高分子材料成型加工的发展趋势
- 格式:doc
- 大小:1018.50 KB
- 文档页数:11
浅析高分子材料发展现状和应用趋势【篇1】浅析高分子材料发展现状和应用趋势一、有机高分子材料概述有机高分子材料是指区别于通用的、具有高性能或特殊功能等特点的有机高分子材料,表现为性能优异,价格高,产量低。
其特点覆盖面广、产品种类多;投资与技术高度密集,技术含量高;高风险、高收益。
按使用性质划分,有塑料、橡胶、合成纤维、专用及精细化学品等;按用途划分有结构型和功能型;按功能型细分则有光、电、磁功能和生物相容功能;以生物质为原料生产的高分子材料也被划入了新型有机高分子材料。
新型有机高分子材料应用广泛,工程塑料、复合材料、功能高分子材料、有机硅及氟系材料、液晶材料、特种橡胶、高性能密封材料等新型高分子材料被广泛应用于电子电器、交通运输、机械、建筑、生物、医疗及农业生产资料等领域。
二、有机高分子材料国内现状国内有机高分子材料的研究不断取得新的进展:国家重点科技攻关项目聚醚砜、聚醚醚酮、双马型聚酰亚胺等类树脂专用材料及其加工技术,通过了国家有关部门的验收;一种用于家电产品的新型紫外光固化涂料 JD-1紫外光固化树脂已开发成功;超高分子量聚丙烯酰胺合成技术在大庆油田化工总厂研制成功; PTC智能恒温电缆、多功能超强吸水保水剂、粉煤灰高效活化剂等等,都是我国在高分子材料领域取得的不俗成果。
我国在高分子单链单晶的研究也取得国际领先的成绩:成功地制备出顺丁橡胶的单链单晶,独创性地开展了单分子链玻璃体的研究,首次观察到高分子液晶态的新的纹影结构。
塑料行业单纯从实验室阶段的研究来讲,我国与国际上的差距并不是很大。
但从实验室研究走向产业化这一阶段,与国外相比,我们的差距就被大幅度拉开了,因此塑料产业的发展趋势主要是尽快对主要新型品种的产业化。
橡胶工业的发展重点是进一步完善橡胶装置技术工艺,进行产品结构调整,提高氯丁胶、乙丙橡胶、丁腈胶和丁基胶的产业化生产能力;充分利用原料、市场条件现已成熟的有利时机,加快推进异戊橡胶工业化进程,尽快实现工业化生产;大力发展改性丁二烯橡胶、三元乙丙橡胶等市场急需的产品品种。
高分子材料的发展历程及未来发展趋势引言概述:高分子材料是一种由大量重复单元组成的大分子化合物,具有独特的物理和化学性质,广泛应用于工业、医疗、电子等领域。
本文将探讨高分子材料的发展历程以及未来发展趋势。
一、发展历程1.1 早期发展在20世纪初,高分子材料的研究开始兴起,最早的合成高分子材料是由合成橡胶和塑料开始的。
这些材料在汽车、电器等领域得到广泛应用。
1.2 高分子化学的发展随着高分子化学的发展,人们开始研究高分子材料的结构与性质之间的关系,提出了聚合物的合成方法和理论基础。
这一时期标志着高分子材料的科学化和工程化发展。
1.3 高分子材料的应用拓展随着科学技术的不断进步,高分子材料的应用范围不断拓展,包括纳米材料、生物材料、功能性高分子等,为各行业带来了新的发展机遇。
二、未来发展趋势2.1 绿色环保未来高分子材料的发展趋势将更加注重环保和可持续性发展。
研究人员将致力于开发可降解高分子材料,减少对环境的污染。
2.2 高性能功能材料随着科技的不断进步,人们对高分子材料的性能要求也越来越高。
未来的高分子材料将更加注重高性能、多功能的特性,满足不同领域的需求。
2.3 智能化发展未来高分子材料将更加智能化,具有自修复、自感知等功能。
这将为人们的生活带来更多便利和安全保障。
三、应用领域拓展3.1 医疗领域高分子材料在医疗领域有着广泛的应用,包括医用高分子材料、药物传递系统等。
未来将继续探索高分子材料在医疗领域的应用潜力。
3.2 电子领域高分子材料在电子领域有着独特的应用优势,例如柔性显示器、电池等。
未来高分子材料将在电子领域发挥更大的作用。
3.3 新能源领域高分子材料在新能源领域有着广阔的应用前景,例如太阳能电池、燃料电池等。
未来将继续探索高分子材料在新能源领域的应用可能性。
四、技术创新驱动4.1 材料设计与合成未来高分子材料的发展将更加注重材料设计与合成技术的创新,以提高材料的性能和功能。
4.2 先进加工技术随着先进加工技术的不断发展,高分子材料的加工工艺将更加精密和高效,为材料的应用提供更多可能性。
高分子材料的发展历程及未来发展趋势一、引言高分子材料是一类重要的工程材料,具有广泛的应用领域和巨大的市场潜力。
本文将介绍高分子材料的发展历程以及未来的发展趋势。
二、发展历程1. 起源阶段高分子材料的起源可以追溯到19世纪末的天然高分子材料,如橡胶和纤维素。
这些材料具有优异的性能,但受限于资源有限和加工工艺不成熟的问题。
2. 合成阶段20世纪初,人们开始研究合成高分子材料,通过聚合反应将小分子单体转化为高分子链状结构。
1920年代,合成橡胶和聚氯乙烯等合成高分子材料的工业化生产开始。
此后,合成高分子材料的种类不断增加,如聚酰胺、聚酯、聚酰亚胺等。
3. 发展阶段20世纪50年代至70年代,高分子材料得到了快速发展。
新的合成方法和材料改性技术的出现,使高分子材料的性能得到了显著提升。
例如,聚四氟乙烯的发明解决了摩擦学领域的难题,聚碳酸酯的开发推动了光纤通信的发展。
4. 应用阶段20世纪80年代至今,高分子材料开始广泛应用于各个领域。
例如,高分子塑料在包装、建筑、汽车等行业得到了广泛应用;高分子纤维在纺织、医疗、防弹等领域发挥着重要作用;高分子涂料在建筑、家具等领域具有广阔的市场前景。
三、未来发展趋势1. 功能化未来,高分子材料将更加注重功能化的发展。
通过在分子结构中引入特定的功能基团,可以赋予高分子材料特殊的性能,如阻燃、自修复、导电等。
这将进一步扩展高分子材料的应用领域。
2. 绿色环保随着环境保护意识的提高,高分子材料的绿色环保性将成为未来发展的重要方向。
研发可降解高分子材料、循环利用高分子材料等将成为关注的焦点。
3. 多功能复合材料未来,高分子材料将与其他材料进行复合,形成多功能复合材料。
例如,高分子纳米复合材料、高分子陶瓷复合材料等。
这将进一步提升高分子材料的性能和应用范围。
4. 智能化随着人工智能和物联网技术的发展,高分子材料将与智能技术相结合,实现智能化应用。
例如,智能高分子材料可以根据环境变化自动调节性能,实现自适应功能。
高分子材料技术的发展现状与未来趋势近年来,高分子材料技术在科技领域取得了巨大的发展和突破,它不仅改变了人们的生活方式,还推动了工业的革命。
本文将探讨高分子材料技术的发展现状以及未来的趋势。
首先,让我们来了解高分子材料的定义和特点。
高分子材料是由大量分子通过共价键连接而形成的聚合物,如塑料和橡胶。
它具有轻质、高强度、耐腐蚀、绝缘性能好、生物相容性高等特点,被广泛应用于各个领域。
目前,高分子材料技术已经渗透到生活的方方面面。
在汽车制造业中,高分子材料被广泛应用于车身结构和内饰件的制造,使车辆更轻、更安全。
在电子产品中,高分子材料的应用使得可穿戴设备如智能手表和智能眼镜变得更加舒适轻便。
此外,高分子材料还广泛应用于医疗器械、航空航天等领域。
然而,高分子材料技术仍然面临一些挑战和限制。
首先,高分子材料的可持续性仍然是一个问题。
塑料制品的大量使用导致了环境污染和资源浪费。
因此,寻找可替代塑料的生物可降解材料成为了一个研究热点。
其次,高分子材料的力学性能和耐久性仍然有待提高。
高分子材料在高温、高压、紫外线等极端环境下的稳定性问题需要更多的研究。
未来,高分子材料技术有很大的发展潜力。
一方面,随着环保意识的增强,研究人员将更加注重开发可持续性的高分子材料。
生物可降解材料、可回收材料和可再生材料将成为新的研究方向。
另一方面,高分子材料的性能将进一步提高。
纳米材料技术的发展使得高分子材料具有了更好的强度、导电性和稳定性。
此外,3D打印技术的出现也为高分子材料的应用带来了新的机遇。
通过3D打印,可以制造出更复杂的结构和形状的高分子材料制品。
此外,高分子材料技术还将与其他领域的技术相结合,产生更多的创新。
例如,将高分子材料与生物技术相结合,可以开发出更适合人体生物医学应用的材料。
将高分子材料与纳米技术相结合,可以制造出更小尺寸、更高性能的材料。
综上所述,高分子材料技术的发展现状非常迅速,它已经在各个领域产生了巨大的影响。
高分子材料成型加工中的自动化生产技术高分子材料在现代工业生产中扮演着重要的角色,其成型加工工艺的质量和效率直接影响到产品的性能和生产成本。
随着科技的不断发展,高分子材料成型加工中的自动化生产技术逐渐成为趋势,极大地提高了生产效率和产品质量。
本文将从自动化生产技术在高分子材料成型加工中的应用、优势和未来发展趋势三个方面进行探讨。
首先,自动化生产技术在高分子材料成型加工中的应用日益广泛。
传统的高分子材料成型加工方式主要依靠人工操作,存在生产效率低、误差率高、劳动强度大等问题。
而引入自动化生产技术后,可以实现生产过程的全面数字化控制和监测,利用机器人、传感器等设备实现自动化操控,大大提高了生产效率和产品质量。
例如,在注塑成型中,自动化设备可以更精准地控制料液注入、压力控制和温度调节,确保产品尺寸一致性和表面光洁度。
其次,自动化生产技术在高分子材料成型加工中具有诸多优势。
首先是提高生产效率。
自动化设备可以24小时连续作业,无需人力休息,有效缩短生产周期,降低生产成本。
其次是提高产品质量稳定性。
自动化生产技术可以消除人为操作误差,确保产品尺寸精度和外观质量,提升产品市场竞争力。
此外,自动化设备还可以减少对人力资源的依赖,节约人力成本,同时减少劳动强度,提升生产车间工作环境优质度。
最后,未来高分子材料成型加工中的自动化生产技术发展趋势值得关注。
随着人工智能、云计算、大数据等新一代信息技术的不断发展,自动化生产设备将变得更加智能化、柔性化和高效化。
例如,智能化的自动化生产线可以实现远程监控和智能诊断,提前发现并排除生产故障,实现生产过程的智能优化。
另外,柔性化的自动化生产设备可以根据不同产品的要求进行快速转换,适应多品种、小批量生产需求。
综上所述,高分子材料成型加工中的自动化生产技术已经成为未来发展的必然趋势,其在提高生产效率、产品质量稳定性和未来发展趋势方面发挥着重要作用。
未来,随着新一代信息技术的不断融合,自动化生产技术将迎来更加广阔的发展空间,为高分子材料产业的可持续发展提供有力支撑。
浅谈高分子材料成型加工技术以及应用前景高分子材料是一种具有分子量较高的聚合物材料,其种类繁多,具有结构多样性和性能优越性,因此在各个领域都得到了广泛的应用。
高分子材料的成型加工技术是将高分子材料加工成各种形状和尺寸的工艺技术,它包括熔融成型、溶液成型、模压成型、注射成型、吹塑成型、挤出成型等多种加工方法。
本文将从高分子材料的成型加工技术和应用前景两个方面进行探讨。
一、高分子材料成型加工技术高分子材料成型加工技术是将高分子材料通过加工方式成为具有一定形状和性能的制品过程。
目前,高分子材料的成型加工技术主要分为以下几种:1. 熔融成型熔融成型是将高分子材料加热到熔点后,通过挤出、压延、注射等方式使其成型的方法。
常见的熔融成型方法有挤出成型和注射成型。
挤出成型是将熔化的高分子材料通过挤出机挤压成型,适用于生产各种塑料管材、板材、型材等。
注射成型是将熔化的高分子材料注入模具中,冷却后得到成型制品,适用于生产各种塑料制品。
2. 溶液成型溶液成型是将高分子材料溶解在溶剂中,然后通过浇铸、浸渍等方式使其成型的方法。
溶液成型适用于生产薄膜、纤维、涂层等制品,如溶液浇铸法生产聚醚脂薄膜、溶液浸渍法生产纤维增强复合材料等。
3. 模压成型模压成型是将高分子材料加热软化后,放入模具中施加压力成型的方法。
模压成型适用于生产各种塑料制品,如家具、日用品、电器外壳等。
4. 吹塑成型6. 管材挤出成型管材挤出成型是将高分子材料通过管材挤出机挤出成型的方法。
管材挤出成型适用于生产各种塑料管材。
二、高分子材料的应用前景高分子材料因其种类繁多、性能优越、加工成型方便等特点,在各个领域都得到了广泛的应用。
在建筑领域,高分子材料可用于生产各种隔热、隔声、耐候、耐腐蚀的建筑材料;在汽车领域,高分子材料可用于生产汽车外饰件、内饰件、发动机零部件等;在电子领域,高分子材料可用于生产电子产品外壳、线缆、电路板等;在包装领域,高分子材料可用于生产塑料包装袋、瓶、箱等。
高分子材料的发展历程及未来发展趋势一、发展历程高分子材料是指由高分子化合物构成的材料,具有重量轻、强度高、耐磨损、耐腐蚀等优点,广泛应用于各个领域。
下面将介绍高分子材料的发展历程。
1. 早期阶段高分子材料的起源可以追溯到19世纪末20世纪初,当时的研究主要集中在天然高分子材料,如橡胶和纤维素。
这些材料具有良好的柔韧性和强度,但在加工和耐久性方面存在一些问题。
2. 合成高分子材料的发展20世纪初,合成高分子材料的研究开始兴起。
1907年,化学家Leo Hendrik Baekeland发现了第一个合成塑料——酚醛树脂,这被认为是合成高分子材料的里程碑。
随后,聚氯乙烯、聚丙烯、聚苯乙烯等合成塑料相继问世,推动了高分子材料的发展。
3. 高分子材料的应用扩展随着合成高分子材料的不断发展,高分子材料的应用范围也不断扩大。
在20世纪中叶,高分子材料开始广泛应用于电子、汽车、建筑、医疗等领域。
例如,聚碳酸酯被用于制造光学镜片,聚酰胺用于制造纤维和塑料等。
4. 高分子材料的功能化近年来,高分子材料的研究重点逐渐转向了功能化。
通过在高分子材料中引入特定的功能基团或添加剂,可以赋予材料特殊的性能,如导电性、磁性、光学性等。
这使得高分子材料在电子、光电子、生物医学等领域的应用得到了进一步拓展。
二、未来发展趋势高分子材料在各个领域的应用前景广阔,下面将介绍未来高分子材料的发展趋势。
1. 环保可持续发展随着环保意识的提高,未来高分子材料的发展将更加注重环境友好型和可持续发展。
研究人员将致力于开发可降解的高分子材料,以减少对环境的影响。
同时,通过改进材料的生产过程,降低能源消耗和废弃物产生,实现循环利用。
2. 高性能材料的研究未来,高分子材料的研究将更加注重材料的性能提升。
例如,开发高强度、高韧性的高分子材料,以满足航空航天、汽车等领域对材料强度和耐久性的要求。
同时,研究人员还将关注高分子材料的导电性、光学性等特殊性能,以满足电子、光电子等领域的需求。
浅谈高分子材料成型加工技术以及应用前景摘要:随着社会的不断发展,科学技术水平的不断提高,高分子合成材料方面也取得了巨大的进步。
高分子材料成型加工工艺技术不断发展进步,其应用价值也在不断提升。
因此,该领域的相关研发,技术人员要结合应用实际,把握高分子材料加工前沿技术,重视自主产权,将科学研究和产业加工有机协调起来,将研究成果转化成生产力,以促进我国高分子成型加工技术的不断进步和发展。
关键词:高分子材料;加工技术;应用高分子材料指的是以分子量较高的化学物质制备而成的功能材料,其主要组成成分包括高分子聚合物和其他辅料。
通常情况下,高分子材料具有容易加工改性等优点 [1]。
常见高分子材料包括高分子复合材料、胶黏剂、纤维、塑料以及橡胶等物质。
高分子材料的成型加工是高分子材料在外界高温条件下熔化后,通过成型加工设备而制备各种预期模型的过程[2]。
随着社会的不断发展,科学技术的不断进步,高分子材料在应用上所涉及的领域也越来越广,航空、国防事业对其成型加工技术的要求也越来越严格 [3]。
一、高分子材料成型加工技术目前,在市面上常用的高分子材料有塑料和纤维素。
塑料是合成的高分子材料,主要的成分是合成树脂,有着线型结构和体型结构两种结构类型。
纤维素是天然的高分子材料,主要成分是葡萄糖。
通过对高分子材料成型加工技术进行分析,可以了解目前常用的加工技术,从而开展进一步研究。
1.1挤出成型技术挤出成型是通过螺杆旋转加压的方式对高分子材料进行成型操作。
通常而言,通过加料、塑化、成型、定型等环节可以完成挤出成型的一系列加工过程,最终形成成品。
在实际的加工过程中,设备人员需要全面的对这项技术进行掌控,同时还要对设备、机头、模具等进行正确的选择,只有有着合适的设备以及良好的加工技术,成型后的产品才能达到最佳的性能和最佳的美观程度。
在挤出成型的过程中,塑料的品类、加料的速度、挤出机的工作效果等都会对成型的产品产生不同的影响。
所以,技术人员必须全方位的对该项技术进行把控。
高分子材料的发展历程及未来发展趋势一、引言高分子材料是一类以高分子化合物为基础制备的材料,具有广泛的应用领域和巨大的市场潜力。
本文将介绍高分子材料的发展历程,包括其起源、发展阶段和主要应用领域,并展望未来高分子材料的发展趋势。
二、高分子材料的起源高分子材料的起源可以追溯到20世纪初,当时人们开始研究和应用天然高分子材料,如橡胶和纤维素。
随着科学技术的进步,人们开始研究合成高分子材料,首次成功合成高分子材料的里程碑是由赛门·诺瓦克于1907年合成的硅橡胶。
三、高分子材料的发展阶段1. 早期阶段(1907年-1945年):在这个阶段,人们主要关注天然高分子材料的研究和应用,如橡胶、纤维素和天然胶等。
同时,也开始尝试合成高分子材料,如合成橡胶和合成纤维。
2. 发展阶段(1945年-1980年):在二战后的这个阶段,高分子材料的研究和应用得到了极大的推动。
人们成功合成了许多新型高分子材料,如聚乙烯、聚丙烯、聚氯乙烯等。
这些材料具有良好的物理性能和化学稳定性,广泛应用于塑料制品、纺织品、电子产品等领域。
3. 现代阶段(1980年至今):在这个阶段,高分子材料的研究重点逐渐转向功能性高分子材料的开发。
人们开始研究和合成具有特殊功能的高分子材料,如高温耐磨材料、导电高分子材料、生物可降解材料等。
这些材料在航空航天、电子信息、医疗健康等领域有着广泛的应用前景。
四、高分子材料的主要应用领域1. 塑料制品:高分子材料是塑料制品的主要原料,广泛应用于日常生活中的各个方面,如食品包装、家居用品、汽车零部件等。
2. 纤维材料:高分子材料在纺织行业中有着重要的地位,用于制造各种纤维材料,如聚酯纤维、尼龙纤维等。
3. 电子产品:高分子材料在电子产品中的应用越来越广泛,如导电高分子材料用于制造柔性显示屏、电子纸等。
4. 医疗健康:高分子材料在医疗健康领域有着重要的应用,如生物可降解材料用于制造医用缝线、植入器械等。
五、高分子材料的未来发展趋势1. 功能性高分子材料的发展:随着科学技术的不断进步,人们对高分子材料的功能要求也越来越高。
高分子材料的发展历程及未来发展趋势高分子材料是一类以聚合物为基础的材料,具有重要的应用价值和广泛的应用领域。
本文将详细介绍高分子材料的发展历程以及未来的发展趋势。
一、发展历程1. 早期发展阶段(20世纪初-20世纪30年代)在20世纪初,人们开始研究可塑性高分子材料,如塑料。
1907年,白朗宁发明了世界上第一个合成塑料——尼龙。
随后,人们开始研究其他合成塑料材料,如聚乙烯、聚丙烯等。
这一时期的高分子材料主要应用于日常生活用品和包装材料。
2. 高分子材料的快速发展(20世纪40年代-20世纪80年代)在第二次世界大战期间,高分子材料得到了快速发展。
人们开始研究高分子材料的结构和性能,并开发了更多种类的高分子材料,如聚氯乙烯、聚苯乙烯、聚碳酸酯等。
这些材料具有优异的物理和化学性能,被广泛应用于汽车、电子、建筑等领域。
3. 高分子材料的功能化发展(20世纪90年代至今)随着科学技术的进步,人们开始对高分子材料进行功能化改性,使其具有更多的特殊性能和应用功能。
例如,人们通过添加纳米材料、改变分子结构等方法,使高分子材料具有优异的导电性、热稳定性、抗菌性等特殊功能。
此外,人们还研究了生物可降解高分子材料,以应对环境问题和可持续发展的需求。
二、未来发展趋势1. 绿色环保未来,高分子材料的发展趋势将更加注重绿色环保。
人们将致力于研究生物可降解高分子材料,以替代传统的塑料材料。
这些生物可降解材料可以在自然环境中迅速分解,减少对环境的污染。
此外,人们还将研究可回收利用的高分子材料,以实现资源的循环利用。
2. 高性能未来,高分子材料的发展将趋向于高性能化。
人们将继续研究功能化改性的方法,使高分子材料具有更多的特殊性能,如高强度、高导电性、高热稳定性等。
这将推动高分子材料在电子、航空航天、能源等领域的应用。
3. 多功能化未来,高分子材料将趋向于多功能化的发展。
人们将研究制备具有多种特殊功能的高分子材料,以满足不同领域的需求。
材料加工新技术
----高分子材料成型课程大作业
学生姓名
学生学号************
专业方向材料学(金属材料)
研究生导师
2015年11月26日
高分子材料成型加工的发展趋势
摘要:随着科学技术的不断进步,经济的发展越来越快,高分子材料成为了发展的关键,同时也是发展高新科技的基础。
高分子材料只有通过加工成型获得所需的形状、结构与性能,才能成为具有实用价值的材料与产品。
高分子材料加工成型是一个外场作用下的形变过程,其技术与装备在很大程度上决定了最终材料与产品的结构与性能。
高分子材料加工成型过程节能降耗、废旧制品循环利用、可再生资源替代是发展趋势,研宄与探索高分子材料加工成型新方法、技术及装备对推动高分子材料产业及相关制造业的发展具有重要意义。
同时可丰富和发展我国高分子产品先进制造理论及其应用
关键词:高分子材料;发展;加工
高分子材料是当代新材料的后起之秀,但其发展速度与应用范围超过了传统的金属材料和无机材料,已成为工业、农业、国防、科技和日常生活等领域不可缺少的重要材料。
世界合成高分子材料的总产量已达3亿吨,其体积产量超过金属材料。
我国是高分子材料生产和消费的大国,合成高分子材料产量达3000万吨左右,在全球排名第二,年消费量5000万吨左右。
近年来,高分子材料成型加工技术在工业上取得了飞速发展,我国航空工业、国防工业等领域的发展对聚合物材料的性能提出了更高的要求。
高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料。
[1]由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机化合物。
高分子材料的高分子链通常是由结构单元组成,高分子链结构和许许多多高分子链聚在一起的聚集态结构形成了高分子材料的特殊结构。
因而高分子材料除具有低分子化合物所具有的结构特征(如同分异构体、几何结构、旋转异构)外,还具有许多特殊的结构特征。
高分子结构通常分为链结构和聚集态结构两个部分。
链结构是指单个高分子化合物分子的结构和形态,所以链结构又可分为近程和远程结构。
近程结构属于化学结构,也称一级结构,包括链中原子的种类和排列、取代基和端基的种类、结构单元的排列顺序、支链类型和长度等。
远程结构是指分子的尺寸、形态,链的柔顺性以及分子在环境中的构象.也称二级结构。
聚集态结构是指高聚物材料整体的内部结构.包括晶体结构、非晶态结构、取向态结构、液晶态结构等有关高聚物材料中分子的堆积情况,统称为三级结构。
由于工业化技术的发展和人民生活水平的提高,人们对塑料产品种类和质量的需求也越来越高。
高分子材料是通过制造成各种制品来实现其使用价值的,因此从应用角度来讲,以对高分子材料赋予形状为主要目的成型加工技术有着重要的意义[2]。
高分子材料的主要成型方法有挤出成型、注射成型、吹塑成型、压延成型等,文章综述了高分子材料成型加工技术的最新进展现,着重探讨一下高分子材料成型加工技术的发展前景。
1 高分子材料的发展趋势
随着生产和科技的发展,以及人们对知识的追求,对高分子材料的性能提出了各种各样新的要求。
总的来说,今后高分子材料的发展趋势是高性能化、高功能化、复合化、智能化以及绿色化[3]。
1 .1 高性能化
提高耐高温,耐磨性,耐腐蚀性,耐老化及高的机械强度等方面是高分子材料发展的重要方向,这对于航空、汽车工业、航天、电子信息技术、家用电器领域都有非常重要的作用。
高分子材料高性能化的发展趋势主要有:(1)创造新的高分子聚合物;(2)通过改变催化剂和催化体系,合成工艺及共聚,共混及交联等对高分子性能进行改进;(3)通过新的加工方法改变聚合物的聚集态结构;(4)通过微观复合方法,对高分子材料进行性能改变
1 .2高功能化
高分子材料的高功能化是材料领域最具活力的新领域,目前已研究出了各种各样新功能的高分子材料,可以作为人造器官的医用高分子材料等。
鉴于以上发展,高分子分离膜、高分子吸水性材料、光致抗蚀性材料、高分子催化剂等都是功能高分子的研究方向[4]。
1 .3 复合化
为了发挥不同材料的优点,克服单一材料的缺点和不足,提高经济效益,使高分子材料的应用更为广泛而有了高分子材料的复合化。
高性能的结构复合材料是新材料革命的一个重要方向,目前主要用于航空造船、航天、海洋工程等方面,今后复合材料的研究方向主要有:(1 )研究并开发高性能、高模量的纤维增强材料;(2)合成具有高强度,优良耐热性和优良成型加工性能的基体树脂;(3)界面性能,粘结性能的提高及评价技术的改进等方面。
1 .4 智能化
智能化的高分子材料是使材料本身带有生物所具有的高级智能,例如预知预告性,自我修复,自我诊断,自我识别能力等特性,对环境的变化可以做出相应的解答;根据人体的状态,控制和调节药剂释放的微胶囊材料,根据生物体生长或愈合的情况或继续生长或发生分解的人造血管人工骨等医用材料[5]。
1 .5 绿色化
我们的日常生活中虽然高分子材料对起了很大的作用,但是高分子材料也给我们带来了不小的污染。
现在很受关注的从生产到使用能节约能源与资源,排放废弃物少,对环境污染小,又能循环利用的高分子材料,要求高分子材料生产的绿色化。
研究高分子材料的绿色化主要有以下几个方向:(1)开发原子经济的聚合反应;(2)选用无毒无害的原料;(3)利用可再生资源合成高分子材料;(4)高分子材料的再循环利用
总的来说,高分子材料对我们的未来影响是不可预测的。
我国虽然在高分子材料的开发和利用方面起步比较晚,然而目前看来进步的速度也是越来越快,高分子材料已经为我国的经济建设做了重要的贡献,我们应该更加提高技术水平,加强对新材料的开发,以提高生活的质量,让高分子材料成长得更加全面,更好地为人类服务。
2 高分子材料加工设备发展趋势
2.1精密注射成型设备
精密注塑机是指具有成型精密塑料制品能力的注塑机。
20 世纪70 年代,随着电子技术的发展,工业发达国家率先研制出精密注塑机。
尤其是日本,日钢、日精、东芝、新泻等厂家都开发了各具特色的精密注塑机。
我国于80 年代,精密注射机研制也取得一定成绩。
1985 年,上海第一塑料机械厂研制成功SZ---150 / 100 精密注塑机。
同年,杭州四五零九厂制造出微型精密注塑机C4704。
之后,上海电讯器材厂试制成功10 克精密注塑机,浙江塑料机械厂也研制出闭环控制的精密注塑机。
闭环控制的注塑机可以分别对温度、注射速度、注射压力、保压压力、塑化背压、塑化转速等重要工艺参数及过程参数实施闭环控制,大幅度提高控制精度,确保产品质量更加稳定。
1989 年,顺德市秦川恒利塑机有限公司研制出双动模及四缸差动合模注塑机,在此基础上又开发成功全液压四缸直锁二板式精密注塑机[6]
2.1.1全电动式注塑机
全电动式注塑机是指采用伺服电机取代原来的液压装置,以完成螺杆旋转、注射、开合模等动作过程的注塑机。
全电动式注塑机的机械部分原理与传统注塑机基本机同,只是在控制部分采用伺服电机,代替原来的液压装置。
全电动注塑机的注射装置也包括塑化部件和传动部件两部分。
塑化部件与传统注塑机相同,主要由螺杆、机筒、喷嘴等组成;传动部件由滚珠丝杆、伺服电动、传动齿轮和离合器等组成。
全电动注塑机的合模装置也有肘杆式和直压工两类。
肘杆式合模装置的全电动注塑机结构如图2.1.1所示。
合模装置中也采用了滚珠丝杆和伺服电机,包括动模板、前模板、后模板拉杆及传动齿轮等零部件。
图2.1.1 全电动式注塑机的结构示意图
全电动注塑机的合模装置在结构设计中用移模丝杆代替原有的移模油缸。
它利用具有行程升角的螺纹,将旋转动变换为直线运动。
以肘杆式合模机构为例,其工作原理:当电机正向转动时,移模丝杆带动肘杆机构推动模板向前运动。
当模具的分型面接触时,肘杆机构尚未形成一线排列,动模板受到变形阻力的作用。
此时电机的转速降低、扭矩增大,使作用在移模丝杆上的作用力不断增加,直至足以克服变形阴力,使肘杆成为一线排列。
合模机构发生的弹性变形对模具实现了预紧,该预紧力即为合模力。
[7]在开模时,电机反转,在移模螺杆力的作用下,肘杆的一线排列被破坏,动模板被迫与定模板分离并退回合模前的初始位置,从而实现开模。
2.1.2全液压式注塑机
全液压式注塑机在成型精密、复杂形状制品方面有许多独特优势,其注射装置与传统注塑机的注射装置类似。
全液压式注塑机的合模装置有很多种结构,从最传统的单缸充液式、多缸充液式到最近几年发展出来的全液压二板直压式。
[8]单缸充液式是传统全液式的代表,
图2.1.2充液式合模装置
如图2.1.2 所示。
它有一般液压式的优点,如合模精度高、开模力大等,也有明显的。