桂林理工大学《误差理论与测量平差基础》考试试卷
- 格式:doc
- 大小:663.50 KB
- 文档页数:6
误差理论与测量平差基础期末复习试题含答案误差理论与测量平差基础(B) 一、填空题(每空1分,共30分)1. 测量平差就是在基础上,依据原则,对观测值进行合理的调整,即分别给以适当的,使矛盾消除,从而得到一组最可靠的结果,并进行。
2. 测量误差的定义为,按其性质可分为、和。
3. 衡量估计量优劣的标准有、、。
9km,5mm4. 在A、B两点间进行水准测量,路线长度为,每千米单程观测高差的中误差等于,则A、B两点间单程观测高差的中误差等于,往返高差中数的中误差等于,往返高差不符值的限差为。
5. 设为独立等精度偶然误差,为每个误差的均方差,则误差和的限差为,(i,1,2,?,n),,,,i。
(取2倍中误差为限差) [,],6. 若有一组观测值的函数、,设,则二L,?,Lx,aL,?,aLx,bL,?,bLQ,I1n111nn211nnL者的相关系数= ,若再设,则行列式= 。
Q,b,2a(i,1,?,n)xxXii12x3,1,,,,17. 设,,,,,则,X,,,,2Σ,z,x,x,,z,x0Xz21212,,,,1x,122,,,,,, ,。
,,zzz122T8. = 。
tr[E(ΔPΔ)]1,nn,nn,111SS9. 设观测值为,观测值的函数为,欲使的权倒数为,则的权倒数, 。
f,lgSfppfS,,ˆˆv,sinx,2cosx,L10. 设非线性误差方程,参数近似值,观测值,x,60, x,45L,2512510205线性化之后的误差方程为。
11. 平差的数学模型可分为模型和模型,前者描述观测值之间、观测值与参数之间以及参数之间数学期望的关系,后者描述的则是观测值的精度特性。
ˆ,V,AδX,l,n,tn,1n,1t,1T12. 由二次型的数学期望= 可以证明,具有条件的参数平差模型中,E(XAX),ˆBδXW0,,X,t,1r,1r,t,T= 。
E(VPV),,15cm9cm4513. 已知某点的点位中误差等于,点位误差椭圆的短半轴为,短轴的方向角为,则误差椭圆的长半轴等于,长轴的方向角等于。
《误差理论与测量平差基础》期末考试试题A(参考答案)一、名词解释(每题2分,共10分)1、偶然误差——在相同得观测条件系作一系列得观测,如果误差在大小与符号上都表现出偶然性。
即从单个误差瞧,该误差得大小与符号没有规律性,但就大量误差得总体而言,具有一定得统计规律。
这种误差称为偶然误差。
2、函数模型线性化——在各种平差模型中,所列出得条件方程或观测方程,有得就是线性形式,有得就是非线性形式。
在进行平差计算时,必须首先把非线性形式得函数方程按台劳公式展开,取至一次项,转换成线性方程。
这一转换过程,称之为函数模型得线性化。
3、点位误差椭圆——以点位差得极大值方向为横轴X 轴方向,以位差得极值F E 、分别为椭圆得长、短半轴,这样形成得一条椭圆曲线,即为点位误差椭圆。
4、协方差传播律——用来阐述观测值得函数得中误差与观测值得中误差之间得运算规律得数学公式。
如0K KL Z +=,若观测向量得协方差阵为LL D ,则按协方差传播律,应有T LL ZZ K KD D =。
5、权——表示各观测值方差之间比例关系得数字特征,220ii P σσ=。
二、判断正误(只判断)(每题1分,共10分)参考答案:X √X √X X X √√X三、选择题(每题3分,共15分)参考答案:CCDCC四.填空题(每空3分,共15分)参考答案:1、 6个2、 13个3、1/n4、 0、45、 0)()()()(432200=''+∆+∆+-''+-''-W y SX X x SY Y C ACA C C ACA C ρρ,其中AB AC AC X X Y Y W αββ-++--=''4300arctan五、问答题(每题4分,共12分)1、 几何模型得必要元素与什么有关?必要元素数就就是必要观测数吗?为什么?答:⑴几何模型得必要元素与决定该模型得内在几何规律有关;(1分) ⑵必要元素数就就是必要观测数;(1分)⑶几何模型得内在规律决定了要确定该模型,所必须具备得几何要素,称为必要元素,必要元素得个数,称为必要元素数。
《误差理论与测量平差基础》期末考试试题A(参考答案)一、名词解释(每题2分,共10分)1、系统误差——在相同的观测条件系作一系列的观测,如果误差在大小和符号上都表现出系统性,或者在观测过程中按一定规律变化,或者为某一常数,那么,这种误差就称为系统误差。
2、中误差——表征精度的一项指标,即统计学中的标准差σ,[]n∆∆±=σ。
3、点位误差椭圆——以点位差的极大值方向为横轴X 轴方向,以位差的极值F E 、分别为椭圆的长、短半轴,这样形成的一条椭圆曲线,即为点位误差椭圆。
4、水准网——以高差作为观测值,用于求取未知点高程平差值的一种高程控制网布设方案。
5、权——表示各观测值方差之间比例关系的数字特征,220ii P σσ=。
二、判断正误(只判断)(每题1分,共10分)参考答案:1X 2X 3X 4X 5X 6√ 7√ 8√ 9√ 10√三、选择题(每题3分,共15分)参考答案:1D 2ABC 任选一个(题目不严谨导致) 3A 4D 5C四.填空题(每空3分,共15分)参考答案:1. 122. 14个3.14. 1.255.0)()()()(200200200200=+∆+∆-∆-∆W y S X x S Y y S X x S Y B AB ABB AB AB A AB AB A AB AB ,其中 ()()AB ABABABABABA B ABABABX Y W Y X SY Y YX X Xα-∆∆=∆+∆=-=∆-=∆0020200000000arctan ,,,五、问答题(每题4分,共12分)1. 在具体的平差问题中,只要参数个数等于必要观测数t ,就可以采用间接平差方法进行平差。
这种说法正确吗?为什么?答:⑴不正确;(1分)⑵一个平差问题能够采用间接平差方法进行平差的充分必要条件是:参数个数等于必要观测数t ,同时彼此独立。
(3分)2. 简述偶然误差的特性。
答:⑴在一定条件下,误差绝对值有一定限值。
误差理论与测量平差基础 试卷一及答案一、填空题(30分)1、测量误差定义为 ,按其性质可分为 、 和 。
经典测量平差主要研究的是 误差。
2、偶然误差服从 分布,它的概率特性为 、 和 。
仅含偶然误差的观测值线性函数服从 分布。
3、已知一水准网如下图,其中A 、B 为已知点,观测了8段高差,若设E 点高程的平差值与B 、E 之间高差的平差值为未知参数21ˆˆX X 、,按附有限制条件的条件平差法(概括平差法)进行平差时,必要观测个数为 ,多余观测个数为 ,一般条件方程个数为 ,限制条件方程个数为C4、取一长度为d 的直线之丈量结果的权为1,则长度为D 的直线之丈量结果的权为 ,若长度为D 的直线丈量了n 次,则其算术平均值的权为 。
5、已知某点(X 、Y)的协方差阵如下,其相关系数ρXY = ,其点位方差为2σ= mm 2⎪⎪⎭⎫ ⎝⎛=00.130.030.025.0XX D6、已知某平差问题观测值个数为50,必要观测量个数为22,若选6个独立参数进行平差,应该利用的平差模型是 ,则方程个数为 , 二、判断题(10分)1、通过平差可以消除误差,从而消除观测值之间的矛盾。
( × )2、观测值iL 与其偶然真误差i∆必定等精度。
(√)3、测量条件相同,观测值的精度相同,它们的中误差、真误差也相同。
( × )4、或然误差为最或然值与观测值之差。
( × )5、若X 、Y 向量的维数相同,则YX XY Q Q =。
( × ) 三 选择题(10分)1、已知)180(3ˆ -++=-=C B A W W A A ,m m m m C B A ===,m m W3=,则A m ˆ=A。
A 、m 32B 、m 32C 、m 32 D 、m 23 2、已知观测值L 的中误差为L m ,L x 2=,2L y =,则xy m = A 。
A 、24L LmB 、L Lm 4C 、22L Lm D 、L Lm 23、条件平差中,已知⎥⎦⎤⎢⎣⎡=8224W Q ,2±=μ,则±=1k m A 。
桂林理工大学《误差理论与测量平差》复习题一、 写出五种衡量精度指标的名称,并指出他们之间的关系是什么?答:五种衡量精度指标的名称:方差2σ或中误差σ,平均误差θ,或然误差ρ,相对误差和极限误差; 关系:方差nn ][lim 2∆∆=∞→σ,平均误差σθ54≈,或然误差σρ32≈,相对误差Km 1==观测值大小σ,极限误差=2σ或3σ。
二、已知独立观测值1L 、2L 的中误差分别为1σ、2σ,求下列函数的中误差:(1) 2132L L x -=; (2) 212132L L L x -=;(3) )cos(sin 211L L L x +=。
解 (1) 2132L L x -==[]03221+=⎥⎦⎤⎢⎣⎡⋅KL L L , 利用协方差转播公式:TK KL x K KD D LLxx =+=则,,0[][]22212221222122212949432323232σσσσσσσσσσ+±=+=⎥⎦⎤⎢⎣⎡⋅=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⋅==x xxx 则,因此,D (2)212132L L L x -=,此式是非线性形式,需要线性化,对上式求全微分得:[]KdL dL dL L L L dL L dL L L dx =⎥⎦⎤⎢⎣⎡⋅--=⋅-+⋅-=21010212011021)3()3()3()3(利用协方差转播公式:[]2221212212221212210102122210102129)3(9)3()3()3()3()3(σσσσσσσσL L L L L L L L L L L L x xxx +-±=+-=⎥⎦⎤⎢⎣⎡--⋅⎥⎦⎤⎢⎣⎡⋅--==则,因此,D(3))cos(sin 211L L L x +=,此式是非线性形式,需要线性化,对上式求全微分得:")(cos )sin(sin ")(cos )sin(sin )cos(cos 2021221110212211211ρρdL L L L L L dL L L L L L L L L dx ⋅⎪⎪⎭⎫ ⎝⎛+++⋅⎪⎪⎭⎫ ⎝⎛++++⋅= 222212211************")(cos )sin(sin ")(cos )sin(sin )cos(cos σρσρσ⎪⎪⎭⎫ ⎝⎛+++⎪⎪⎭⎫ ⎝⎛++++±=L L L L L L L L L L L L L x三、若要在两坚强点间布设一条附合水准路线,已知每公里观测中误差等于mm 0.5±,欲使平差后线路中点高程中误差不大于mm 0.10±,问该路线长度最多可达几公里?解 设路线总长S 公里,按照测量学上的附合路线计算步骤,则路线闭合差 B Ah H h h Hf -++=21由于是路线中点,故()B A h H h h H f v v -++-=-==21212121则线路中点高程()()数点的高程化成观测值函此步的目的是将线路中中点,2121212121212121ˆ212121111B A BA B A A A H H h h H H h h H h h H h H v h H H ++⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=++-=-++-+=++=设每公里高差观测中误差为0σ,则021)2/(σσσs h h ==按误差传播定律)(16,10425)52/(41)52/(41)2/(41)2/(414141212100212122220202222ˆ21121km S S s s s s hhh h H≤≤=⋅⨯+⋅⨯=⨯+⨯=+=⎪⎪⎪⎪⎭⎫⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=σσσσσσσ中点四、设1P 点及2P 点的坐标为:⎩⎨⎧==⎩⎨⎧==mY m X m Y m X 00.150000.1800,00.100000.10002211 向量[]TY X Y X 2211,,,的协方差阵为: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----823261231420223(cm)2 试求坐标差函数12X X X -=∆与12Y Y Y -=∆的方差协方差阵;解:[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅-=-=∆2211120101Y X Y X X X X []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅-=-=∆2211121010Y X Y X Y Y Y ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡∆∆22111121210100101Y X Y X Y Y X X Y X 则坐标差函数12X X X -=∆与12Y Y Y -=∆的方差协方差阵:2)(61151001100151122431100110018232612314202231010101cm D D D D Y Y X Y Y X X X ⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--⋅⎥⎦⎤⎢⎣⎡------=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--⋅⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⋅⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡∆∆∆∆∆∆∆∆五、有三角网(如图1),其中B 、C 为已知点,A 、D 、E 为待定点,观测角i L (i =1,2,…,10)。
《误差理论与测量平差》课程自测题(1)一、正误判断。
正确“T”,错误“F”。
(30分)1.在测角中正倒镜观测是为了消除偶然误差()。
2.在水准测量中估读尾数不准确产生的误差是系统误差()。
3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。
4.观测值与最佳估值之差为真误差()。
5.系统误差可用平差的方法进行减弱或消除()。
6.权一定与中误差的平方成反比()。
7.间接平差与条件平差一定可以相互转换()。
8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。
9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。
10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。
11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。
12.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。
13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。
14.定权时σ0可任意给定,它仅起比例常数的作用()。
15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。
二、用“相等”或“相同”或“不等”填空(8分)。
已知两段距离的长度及其中误差为300.158m±3.5cm;600.686m±3.5cm。
则:1.这两段距离的中误差()。
2.这两段距离的误差的最大限差()。
3.它们的精度()。
4.它们的相对精度()。
三、选择填空。
只选择一个正确答案(25分)。
1.取一长为d的直线之丈量结果的权为1,则长为D的直线之丈量结果的权P D=()。
a) d/D b) D/d c) d 2/D 2d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。
《误差理论与测量平差》课程自测题(1)一、正误判断。
正确“T”,错误“F”。
(30分)1.在测角中正倒镜观测是为了消除偶然误差()。
2.在水准测量中估读尾数不准确产生的误差是系统误差()。
3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。
4.观测值与最佳估值之差为真误差()。
5.系统误差可用平差的方法进行减弱或消除()。
6.权一定与中误差的平方成反比()。
7.间接平差与条件平差一定可以相互转换()。
8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。
9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。
10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。
11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。
12.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。
13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。
14.定权时σ0可任意给定,它仅起比例常数的作用()。
15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。
二、用“相等”或“相同”或“不等”填空(8分)。
已知两段距离的长度及其中误差为300.158m±3.5cm;600.686m±3.5cm。
则:1.这两段距离的中误差()。
2.这两段距离的误差的最大限差()。
3.它们的精度()。
4.它们的相对精度()。
三、选择填空。
只选择一个正确答案(25分)。
1.取一长为d的直线之丈量结果的权为1,则长为D的直线之丈量结果的权P D=()。
a) d/D b) D/dc) d 2/D 2 d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。
桂林理工大学《误差理论与测量平差基础》考试试卷一、名词解释1.观测条件2.偶然误差3.精确度4.多余观测5.权6.权函数式7.相对误差椭圆8.无偏性二、填空题1.观测误差包括偶然误差、、。
2.偶然误差服从分布,其图形越陡峭,则方差越。
3.独立观测值L1和L2的协方差为。
4.条件平差的多余观测数为减去。
5.间接平差的未知参数协因数阵由计算得到。
6.观测值的权与精度成关系,权越大,则中误差越。
7. 中点多边形有个极条件和个圆周条件。
8. 列立测边网的条件式时,需要确定与边长改正数的关系式。
9. 秩亏水准网的秩亏数为 个 。
三、 问答题1. 写出协方差传播律的应用步骤。
2. 由最小二乘原理估计的参数具有哪些性质?3. 条件平差在列立条件式时应注意什么?什么情况下会变为附有参数的条件平差?4. 如何利用误差椭圆求待定点与已知点之间的边长中误差?5. 为什么在方向观测值的误差方程式里面有测站定向角参数?6. 秩亏测角网的秩亏数是多少?为什么?7. 什么是测量的双观测值?举2个例子说明。
8. 方向观测值的误差方程式有何特点?四、 综合题1. 下列各式中的Li (i=1,2,3)均为等精度独立观测值,其中误差为σ,试求X 的中误差:(1) 321)(21L L L X ++= ,(2)321L L L X =。
2. 如图1示,水准网中A,B,C 为已知高程点,P1,P2,P3为待定点,h1~h6为高差观测值,按条件平差方法,试求: (1) 全部条件式; (2) 平差后P2点高程的权函数式。
3. 如图2示,测边网中A,B,C 为已知点,P 为未知点,观测边长为L1~L3,设P 点坐标P X 、P Y 为参数,按间接平差方法,试求: (1) 列出误差方程式; (2) 按矩阵符号写出法方程及求解参数平差值的公式; (3) 平差后AP 边长的权函数式。
4. 在条件平差中,0=+∆WA ,试证明估计量^L 为其真值~L 的无偏估计。
误差理论测量与测量平差基础考试试卷学年 下 学期期末考试试题 时间100分钟误差理论与测量平差基础 课程56 学时3.5学分 考试形式:闭卷 专业年级:测绘工程1401、1402、遥感1401 、测绘实验班1401 总分100分,占总评成绩 70 %注:此页不作答题纸,请将答案写在答题纸上一、 简答题(每题5分,共15分)1、 何谓极限误差?设某一观测值中误差8σ''=,则观测值真误差的取值范围为多少?2、 测量平差的数学模型包含哪些?是如何定义的?3、 何谓方差-协方差传播律?和误差传播律区别在哪里?二、 填空题(每空2分,共26分)1、 间接分组平差时,要求第一组误差方程个数( )、条件分组平差对分组的条件式个数( )。
2、 水准测量定权的公式i i c P s =,其中i s 代表( ),C 代表( )。
3、 设有两条边长观测值及其中误差分别为:11S 1000.234m,3mm σ==,22S 1200.456m,3mm σ==,则1S 比2S 的精度( ),原因是( )。
4、 观测向量[]T 123L L L L =的方差阵为LL 322D 232223⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,202σ=。
则LL Q = ( ),对应的2L P =( )。
5、 如下图所示水准网,条件平差时,条件方程式为( ),评定P 点高程平差值精度时的平差值函数式为( )。
间接平差时,选P 点高程平差值为参数,则误差方程式为( )和( ),评定P 点高程平差值精度时的未知数函数式为( )。
三、 计算题(每题15分,共30分)1、(15分)下图所示为某隧道横截面,通过弓高弦长法测定圆弧的半径。
已知测得s S 3.6m,24mm σ==,H H 0.3m,4mm σ==,试求半径的测量精度R σ。
(已知弓高弦长法求半径的公式为2H S R 28H=+)2、(15分)误差椭圆描述的是待定点和已知点的精度关系,相对误差椭圆是表示待定 点之间相对位置的精度分布。
《误差理论与测量平差》(1)1.正误判断。
正确“T”,错误“F”。
(30分)2.在测角中正倒镜观测是为了消除偶然误差()。
3.在水准测量中估读尾数不准确产生的误差是系统误差()。
4.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。
5.观测值与最佳估值之差为真误差()。
6.系统误差可用平差的方法进行减弱或消除()。
7.权一定与中误差的平方成反比()。
8.间接平差与条件平差一定可以相互转换()。
9.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。
10.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。
11.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。
12.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。
13.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。
14.当观测值个数大于必要观测数时,该模型可被唯一地确定()。
15.定权时σ0可任意给定,它仅起比例常数的作用()。
16.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。
17.用“相等”或“相同”或“不等”填空(8分)。
已知两段距离的长度及其中误差为300.158m±3.5cm;600.686m±3.5cm。
则:1.这两段距离的中误差()。
2.这两段距离的误差的最大限差()。
3.它们的精度()。
4.它们的相对精度()。
18. 选择填空。
只选择一个正确答案(25分)。
1.取一长为d 的直线之丈量结果的权为1,则长为D 的直线之丈量结果的权P D =( )。
a) d/D b) D/dc) d 2/D 2 d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。
桂林理工大学
《误差理论与测量平差基础》考试试卷
一、名词解释
1.观测条件
2.偶然误差
3.精确度
4.多余观测
5.权
6.权函数式
7.相对误差椭圆
8.无偏性
二、填空题
1.观测误差包括偶然误差、、。
2.偶然误差服从分布,其图形越陡峭,则方差越。
3.独立观测值L1和L2的协方差为。
4.条件平差的多余观测数为减去。
5.间接平差的未知参数协因数阵由计算得到。
6.观测值的权与精度成关系,权越大,则中误差越。
7. 中点多边形有个极条件和个圆周条件。
8. 列立测边网的条件式时,需要确定与边长改正数的关系式。
9. 秩亏水准网的秩亏数为 个 。
三、 问答题
1. 写出协方差传播律的应用步骤。
2. 由最小二乘原理估计的参数具有哪些性质
3. 条件平差在列立条件式时应注意什么什么情况下会变为附有参数的条件平差
4. 如何利用误差椭圆求待定点与已知点之间的边长中误差
5. 为什么在方向观测值的误差方程式里面有测站定向角参数
6. 秩亏测角网的秩亏数是多少为什么
7. 什么是测量的双观测值举2个例子说明。
8. 方向观测值的误差方程式有何特点
四、 综合题
1. 下列各式中的Li (i=1,2,3)均为等精度独立观测值,其中误差为σ
,试求X 的中误差:(1) 321)(2
1
L L L X ++= ,(2)
32
1L L L X =。
2. 如图1示,水准网中A,B,C 为已知高程点,P1,P2,P3为待定点,h1~h6为高差观测值,按条件平差方法,试求: (1) 全部条件式; (2) 平差后P2点高程的权
函数式。
3. 如图2示,测边网中A,B,C 为已知点,P 为未知点,观测边长为L1~L3,设P 点坐标P X 、P Y 为参数,按间接平差方法,试求: (1) 列出误差方程式; (2) 按矩阵符号写出法方程及求
解参数平差值的公式; (3) 平差后AP 边长的权函数式。
4. 在条件平差中,0=+∆W
A ,试证明估计量^
L 为其真值~
L 的
无偏估计。
(提示:~
)(L L E =,须证明0)(=V E )
5. 在某测边网中,设待定点P 的坐标为未知参数,即
[]
T
X X X 21^
=,平差后得到
^
X 的协因数阵为
⎥⎦⎤⎢⎣⎡=yy xy
xy xx X
X Q Q Q Q Q ^
^
,且单位权中误差为0^σ,求:
(1)P 点的纵横坐标中误差和点位中误差; (2)P 点误差椭圆三要素 E ϕ、E 、F 。
6. 在间接平差中,已知d
X B L
+=~
~
,d X B L
+=^
^
,试证
明参数估计量
^
X
为其真值
~
X
的无偏估计。
(提示:设
~
~
x X X +=,^
^
x X X +=,须证明~
^
)(x x E =。
)
参考答案:
一、名词解释:
1、观测条件:观测条件、观测者、外界条件三个方面的综合。
2、偶然误差:在相同的观测条件下作一系列的观测,如果误差在大小和符号上都表现出偶然性,即从单个误差看,该列误差的大小和符号没有规律性,但就大量误差的总体而言,具有一定的统计规律,称为偶然误差。
3、精确度:是精度和准确度的合成,是指观测结果与其真值得接近程度,包括观测结果与其数学期望接近程度和数学期望与其真值的偏差。
4、多余观测:在一个平常问题中,如果观测值个数为,必要观测数为,则多余观测数为。
5、权:表示各观测值方差之间比例关系的数字特征称为权。
权是表征精度的相对指标。
6、权的定义:设有一组不相关的观测值,它们的方差为
,如选定任一常数
,则定义
,并称为观测值的
权。
7、观测仪器:指采集数据所采用的的任何工具和手段。
8、系统误差:在相同的观测条件下作一系列的观测,如果误差在大小和符号上表现出系统性,或者在观测过程中按一定的规律变化,或者为一常数,那么,这种差就为系统误差。
9、粗差:即粗大误差,是指比在正常观测条件下所可能出现的最大误差还要大的误差。
10、精度:指误差分布的密集或离散的程度。
11、准确度:是指随机变量的真值与与数学期望之差,即。
12、期望:指随机变量取值的概率平均值。
13、测量平差:依据某种最优化准则,由一系列带有观测误差的测量数据,求定未知量的最佳估值及精度的理论和方法。
14、中误差:
,代表一组同精度观测误差平方的平均值的
平方根极限值。
15、误差椭圆:点位误差曲线不是一种典型曲线,作图也不方便,因此降低了它的实用价值。
但其形状与以E、F为长短半轴的椭圆很相似,此椭圆称为点位误差椭圆,、E、F称为点位误差椭圆的参数。
二、填空题:
1、观测误差包括偶然误差、系统误差、粗差。
2、偶然误差服从正态分布,其图形越陡峭,则方差越小。
3、独立观测值和的协方差为0.
4、条件平差的多余观测数为观测总数减去必要观测数。
5、间接平差的未知参数协因数阵由计算得到。
6、观测值的权与精度成正关系,权越大,则中误差越小。
三、简答题:
1、写出协方差传播律的应用步骤:1、写出函数式,如
;2、对函数式求全微分,得
;3、将微分关系写成矩阵形式=,其中,;
4、应用协方差传播定律、或
=求方差或协方差阵。
2、由最小二乘原理估计的参数具有哪些性质答:无偏性、一致性、有效性。
3、条件平差在列立条件式时应注意什么什么情况下会变为附有参数的条件平差答:1、①条件方程个数应等于多余观测数。
②条件方程之间线性不相关。
③在所有方程组中选择最简易,易于计算的方程组。
2、在列立方程组有困难时,会选u(u<t)个独立量为参数参加平差计算。
四、计算题
1、解:(1)dx=++→→
(2)等式两边取对数→ = →又x=→
2、解:(1)
(2)∵∴权函数式:=+
3、解:(1)
(2)设P为,的权阵→B=,
l=则法方程为:又
,,∴=W ∴=
(3)=--
4、解:∵A+W=0 ∴A E()+E(W)=0 ∵E()=0 ∴E(W)=0 又∵A+=0
∴AV+W=0 ∴AE(V)+E(W)=0 ∴E(V)=0 ∴
E(=E(L+V)=E(L)
又∵E(L)=∴E() ∴估计量为真值的无偏
估计。