得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”.3.(教材改编)“(x-1)(x+2)=0”是“x=1”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析由(x-1)(x+2)=0可得x=1或x=-2,∵{1}{1,-2},∴“(x-1)(x+2)=0”是“x=1”的必要不充分条件.4.(2020·北京)设a,b是向量,则“|a|=|b|”是“|a+b|=|a-b|”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 D解析若|a|=|b|成立,则以a,b为邻边构成的四边形为菱形,a+b,a-b表示该菱形的对角线,而菱形的对角线不一定相等,所以|a+b|=|a-b|不一定成立;反之,若|a+b|=|a-b|成立,则以a,b为邻边构成的四边形为矩形,而矩形的邻边不一定相等,所以|a|=|b|不一定成立,所以“|a|=|b|”是“|a+b|=|a-b|”的既不充分也不必要条件.5.(教材改编)下列命题:①“x=2”是“x2-4x+4=0”的必要不充分条件;②“圆心到直线的距离等于半径”是“这条直线为圆的切线”的充分必要条件;③“sin α=sin β”是“α=β”的充要条件;④“ab≠0”是“a≠0”的充分不必要条件.其中为真命题的是________.(填序号)答案②④高考题型分类精讲题型一命题及其关系例1 (2020·潍坊一模)有下列四个命题:①若“xy=1,则x,y互为倒数”的逆命题;②“面积相等的三角形是全等三角形”的否命题;③“若m≤1,则x2-2x+m=0有实数解”的逆否命题;④“若A∩B=B,则A⊆B”的逆否命题.其中真命题为( )A.①②B.②③C.①④D.①②③答案 D解析①的逆命题:“若x,y互为倒数,则xy=1”是真命题;②的否命题:“面积不相等的三角形不是全等三角形”是真命题;③的逆否命题:“若x2-2x+m=0没有实数解,则m>1”是真命题;命题④是假命题,所以它的逆否命题也是假命题.故选D.思维升华(1)写一个命题的其他三种命题时,需注意:①对于不是“若p,则q”形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.(2)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.(1)命题“若x>0,则x2>0”的否命题是( )A.若x>0,则x2≤0B.若x2>0,则x>0C.若x≤0,则x2≤0D.若x2≤0,则x≤0(2)某食品的广告词为“幸福的人们都拥有”,这句话的等价命题是( )A.不拥有的人们会幸福B.幸福的人们不都拥有C.拥有的人们不幸福D.不拥有的人们不幸福答案(1)C (2)D题型二充分必要条件的判定例2 (1)(2020·四川)设a,b都是不等于1的正数,则“3a>3b>3”是“log a3<log b3”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件(2)已知条件p:x>1或x<-3,条件q:5x-6>x2,则綈p是綈q的( )B.必要不充分条件C.充要条件D.既不充分也不必要条件答案(1)B (2)A解析(1)∵3a>3b>3,∴a>b>1,此时log a3<log b3正确;反之,若log a3<log b3,则不一定得到3a>3b>3,例如当a=12,b=13时,log a3<log b3成立,但推不出a>b>1.故“3a>3b>3”是“log a3<log b3”的充分不必要条件.(2)由5x-6>x2,得2<x<3,即q:2<x<3.所以q⇒p,p⇏q,所以綈p⇒綈q,綈q⇏綈p,所以綈p是綈q的充分不必要条件,故选A.思维升华充分条件、必要条件的三种判定方法(1)定义法:根据p⇒q,q⇒p进行判断,适用于定义、定理判断性问题.(2)集合法:根据p,q成立的对象的集合之间的包含关系进行判断,多适用于命题中涉及字母的范围的推断问题.(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题.(1)(2020·四川)设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)已知p:x+y≠-2,q:x,y不都是-1,则p是q的( )B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 (1)A (2)A解析 (1)当x >1,y >1时,x +y >2一定成立,即p ⇒q , 当x +y >2时,可以x =-1,y =4,即q ⇏p , 故p 是q 的充分不必要条件.(2)(等价法)因为p :x +y ≠-2,q :x ≠-1或y ≠-1, 所以綈p :x +y =-2,綈q :x =-1且y =-1, 因为綈q ⇒綈p 但綈p ⇏綈q , 所以綈q 是綈p 的充分不必要条件, 即p 是q 的充分不必要条件,故选A. 题型三 充分必要条件的应用例3 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.解 由x 2-8x -20≤0,得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2, ∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3]. 引申探究1.本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件. 解 若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,方程组无解,即不存在实数m ,使x ∈P 是x ∈S 的充要条件.2.本例条件不变,若x ∈綈P 是x ∈綈S 的必要不充分条件,求实数m 的取值范围. 解 由例题知P ={x |-2≤x ≤10}, ∵綈P 是綈S 的必要不充分条件, ∴P ⇒S 且S ⇏P .∴[-2,10][1-m,1+m ].∴⎩⎪⎨⎪⎧1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10.∴m ≥9,即m 的取值范围是[9,+∞).思维升华 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意: (1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解. (2)要注意区间端点值的检验.(1)已知命题p :a ≤x ≤a +1,命题q :x2-4x <0,若p 是q 的充分不必要条件,则a 的取值范围是________________.(2)已知命题p :-4<x -a <4,命题q :(x -2)(3-x )>0,若綈p 是綈q 的充分条件,则实数a 的取值范围是________.答案 (1)(0,3) (2)[-1,6]解析 (1)令M ={x |a ≤x ≤a +1},N ={x |x 2-4x <0}={x |0<x <4}. ∵p 是q 的充分不必要条件,∴MN ,∴⎩⎪⎨⎪⎧a >0,a +1<4,解得0<a <3.故答案为(0,3).(2)由p :-4<x -a <4成立,得a -4<x <a +4; 由q :(x -2)(3-x )>0成立,得2<x <3,所以綈p :x ≤a -4或x ≥a +4,綈q :x ≤2或x ≥3,又綈p 是綈q 的充分条件,所以⎩⎪⎨⎪⎧a -4≤2,a +4≥3,解得-1≤a ≤6,故答案为[-1,6].数学思想总结1.等价转化思想在充要条件中的应用典例(1)(2020·湖北七校联考)已知p,q是两个命题,那么“p∧q是真命题”是“綈p是假命题”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(2)已知条件p:x2+2x-3>0;条件q:x>a,且綈q的一个充分不必要条件是綈p,则a的取值范围是( )A.[1,+∞) B.(-∞,1]C.[-1,+∞) D.(-∞,-3]思想方法指导等价转化是将一些复杂的、生疏的问题转化成简单的、熟悉的问题,在解题中经常用到.本题可将题目中条件间的关系和集合间的关系相互转化.解析(1)因为“p∧q是真命题”等价于“p,q都为真命题”,且“綈p是假命题”等价于“p 是真命题”,所以“p∧q是真命题”是“綈p是假命题”的充分不必要条件.(2)由x2+2x-3>0,得x<-3或x>1,由綈q的一个充分不必要条件是綈p,可知綈p是綈q 的充分不必要条件,等价于q是p的充分不必要条件.∴{x|x>a}{x|x<-3或x>1},∴a≥1.答案(1)A (2)A后作业认真做1.命题“若α=π4,则tan α=1”的否命题是( ) A .若α≠π4,则tan α≠1 B .若α=π4,则tan α≠1 C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4答案 A2.命题“如果x ≥a 2+b 2,那么x ≥2ab ”的逆否命题是( )A .如果x <a 2+b 2,那么x <2abB .如果x ≥2ab ,那么x ≥a 2+b 2C .如果x <2ab ,那么x <a 2+b 2D .如果x ≥a 2+b 2,那么x <2ab答案 C解析 命题“若p ,则q ”的逆否命题是“若綈q ,则綈p ”,“≥”的否定是“<”.故答案C 正确.3.(2020·山东重点中学模拟)已知命题p :“正数a 的平方不等于0”,命题q :“若a 不是正数,则它的平方等于0”,则q 是p 的( )A .逆命题B .否命题C .逆否命题D .否定 答案 B解析 命题p :“正数a 的平方不等于0”写成“若a 是正数,则它的平方不等于0”,从而q是p 的否命题.4.(2020·重庆)“x >1”是“log 12(x +2)<0”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件答案 B 解析 由x >1⇒x +2>3⇒log 12(x +2)<0,log 12(x +2)<0⇒x +2>1⇒x >-1,故“x >1”是“log 12(x +2)<0”成立的充分不必要条件.故选B.5.(2020·山东)已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 若直线a 和直线b 相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b 可能平行或异面或相交,故选A.6.已知集合A ={x ∈R |12<2x <8},B ={x ∈R |-1<x <m +1},若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是( )A .{m |m ≥2}B .{m |m ≤2}C .{m |m >2}D .{m |-2<m <2} 答案 C解析 A ={x ∈R |12<2x <8}={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A ,∴A B ,∴m +1>3,即m >2,故选C.7.设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 C解析 由Venn 图易知充分性成立.反之,A ∩B =∅时,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.8.函数f (x )=⎩⎪⎨⎪⎧ log2x ,x >0,-2x +a ,x ≤0有且只有一个零点的充分不必要条件是( )A .a <0B .0<a <12C.12<a <1 D .a ≤0或a >1 答案 A解析 因为函数f (x )过点(1,0),所以函数f (x )有且只有一个零点⇔函数y =-2x +a (x ≤0)没有零点⇔函数y =2x(x ≤0)与直线y =a 无公共点.由数形结合,可得a ≤0或a >1. 观察选项,根据集合间关系得{a |a <0}{a |a ≤0或a >1},故选A.9.设a ,b 为正数,则“a -b >1”是“a 2-b 2>1”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)答案 充分不必要解析 ∵a -b >1,即a >b +1.又∵a ,b 为正数,∴a 2>(b +1)2=b 2+1+2b >b 2+1,即a 2-b 2>1成立,反之,当a =3,b =1时,满足a 2-b 2>1,但a -b >1不成立.所以“a -b >1”是“a 2-b 2>1”的充分不必要条件.10.有三个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题;②“若a >b ,则a 2>b 2”的逆否命题;③“若x ≤-3,则x 2+x -6>0”的否命题.其中真命题的序号为____________.答案 ①解析 命题①为“若x ,y 互为相反数,则x +y =0”是真命题;因为命题“若a >b ,则a 2>b 2”是假命题,故命题②是假命题;命题③为“若x >-3,则x 2+x -6≤0”,因为x 2+x -6≤0⇔-3≤x ≤2,故命题③是假命题.综上知只有命题①是真命题.11.给定两个命题p 、q ,若綈p 是q 的必要不充分条件,则p 是綈q 的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)答案 充分不必要解析 ∵綈p 是q 的必要不充分条件,∴q ⇒綈p 但綈p ⇏q ,其逆否命题为p ⇒綈q 但綈q ⇏ p ,所以p 是綈q 的充分不必要条件.12.若x <m -1或x >m +1是x 2-2x -3>0的必要不充分条件,则实数m 的取值范围是________. 答案 [0,2]解析 由已知易得{x |x 2-2x -3>0}{x |x <m -1或x >m +1},又{x |x 2-2x -3>0}={x |x <-1或x >3},∴⎩⎪⎨⎪⎧ -1≤m -1,m +1<3,或⎩⎪⎨⎪⎧ -1<m -1,m +1≤3,∴0≤m ≤2. 13.若“数列a n =n 2-2λn (n ∈N *)是递增数列”为假命题,则λ的取值范围是________________.答案 [32,+∞) 解析 若数列a n =n 2-2λn (n ∈N *)为递增数列,则有a n +1-a n >0,即2n +1>2λ对任意的n ∈N *都成立,于是可得3>2λ,即λ<32. 故所求λ的取值范围是[32,+∞). 14.(2020·贵州七校联考)以下四个命题中,真命题的个数是________.①“若a +b ≥2,则a ,b 中至少有一个不小于1”的逆命题;②存在正实数a ,b ,使得lg(a +b )=lg a +lg b ;③“所有奇数都是素数”的否定是“至少有一个奇数不是素数”;④在△ABC 中,A <B 是sin A <sin B 的充分不必要条件.答案 2解析 ①原命题的逆命题为:若a ,b 中至少有一个不小于1,则a +b ≥2,而a =2,b =-2满足条件a ,b 中至少有一个不小于1,但此时a +b =0,故①是假命题;②根据对数的运算性质,知当a =b =2时,lg(a +b )=lg a +lg b ,故②是真命题;③“所有奇数都是素数”的否定为“至少有一个奇数不是素数”,故③是真命题;④根据题意,结合边角的转换,以及正弦定理,可知A <B ⇔a <b (a ,b 为角A ,B 所对的边)⇔2R sin A <2R sin B (R 为△ABC 外接圆的半径)⇔sin A <sin B ,故可知A <B 是sin A <sin B 的充要条件,故④是假命题,∴真命题个数是2.*15.已知集合A ={y |y =x 2-32x +1,x ∈[34,2]},B ={x |x +m 2≥1},若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解 y =x 2-32x +1 =(x -34)2+716, ∵x ∈[34,2],∴716≤y ≤2. ∴A ={y |716≤y ≤2}. 由x +m 2≥1,得x ≥1-m 2,∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件,∴A ⊆B ,∴1-m 2≤716, 解得m ≥34或m ≤-34, 故实数m 的取值范围是(-∞,-34]∪[34,+∞).。
2.1函数及其表示同步练习1.下列各组函数中,表示同一函数的是( )A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1C .y =x 0(x ≠0)与y =1(x ≠0)D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z2.(2020·重庆)函数f (x )=log 2(x 2+2x -3)的定义域是() A .[-3,1]B .(-3,1)C .(-∞,-3]∪[1,+∞)D .(-∞,-3)∪(1,+∞)3.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( )A .g (x )=2x 2-3xB .g (x )=3x 2-2xC .g (x )=3x 2+2xD .g (x )=-3x 2-2x4.(2020·陕西)设f (x )=⎩⎪⎨⎪⎧ 1-x ,x ≥0,2x ,x <0,则f (f (-2))等于( )A .-1B.14C.12D.325.(2020·安徽六校联考)已知函数f (x )=x |x |,若f (x 0)=4,则x 0的值为( )A .-2B .2C .-2或2 D. 26.(2020·唐山期末)已知f (x )=⎩⎪⎨⎪⎧ 1-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是( )A .(-∞,-1]B .(-1,12)C .[-1,12)D .(0,12) 7.(2020·济南模拟)已知函数f (1-x 1+x)=x ,则f (2)=________.8.设函数f (x )=113e ,1,,1,x x x x -⎧<⎪⎨⎪⎩≥则使得f (x )≤2成立的x 的取值范围是________________.9.(2020·浙江)已知函数f (x )=⎩⎪⎨⎪⎧ x +2x -3,x ≥1,lg x 2+1,x <1,则f (f (-3))=________,f (x )的最小值是________.10.设x ∈R ,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数,下列关于高斯函数的说法正确的有________.①[-x ]=-[x ];②x -1<[x ]≤x ;③∀x ,y ∈R ,[x ]+[y ]≤[x +y ];④∀x ≥0,y ≥0,[xy ]≤[x ][y ];⑤离实数x 最近的整数是-[-x +12]. 11.已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1,求函数f (x )的解析式.12.已知f (x )=⎩⎪⎨⎪⎧ f x +1,-2<x <0,2x +1,0≤x <2,x 2-1,x ≥2.(1)求f (-32)的值; (2)若f (a )=4且a >0,求实数a 的值.。
第3课时 定点、定值、探索性问题同步训练1.(2020·北京西城区模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =22,短轴长为2 2. (1)求椭圆C 的标准方程;(2)如图,椭圆左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于P ,Q 两点,直线P A ,QA 分别与y 轴交于M ,N 两点.试问以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.解 (1)由短轴长为22,得b =2, 由e =c a =a 2-b 2a =22, 得a 2=4,b 2=2.所以椭圆C 的标准方程为x 24+y 22=1.(2)以MN 为直径的圆过定点F (±2,0). 证明如下:设P (x 0,y 0),则Q (-x 0,-y 0),且x 204+y 202=1,即x 20+2y 20=4,因为A (-2,0),所以直线P A 方程为y =y 0x 0+2(x +2),所以M (0,2y 0x 0+2),直线QA 方程为y =y 0x 0-2(x +2), 所以N (0,2y 0x 0-2),以MN 为直径的圆为(x -0)(x -0)+(y -2y 0x 0+2)(y -2y 0x 0-2)=0, 即x 2+y 2-4x 0y 0x 20-4y +4y 2x 20-4=0,因为x 20-4=-2y 20,所以x 2+y 2+2x 0y 0y -2=0,令y =0,则x 2-2=0,解得x =±2. 所以以MN 为直径的圆过定点F (±2,0).2.(2020·安徽芜湖、马鞍山第一次质量检测)椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为33,点(3,2)为椭圆上的一点. (1)求椭圆E 的标准方程;(2)若斜率为k 的直线l 过点A (0,1),且与椭圆E 交于C ,D 两点,B 为椭圆E 的下顶点,求证:对于任意的k ,直线BC ,BD 的斜率之积为定值.(1)解 因为e =33,所以c =33a ,a 2=b 2+(33a )2. ①又椭圆过点(3,2),所以3a 2+2b 2=1.②由①②,解得a 2=6,b 2=4, 所以椭圆E 的标准方程为x 26+y 24=1. (2)证明 设直线l :y =kx +1,联立⎩⎨⎧x 26+y 24=1,y =kx +1,得(3k 2+2)x 2+6kx -9=0. 设C (x 1,y 1),D (x 2,y 2),则 x 1+x 2=-6k 3k 2+2,x 1x 2=-93k 2+2,易知B (0,-2), 故k BC ·k BD =y 1+2x 1·y 2+2x 2=kx 1+3x 1·kx 2+3x 2=k 2x 1x 2+3k (x 1+x 2)+9x 1x2=k 2+3k (x 1+x 2)x 1x 2+9x 1x 2=k 2+3k ·2k 3-(3k 2+2) =-2.所以对于任意的k ,直线BC ,BD 的斜率之积为定值.3.(2020·赣州一模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与双曲线x 24-v +y 21-v =1(1<v <4)有公共焦点,过椭圆C 的右顶点B 任意作直线l ,设直线l 交抛物线y 2=2x 于P ,Q 两点,且OP →⊥OQ →. (1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点R (m ,n )使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点M ,N ,且△OMN 的面积最大?若存在,求出点R 的坐标及对应的△OMN 的面积;若不存在,请说明理由. 解 (1)∵1<v <4,∴双曲线的焦点在x 轴上, 设焦点F (±c,0),则c 2=4-v +v -1=3, 由椭圆C 与双曲线共焦点,知a 2-b 2=3, 设直线l 的方程为x =ty +a , 代入y 2=2x ,可得y 2-2ty -2a =0,设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=2t ,y 1y 2=-2a , ∵OP →⊥OQ →,∴x 1x 2+y 1y 2=a 2-2a =0, ∴a =2,b =1,∴椭圆C 的方程为x 24+y 2=1. (2)在△MON 中,S △OMN =12·|OM |·|ON |·sin ∠MON =12sin ∠MON .当∠MON =90°时,12sin ∠MON 有最大值12,此时点O 到直线l 的距离为d =1m 2+n 2=22, ∴m 2+n 2=2.又∵m 2+4n 2=4,联立⎩⎪⎨⎪⎧m 2+n 2=2,m 2+4n 2=4,解得m 2=43,n 2=23, 此时点R 的坐标为⎝ ⎛⎭⎪⎫233,±63或⎝ ⎛⎭⎪⎫-233,±63,△MON 的面积为12. *4.已知椭圆C 1、抛物线C 2的焦点均在x 轴上,C 1的中心和C 2的顶点均为原点O ,从每条曲线上各取两个点,将其坐标记录于下表中:(1)求C 1,C 2的标准方程;(2)是否存在直线l 满足条件:①过C 2的焦点F ;②与C 1交于不同的两点M ,N ,且满足OM →⊥ON →?若存在,求出直线l 的方程;若不存在,请说明理由.解 (1)设抛物线C 2:y 2=2px (p ≠0), 则有y 2x =2p (x ≠0),据此验证四个点知(3,-23),(4,4)在C 2上, 易求得C 2的标准方程为y 2=4x . 设椭圆C 1:x 2a 2+y 2b 2=1(a >b >0),把点(-2,0),(2,22)代入得⎩⎪⎨⎪⎧4a 2=1,2a 2+12b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1,所以C 1的标准方程为x 24+y 2=1.(2)容易验证当直线l 的斜率不存在时,不满足题意. 当直线l 的斜率存在时,设其方程为y =k (x -1), 与C 1的交点为M (x 1,y 1),N (x 2,y 2).由⎩⎨⎧x 24+y 2=1,y =k (x -1),消去y 并整理得(1+4k 2)x 2-8k 2x +4(k 2-1)=0, 于是x 1+x 2=8k 21+4k 2,①x 1x 2=4(k 2-1)1+4k 2.②所以y 1y 2=k 2(x 1-1)(x 2-1) =k 2[x 1x 2-(x 1+x 2)+1]=k 2[4(k 2-1)1+4k 2-8k21+4k 2+1]=-3k 21+4k 2,③由OM →⊥ON →,即OM →·ON →=0, 得x 1x 2+y 1y 2=0.(*)将②③代入(*)式,得4(k 2-1)1+4k 2-3k 21+4k 2=k2-41+4k2=0,解得k=±2,所以存在直线l满足条件,且直线l的方程为2x-y-2=0或2x+y-2=0.。
4.7解三角形的综合应用同步练习1.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是( )A.10 2 海里B.10 3 海里C.20 3 海里D.20 2 海里答案 A解析如图所示,易知,在△ABC中,AB=20,∠CAB=30°,∠ACB=45°,根据正弦定理得BCsin 30°=ABsin 45°,解得BC=10 2.2.在相距2 km的A,B两点处测量目标点C,若∠CAB=75°,∠CBA =60°,则A,C两点之间的距离为( )A. 6 kmB. 2 kmC. 3 km D.2 km答案 A解析如图,在△ABC中,由已知可得∠ACB=45°,∴ACsin 60°=2sin 45°,∴AC=22×32= 6.3.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( )A.5海里B.5 3 海里C.10海里D.10 3 海里答案 C解析如图所示,依题意有∠BAC=60°,∠BAD=75°,所以∠CAD=∠CDA=15°,从而CD=CA=10,在Rt△ABC中,得AB=5,于是这艘船的速度是50.5=10(海里/时).4.如图,两座相距60 m的建筑物AB,CD的高度分别为20 m,50 m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角为( )A.30°B.45°C.60°D.75°答案 B解析依题意可得AD=2010,AC=305,又CD =50,所以在△ACD 中,由余弦定理得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD=3052+20102-5022×305×2010= 6 0006 0002=22, 又0°<∠CAD <180°,所以∠CAD =45°,所以从顶端A 看建筑物CD 的张角为45°.5.如图所示,测量河对岸的塔高AB 时可以选与塔底B 在同一水平面内的两个测点C 与D ,测得∠BCD =15°,∠BDC =30°,CD =30,并在点C 测得塔顶A 的仰角为60°,则塔高AB 等于( )A .5 6B .15 3C .5 2D .15 6 答案 D解析 在△BCD 中,∠CBD =180°-15°-30°=135°.由正弦定理得BCsin 30°=30sin 135°, 所以BC =15 2.在Rt △ABC 中,AB =BC tan ∠ACB =152×3=15 6.故选D.6.一个大型喷水池的中央有一个强大喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°前进100 m到达点B,在B点测得水柱顶端的仰角为30°,则水柱的高度是( )A.50 m B.100 mC.120 m D.150 m答案 A解析设水柱高度是h m,水柱底端为C,在Rt△BCD中,∠CBD=30°,BC=3h.在△ABC中,∠A=60°,AC=h,AB=100,根据余弦定理得,(3h)2=h2+1002-2·h·100·cos 60°,即h2+50h-5 000=0,即(h-50)(h +100)=0,即h=50,故水柱的高度是50 m.7.江岸边有一炮台高30 m,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距____m.答案10 3解析如图,OM=AO tan 45°=30 (m),ON=AO tan 30°=33×30=10 3 (m),在△MON中,由余弦定理得,MN=900+300-2×30×103×3 2=300=10 3 (m).8.如图,一艘船上午9:30在A处测得灯塔S在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午10:00到达B处,此时又测得灯塔S在它的北偏东75°处,且与它相距8 2 n mile.此船的航速是______ n mile/h.答案 32解析 设航速为v n mile/h ,在△ABS 中,AB =12v ,BS =82,∠BSA =45°, 由正弦定理得82sin 30°=12v sin 45°,∴v =32. 9.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,且小区里有一条平行于AO 的小路CD .已知某人从O 沿OD 走到D 用了2分钟,从D 沿DC 走到C 用了3分钟.若此人步行的速度为每分钟50米,则该扇形的半径为________米.答案 507解析 如图,连接OC ,在△OCD 中,OD =100,CD =150,∠CDO =60°.由余弦定理得OC 2=1002+1502-2×100×150×cos 60°=17 500,解得OC =507.*10.在Rt △ABC 中,C =90°,A ,B ,C 所对的边分别为a ,b ,c ,且满足a +b =cx ,则实数x 的取值范围是________.答案 (1,2]解析 x =a +b c =sin A +sin B sin C=sin A +cos A=2sin ⎝ ⎛⎭⎪⎫A +π4.又A ∈⎝⎛⎭⎪⎫0,π2, ∴sin π4<sin ⎝⎛⎭⎪⎫A +π4≤sin π2,即x ∈(1,2]. 11.要测量电视塔AB 的高度,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40 m ,求电视塔的高度.解 如图,设电视塔AB 高为x m ,则在Rt △ABC 中,由∠ACB =45°,得BC =x .在Rt △ADB 中,∠ADB =30°,则BD =3x .在△BDC 中,由余弦定理得,BD 2=BC 2+CD 2-2BC ·CD ·cos 120°,即(3x )2=x 2+402-2·x ·40·cos 120°,解得x =40,所以电视塔高为40 m.12.(2015·天津)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14. (1)求a 和sin C 的值;(2)求cos ⎝⎛⎭⎪⎫2A +π6的值. 解 (1)在△ABC 中,由cos A =-14, 可得sin A =154. 由S △ABC =12bc sin A =315, 得bc =24,又由b -c =2,解得b =6,c =4.由a 2=b 2+c 2-2bc cos A ,可得a =8.由a sin A =csin C ,得sin C =158. (2)cos ⎝ ⎛⎭⎪⎫2A +π6=cos 2A ·cos π6-sin 2A ·sin π6 =32(2cos 2A -1)-12×2sin A ·cos A =15-7316. *13.在海岸A 处发现北偏东45°方向,距A 处(3-1)海里的B 处有一艘走私船.在A 处北偏西75°方向,距A 处2海里的C 处的我方缉私船奉命以103海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度从B 处向北偏东30°方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.解 如图,设缉私船应沿CD 方向行驶t 小时,才能最快截获走私船(在D 点),则CD =103t 海里,BD =10t 海里,在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos A=(3-1)2+22-2·(3-1)·2·cos 120°=6,解得BC = 6.又BC sin ∠BAC =ACsin ∠ABC , ∴sin ∠ABC =AC ·sin ∠BAC BC =2·sin 120°6=22, ∴∠ABC =45°,故B 点在C 点的正东方向上,∴∠CBD =90°+30°=120°,在△BCD 中,由正弦定理,得BD sin ∠BCD =CD sin ∠CBD, ∴sin ∠BCD =BD ·sin ∠CBD CD=10t ·sin 120°103t=12.∴∠BCD=30°,∴缉私船沿北偏东60°的方向行驶.又在△BCD中,∠CBD=120°,∠BCD=30°,∴∠D=30°,∴BD=BC,即10t=6,解得t=610小时≈15分钟.∴缉私船应沿北偏东60°的方向行驶,才能最快截获走私船,大约需要15分钟.。
第四章 三角函数、解三角形 4.5简单的三角恒等变换课内基础通关1.两角和与差的余弦、正弦、正切公式 cos(α-β)=cos αcos β+sin αsin β,(C (α-β)) cos(α+β)=cos αcos β-sin αsin β,(C (α+β)) sin(α-β)=sin αcos β-cos αsin β,(S (α-β)) sin(α+β)=sin αcos β+cos αsin β,(S (α+β)) tan(α-β)=tan α-tan β1+tan αtan β,(T (α-β))tan(α+β)=tan α+tan β1-tan αtan β.(T (α+β))2.二倍角公式 sin 2α=2sin αcos α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.课外知识延伸1.降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.2.升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α.3.辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ),其中sin φ=b a 2+b 2,cos φ=aa 2+b 2. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.(√)(2)在锐角△ABC中,sin A sin B和cos A cos B大小不确定.(×)(3)若α+β=45°,则tan α+tan β=1-tan αtan β.(√)(4)对任意角α都有1+sin α=(sin α2+cosα2)2.(√)(5)y=3sin x+4cos x的最大值是7.(×)(6)在非直角三角形中,tan A+tan B+tan C=tan A tan B tan C.(√)点自查1.(教材改编)sin 18°cos 27°+cos 18°sin 27°的值是()A.22 B.12C.32D.-22答案 A解析sin 18°cos 27°+cos 18°sin 27°=sin(18°+27°)=sin 45°=2 2.2.化简cos 40°cos 25°1-sin 40°等于() A.1 B. 3 C. 2 D.2 答案 C解析原式=cos 40°cos 25°1-cos 50°=cos 40°cos 25°·2sin 25°=cos 40°22sin 50°= 2.3.若sin α+cos αsin α-cos α=12,则tan 2α等于( )A .-34B.34 C .-43D.43答案 B解析 由sin α+cos αsin α-cos α=12,等式左边分子、分母同除cos α,得tan α+1tan α-1=12,解得tan α=-3,则tan 2α=2tan α1-tan 2α=34. 4.tan 20°+tan 40°+3tan 20°tan 40°= . 答案3解析 ∵tan 60°=tan(20°+40°)=tan 20°+tan 40°1-tan 20°tan 40°,∴tan 20°+tan 40°=tan 60°(1-tan 20°tan 40°) =3-3tan 20°tan 40°,∴原式=3-3tan 20°tan 40°+3tan 20°tan 40°= 3.5.(2020·浙江)已知2cos 2x +sin 2x =A sin(ωx +φ)+b (A >0),则A = ,b = . 答案2 1解析 ∵2cos 2x +sin 2x =cos 2x +1+sin 2x =2⎝⎛⎭⎫22cos 2x +22sin 2x +1=2sin ⎝⎛⎭⎫2x +π4+1 =A sin(ωx +φ)+b (A >0),∴A =2,b =1.高考题型分类精讲第1课时 两角和与差的正弦、余弦和正切公式题型一 和差公式的直接应用例1 (1)(2020·广州模拟)已知sin α=35,α∈(π2,π),则cos 2α2sin (α+π4)= .(2)在△ABC 中,若tan A tan B =tan A +tan B +1,则cos C 的值为( ) A .-22B.2222答案 (1)-75(2)B解析 (1)cos 2α2sin (α+π4)=cos 2α-sin 2α2(22sin α+22cos α)=cos α-sin α,∵sin α=35,α∈(π2,π),∴cos α=-45,∴原式=-75.(2)由tan A tan B =tan A +tan B +1,可得tan A +tan B1-tan A tan B =-1,即tan(A +B )=-1,又A +B ∈(0,π),所以A +B =3π4,则C =π4,cos C =22.思维升华 (1)使用两角和与差的三角函数公式,首先要记住公式的结构特征. (2)使用公式求值,应先求出相关角的函数值,再代入公式求值.(1)(2020·全国丙卷)若tan α=34,则cos 2α+2sin 2α等于( ) A.6425 B.4825 C .1 D.1625(2)计算sin 110°sin 20°cos 2155°-sin 2155°的值为( )A .-12B.1222答案 (1)A (2)B解析 (1)tan α=34,则cos 2α+2sin 2α=cos 2α+2sin 2αcos 2α+sin 2α=1+4tan α1+tan 2α=6425.(2)sin 110°sin 20°cos 2155°-sin 2155°=sin 70°sin 20°cos 310° =cos 20°sin 20°cos 50°=12sin 40°sin 40°=12.题型二 和差公式的综合应用 命题点1 角的变换例2 (1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于( ) A.2525 B.255C.2525或255D.55或525(2)已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是 .答案 (1)A (2)-45解析 (1)依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2(α+β)=±45.又α,β均为锐角,所以0<α<α+β<π,cos α>cos(α+β). 因为45>55>-45,所以cos(α+β)=-45.于是cos β=cos [(α+β)-α] =cos(α+β)cos α+sin(α+β)sin α =-45×55+35×255=2525.(2)∵cos(α-π6)+sin α=453,∴32cos α+32sin α=453, 3(12cos α+32sin α)=453,3sin(π6+α)=453, ∴sin(π6+α)=45,∴sin(α+7π6)=-sin(π6+α)=-45.命题点2 三角函数式的变形例3 (1)化简:(1+sin θ+cos θ)(sin θ2-cos θ2)2+2cos θ (0<θ<π);(2)求值:1+cos 20°2sin 20°-sin 10°(1tan 5°-tan 5°).解 (1)由θ∈(0,π),得0<θ2<π2,∴cos θ2>0,∴2+2cos θ=4cos 2θ2=2cos θ2.又(1+sin θ+cos θ)(sin θ2-cos θ2)=(2sin θ2cos θ2+2cos 2θ2)(sin θ2-cos θ2)=2cos θ2(sin 2θ2-cos 2θ2)=-2cos θ2cos θ.故原式=-2cos θ2cos θ2cosθ2=-cos θ.(2)原式=2cos 210°2×2sin 10°cos 10°-sin 10°(cos 5°sin 5°-sin 5°cos 5°)=cos 10°2sin 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5° =cos 10°2sin 10°-sin 10°·cos 10°12sin 10°=cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2(12cos 10°-32sin 10°)2sin 10°=3sin 10°2sin 10°=32.引申探究化简:(1+sin θ-cos θ)(sin θ2-cos θ2)2-2cos θ (0<θ<π).解 ∵0<θ2<π2,∴2-2cos θ=2sin θ2,又1+sin θ-cos θ=2sin θ2cos θ2+2sin 2θ2=2sin θ2(sin θ2+cos θ2)∴原式=2sin θ2(sin θ2+cos θ2)(sin θ2-cos θ2)2sinθ2=-cos θ.思维升华 (1)解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.①当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;②当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(2)常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=(α+β2)-(α2+β)等. (1)(2020·宿州模拟)若sin(π4+α)=13,则cos(π2-2α)等于( )A.429B .-429C.79D .-79(2)(2020·青岛模拟)化简(tan α+1tan α)·12sin 2α-2cos 2α等于( )A .cos 2αB .sin 2αC .cos 2αD .-cos 2α(3)计算:sin 50°(1+3tan 10°)= . 答案 (1)D (2)D (3)1解析 (1)∵sin(π4+α)=13,∴cos(π4-α)=13,∴cos(π2-2α)=cos 2(π4-α)=2×19-1=-79.(2)原式=1sin αcos α·12sin 2α-2cos 2α=1-2cos 2α=-cos 2α.(3)sin 50°(1+3tan 10°)=sin 50°(1+3sin 10°cos 10°)=sin 50°×cos 10°+3sin 10°cos 10°=sin 50°×2(12cos 10°+32sin 10°)cos 10°=2sin 50°cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.数学思想总结8.利用联系的观点进行角的变换典例 (1)设α为锐角,若cos(α+π6)=45,则sin(2α+π12)的值为 .(2)若tan α=2tan π5,则cos (α-3π10)sin (α-π5)等于( )A .1B .2C .3D .4思想方法指导 三角变换的关键是找出条件中的角与结论中的角的联系,通过适当地拆角、凑角来利用所给条件.常见的变角技巧有α+β2=(α-β2)-(α2-β);α=(α-β)+β;α+π12=(α+π3)-π4;15°=45°-30°等. 解析 (1)∵α为锐角且cos(α+π6)=45>0,∴α+π6∈(π6,π2),∴sin(α+π6)=35.∴sin(2α+π12)=sin[2(α+π6)-π4]=sin 2(α+π6)cos π4-cos 2(α+π6)sin π4=2sin(α+π6)cos(α+π6)-22[2cos 2(α+π6)-1]=2×35×45-22[2×(45)2-1]=12225-7250=17250. (2)cos (α-3π10)sin (α-π5)=sin (α-3π10+π2)sin (α-π5)=sin (α+π5)sin (α-π5)=sin αcos π5+cos αsinπ5sin αcos π5-cos αsinπ5=sin αcos αcos π5+sin π5sin αcos αcos π5-sin π5 =2·sinπ5cos π5cos π5+sinπ52·sinπ5cos π5cos π5-sinπ5=3sinπ5sin π5=3,故选C.答案 (1)17250(2)C后作业认真做1.(2020·课标全国Ⅰ)sin 20°cos 10°-cos 160°sin 10°等于( ) A .-32B.32C .-12D.12答案 D解析 sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12.2.(2020·全国甲卷)若cos ⎝⎛⎭⎫π4-α=35,则sin 2α等于( ) A.725 B.15 C .-15D .-725答案 D解析 因为sin 2α=cos ⎝⎛⎭⎫π2-2α=2cos 2⎝⎛⎭⎫π4-α-1,又因为cos ⎝⎛⎭⎫π4-α=35,所以sin 2α=2×925-1=-725,故选D.3.(2020·重庆)若tan α=13,tan(α+β)=12,则tan β等于( )A.17 B.16 C.57 D 56 答案 A解析 tan β=tan [(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=12-131+12×13=17.4.(2020·东北三省三校联考)已知sin α+cos α=13,则sin 2(π4-α)等于( )A.118B.1718C.89D.29答案 B解析 由sin α+cos α=13,两边平方得1+sin 2α=19,解得sin 2α=-89,所以sin 2(π4-α)=1-cos (π2-2α)2=1-sin 2α2=1+892=1718.5.2cos 10°-sin 20°sin 70°的值是( ) A.12 B.32C. 3D. 2答案 C解析 原式=2cos (30°-20°)-sin 20°sin 70°=2(cos 30°·cos 20°+sin 30°·sin 20°)-sin 20°sin 70° =3cos 20°cos 20°= 3.6.若0<α<π2,-π2<β<0,cos(π4+α)=13,cos(π4-β2)=33,则cos(α+β2)等于() A.33 B .-33 C.539 D .-69答案 C解析 由已知得α+π4∈(π4,34π),π4-β2∈(π4,π2), 所以sin(α+π4)=223,sin(π4-β2)=63, 所以cos(α+β2)=cos[(π4+α)-(π4-β2)]=cos(π4+α)cos(π4-β2)+sin(π4+α)sin(π4-β2) =13×33+223×63=539. 7.化简2tan (45°-α)1-tan 2(45°-α)·sin αcos αcos 2α-sin 2α= . 答案 12解析 原式=tan(90°-2α)·12sin 2αcos 2α=sin (90°-2α)cos (90°-2α)·12·sin 2αcos 2α =cos 2αsin 2α·12·sin 2αcos 2α=12. 8.已知tan(π4+θ)=3,则sin 2θ-2cos 2θ的值为 . 答案 -45解析 ∵tan(π4+θ)=3, ∴1+tan θ1-tan θ=3,解得tan θ=12. ∵sin 2θ-2cos 2θ=sin 2θ-cos 2θ-1=2sin θcos θsin 2θ+cos 2θ-cos 2θ-sin 2θsin 2θ+cos 2θ-1 =2tan θ1+tan 2θ-1-tan 2θ1+tan 2θ-1 =45-35-1=-45. 9.已知sin(α-β)cos α-cos(β-α)sin α=35,β是第三象限角,则sin(β+5π4)= . 答案 7210解析 依题意可将已知条件变形为sin [(α-β)-α]=-sin β=35,sin β=-35. 又β是第三象限角,因此有cos β=-45. sin(β+5π4)=-sin(β+π4)=-sin βcos π4-cos βsin π4=7210. *10.(2020·宝鸡模拟)已知cos(π4+θ)cos(π4-θ)=14,则sin 4θ+cos 4θ的值为 . 答案 58解析 因为cos(π4+θ)cos(π4-θ) =(22cos θ-22sin θ)(22cos θ+22sin θ) =12(cos 2θ-sin 2θ)=12cos 2θ=14. 所以cos 2θ=12. 故sin 4θ+cos 4θ=(1-cos 2θ2)2+(1+cos 2θ2)2 =116+916=58. 11.已知α∈(0,π2),tan α=12,求tan 2α和sin(2α+π3)的值. 解 ∵tan α=12, ∴tan 2α=2tan α1-tan 2α=2×121-14=43, 且sin αcos α=12,即cos α=2sin α, 又sin 2α+cos 2α=1,∴5sin 2α=1,而α∈(0,π2),∴sin α=55,cos α=255. ∴sin 2α=2sin αcos α=2×55×255=45, cos 2α=cos 2α-sin 2α=45-15=35, ∴sin(2α+π3)=sin 2αcos π3+cos 2αsin π3=45×12+35×32=4+3310. 12.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值.解 (1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-32. (2)因为π2<α<π,π2<β<π, 所以-π<-β<-π2,故-π2<α-β<π2. 又sin(α-β)=-35,得cos(α-β)=45. cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝⎛⎭⎫-35 =-43+310. *13.(2020·合肥质检)已知cos(π6+α)cos(π3-α)=-14,α∈(π3,π2). (1)求sin 2α的值; (2)求tan α-1tan α的值. 解 (1)cos(π6+α)·cos(π3-α) =cos(π6+α)·sin(π6+α)=12sin(2α+π3)=-14, 即sin(2α+π3)=-12. ∵α∈(π3,π2),∴2α+π3∈(π,4π3), ∴cos(2α+π3)=-32, ∴sin 2α=sin[(2α+π3)-π3] =sin(2α+π3)cos π3-cos(2α+π3)sin π3=12. (2)∵α∈(π3,π2),∴2α∈(2π3,π), 又由(1)知sin 2α=12,∴cos 2α=-32.∴tan α-1tan α=sin αcos α-cos αsin α=sin2α-cos2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3.。