完整版矢量网络分析仪
- 格式:docx
- 大小:52.49 KB
- 文档页数:4
矢量网络分析仪的使用一、实验目的1.初步掌握矢量网络分析仪的操作使用方法;2.掌握使用矢量网络分析仪测量微带传输线在不同滤波器下的s参数,幅值,相角(arg),损耗,驻波比;二、实验仪器射频微波与天线的接收装置,两根SMA线三、实验内容及步骤1.连接带通滤波器的滤波输入和矢量分析仪的DET端口,滤波输出和矢量分析仪的DUT端口,可通过显示屏观察S11反射系数和S21传输系数的特性参数。
2.利用鼠标点击device选择cmo3,此时可以通过图形上方S11下拉箭头处进行参数切换。
3.再次点击device选择sweep parameters设置频率范围和频点,带通滤波器频率范围为1500MHZ-3000MHZ,低通滤波器为200MHZ-3000MHZ,频点设为500。
4.点击左下角加号可显示图中频率对应的数值,拖动滑块可改变频率。
四、实验结果及分析1、低通滤波器相对电平(mag(s11))-11.3dB相位(arg)-11.3°模值(|z|)82Ω实部(z_re(s11))79.6Ω虚部(z_im(s11))-19.8Ω驻波比(swr(s11))1.742、高通滤波器相对电平(mag(s11))-12.2dB相位(arg)-22.4°模值(|z|)78.6Ω8实部(z_re(s11))77.2Ω虚部(z_im(s11))-15.1Ω驻波比(swr(s11))1.663、带通滤波器相对电平(mag(s11))-7.1dB相位(arg)-39.2°模值(|z|)96.7Ω实部(z_re(s11))79.2Ω虚部(z_im(s11))-55.1Ω驻波比(swr(s11))2.604、带阻滤波器相对电平(mag(s11))-6.6dB相位(arg)-4.3°模值(|z|)137.7Ω实部(z_re(s11))136.9Ω虚部(z_im(s11))-11.7Ω驻波比(swr(s11))2.765、带通滤波器LTCC相位(arg)-15°模值(|z|)58Ω实部(z_re(s11))40Ω虚部(z_im(s11))42Ω驻波比(swr(s11))2.6。
矢量网络分析仪操作规程
1、测量前准备
打开电源,让仪器预热30分钟,将标准同轴线接于仪器上,同时准备好用于校准的标准件。
按下Preset键,进行网络分析仪初始化面板的预设。
2、测量前校准
在首次操作仪器之前或每隔一个月或根据仪器的使用情况,必须对网络分析仪进行校准。
为使测量结果更为精确,必须分别连接开路、短路、负载设备进行校准。
用户可以对校准后的数据进行保存,开机时可直接调用,而不需要设置和校准。
3、开始实验
确保操作本仪器的任何人员已接受过实验室一般安全操作规程和本仪器特别安全操作规程的培训与指导。
根据测量的设备,依次进行中频带宽的设定,测量轨迹的设定,扫频方式的设定,起始和终止频率的设定,Marker读值的设定。
测量完毕后对需要保存的数据和图形进行存储操作,以便下次直接调用。
4、关闭网络分析仪
测试完毕后关闭系统,点击System>Exit,进入Windows XP界面,之后关闭计算机。
矢量网络分析仪的原理介绍矢量网络分析仪(Vector Network Analyzer,简称VNA)是用于测量微波电路参数的一种测试仪器。
它可以同时测量幅度和相位,由此可以得到电路的S参数,进而确定电路的电学特性。
原理VNA的核心是一组相互独立的大功率信号源和敏感的接收器,它们分别通过大量的各向异性元件、耦合器以及各种整流器、差分与单端平衡器和放大器等等电路连接起来。
VNA中最基本的组件是频率控制单元,它使用一个可变频率信号源来生成一个宽频信号作为输入信号,并令它经过电路中的传输诸元、非线性元件、各种过渡网络等,从而获得电路的各种参数。
VNA的工作原理可以简单地分为以下几个步骤:1.VNA内置的信号源生成一个可变频率的信号,并将该信号通过耦合器输入待测电路中;2.信号在待测电路中进行传播,经过一些变化,并从待测电路中输出;3.输出信号再通过耦合器进入VNA中的接收器,接收器将输出的信号与输入的信号进行比较,以测量待测电路的各种参数;4.VNA将测量所得的各种参数进行处理,即可确定待测电路的S参数。
优点VNA具有以下几个优点:1.高精度和高灵敏度:VNA的测量精度通常可达到0.1 dB,接近于理论计算值,测试范围也非常宽;2.测量速度快:VNA的测量速度通常可以达到数毫秒,节省了大量的时间;3.大量的参数:VNA可以测量电路的各种参数,如S参数、Y参数、Z参数等等;4.多功能应用:VNA不仅可以测量微波电路,也可以用于其他领域如光学、无线通信等。
应用VNA的主要应用领域有以下几个:1.无线通信:VNA可以测量各种无线通信设备的电学特性,如天线、滤波器、变频器等等;2.微波电路设计和生产:VNA可以帮助设计人员快速准确地了解电路的性能,并帮助改进电路设计;3.光学:VNA可以用于测量光学器件的特性,并对光学器件进行性能评估;4.材料研究:VNA可以帮助研究人员了解各种特性材料的电学特性。
总结矢量网络分析仪是一种常用的微波测试仪器,它可以测量电路的各种参数,具有高精度和高灵敏度等优点,已经成为无线通信、微波电路设计和生产、光学、材料研究等领域必备的测试仪器。
矢量网络分析仪基础知识及S参数测量§1 基本知识1.1 射频网络这里所指的网络是指一个盒子,不管大小如何,中间装的什么,我们并不一定知道,它只要是对外接有一个同轴连接器,我们就称其为单端口网络,它上面若装有两个同轴连接器则称为两端口网络。
注意:这儿的网络与计算机网络并不是一回事,计算机网络是比较复杂的多端(口)网络,这儿主要是指各种各样简单的射频器件(射频网络),而不是互连成网的网络。
因为只有一个口,总是接在最后又称 1.单端口网络习惯上又叫负载ZL终端负载。
最常见的有负载、短路器等,复杂一点的有滑动负载、滑动短路器等。
·单端口网络的电参数通常用阻抗或导纳表示,在射频范畴用反射系)更方便些。
数Γ(回损、驻波比、S112.两端口网络最常见、最简单的两端口网络就是一根两端装有连接器的射频电缆。
·匹配特性两端口网络一端接精密负载(标阻)后,在另一端测得的反射系数,可用来表征匹配特性。
·传输系数与插损对于一个两端口网络除匹配特性(反射系数)外, 还有一个传输特性,即经过网络与不经过网络的电压之比叫作传输系数T。
插损(IL)= 20Log│T│dB ,一般为负值,但有时也不记负号,Φ即相移。
·两端口的四个散射参量测量 两端口网络的电参数,一般用上述的插损与回损已足,但对考究的场合会用到散射参量。
两端口网络的散射参量有4个,即S 11、S 21、S 12、S 22。
这里仅简单的(但不严格)带上一笔。
S 11与网络输出端接上匹配负载后的输入反射系数Г相当。
注意:它是网络的失配,不是负载的失配。
负载不好测出的Γ,要经过修正才能得到S 11 。
S 21与网络输出端匹配时的电压和输入端电压比值相当,对于无源网络即传输系数T 或插损,对放大器即增益。
上述两项是最常用的。
S 12即网络输出端对输入端的影响,对不可逆器件常称隔离度。
S 22即由输出端向网络看的网络本身引入的反射系数。
矢量网络分析仪产品简介产品概述1、T5113A2、T5230A/T5215A3、T5280A产品概述T5113Az 应用领域特别适用于广播电视、汽车电子、医疗、科研教育等领域射频器件和组件的研发、生产测试。
T5113A 矢量网络分析仪是一款频率范围覆盖300kHz 到1.3GHz 、双端口单通路经济型网分仪,端口阻抗有50Ω和75Ω两种。
产品概述T5113A 主要指标产品概述T5230A/T5215Az 应用领域可广泛应用于2G 和3G 移动通信、军工、半导体、广播电视、科研教育等领域射频器件和组件的研发和生产测试。
T5230A/ T5215A 矢量网络分析仪是一款高性能、大动态、低噪声的网分仪,T5230A 频率范围覆盖300kHz 到3GHz ,T5215A 频率范围覆盖300kHz 到1.5GHz ,涵盖整个移动通信频段,全双端口S 参数测量,测量精度高,测试稳定性好,测量速度快。
产品概述T5230A/T5215A 主要指标T5280AT5280A矢量网络分析仪是一款频率覆盖范围(300kHz到8GHz)更宽、动态范围(>130dB)更大的高性能网分仪,全双端口S参数测量,非常高的测量精度,良好的测试稳定性,快速的测量能力。
z应用领域可应用于LTE移动通信、军工、雷达、半导体、科研教育等领域射频器件和组件的研发和生产测试。
T5280A 主要指标+5dBm前面板USB接口,前面板电根据客户要求定制提供打印、软件升参考时钟OUT/IN 外触发接口接地端子主要特点 频率范围:300kHz 至 1.3GHz/1.5GHz/3GHz/8GHz 支持无源和有源射频器件的测量 双端口双通路S参数(S11、S21、S12、S22)测量 绝对功率测量 线性频率扫描、对数频率扫描、分段频率扫描 功率扫描 动态范围:>125dB (IFBW 10Hz) 典型值130dB 信号源功率电平:-55dBm 至 +10dBm,0.05dB的分辨率 信号源功率精度:±1dB 迹线噪声:0.001dBrms (IFBW 3kHz) 测量速度:125us/测量点(IFBW=30kHz) 等效方向性:>45dB 温度稳定性:<0.02dB/℃ 宽IF带宽:1Hz ~ 30kHz(步进值1/1.5/2/3/5/7) 10.4英吋TFT液晶触摸显示屏(LED背光可调) 支持机械校准件和电子校准件,机械校准件支持安捷伦、自定义等多种校准件 超低功耗,远远低于市场上的同类产品 “一键测试”自动测试功能,简化仪器操作,提高生产效率 提供LAN、USB和GPIB等丰富的接口进行远程控制和系统互联11双端口双通路S参数测量一次连接即可完成两个端口S参数(S11、S21、S12、S22)的测量。
矢量网络分析仪原理矢量网络分析仪是一种用于测量和分析微波网络参数的仪器,其原理基于电磁波在网络中的传播和反射特性。
在现代通信系统和雷达系统中,矢量网络分析仪被广泛应用于网络性能的评估和优化。
本文将介绍矢量网络分析仪的原理及其工作过程。
首先,矢量网络分析仪通过向被测网络中注入测试信号,并测量其在网络中的传播和反射情况来获取网络参数。
其工作原理基于电磁波在网络中的传播和反射特性。
当测试信号进入网络后,部分信号会被网络中的各种元器件反射回来,而另一部分信号则会继续向前传播。
通过测量这些传播和反射信号的幅度和相位,矢量网络分析仪可以计算出网络中各种参数,如传输损耗、驻波比、相位延迟等。
其次,矢量网络分析仪的工作过程可以分为两个主要步骤,校准和测量。
在进行测量之前,矢量网络分析仪需要进行校准以确保测量结果的准确性。
校准过程包括对矢量网络分析仪的各种内部参数进行调整,以消除系统误差和衰减。
一旦完成校准,矢量网络分析仪就可以进行网络参数的测量。
通过向网络中注入测试信号,并测量其在网络中的传播和反射情况,矢量网络分析仪可以计算出网络的各种参数,并将其显示在屏幕上供用户分析和评估。
在实际应用中,矢量网络分析仪可以用于多种场景,如天线测试、滤波器设计、无线通信系统性能评估等。
其高精度和灵活性使其成为微波领域中不可或缺的工具。
通过对网络参数的准确测量和分析,矢量网络分析仪可以帮助工程师们优化系统性能,提高系统的可靠性和稳定性。
总之,矢量网络分析仪是一种用于测量和分析微波网络参数的重要工具,其原理基于电磁波在网络中的传播和反射特性。
通过对网络中的传播和反射信号进行测量和分析,矢量网络分析仪可以准确地计算出网络的各种参数,并帮助工程师们优化系统性能。
在未来的发展中,矢量网络分析仪将继续发挥重要作用,推动微波技术的发展和创新。
矢量网络分析仪的使用——实验报告矢量网络分析仪实验报告一、实验内容单端口:测量Open,Short,Load校准件的三组参数,分别进行单端口的校准。
a.设置测量参数1)预设:preset OK2)选择测试参数S11:Meas->S11;3)设置数据显示格式为对数幅度格式:Format->LogMag;4)设置频率范围:Start->1.5GHz,Stop->2.5GHz(面板键盘上“ G”代表GHz,“ M”代表MHz,“ k”代表kHz;5)设置扫描点数:Sweep Setup->Points->101->x1(或”Enter”键或按下大按钮);6)设置信号源扫描功率:Sweep Setup->Power->Foc->-10->x1->Entry Off(隐藏设置窗)。
b.单端口校准与测量1)设置校准件型号:Cal->Cal Kit->85032F(或自定义/user)(F指femal母头校准件,M指male公头校准件);2)Modify Cal Kit->Specify CLSs->Open->Set All->Open(m/f),返回到Specify CLSs->Short->Set ALL->Short(m/f);3)选择单端口校准并选择校准端口:Cal-Calibrate->1-Port Cal->SelectPort->1(端口1 的校准,端口2也可如此操作);4)把Open校准件连接到端口(或与校准端口相连的同轴电缆另一连接端),点击Open,校准提示(嘀的响声)后完成Open校准件的测量;得到的结果如Fig 1:单口Open校准件测量5)把Short校准件连接到端口(或与校准端口相连的同轴电缆另一连接端),点击Short,校准提示(嘀的响声)后完成Short校准件的测量;得到的结果如Fig 2:单口Short校准件测量6)把Load校准件连接到端口(或与校准端口相连的同轴电缆另一连接端),点击Load,校准提示(嘀的响声)后完成Load校准件的测量;得到的结果如Fig 3:单口Load校准件测量c.双端口校准与测量1)在单端口校准完成后,直接进行双端口的校准,不能按Preset按钮,否则要重新选择校准件进行校准;2)选择二端口校准:Cal->Calibrate->2-Port Cal;3)点击Reflect,进入界面后,在1端口和2端口分别接入Open,Short,Load三种校准件,每接入一个校准件后,点击相应选项完成校准。
矢量网络分析仪的基本原理目录一、内容概览 (2)1.1 矢量网络分析仪的重要性 (3)1.2 矢量网络分析仪的应用领域 (4)二、矢量网络分析仪的基本原理概述 (5)2.1 矢量信号与标量信号的差异 (6)2.2 矢量网络分析仪的工作原理 (7)三、矢量网络分析仪的主要组成部分 (8)3.1 射频模块 (10)3.2 混频器模块 (11)3.3 功率计模块 (12)3.4 天线与开关模块 (13)3.5 控制与显示模块 (14)四、矢量网络分析仪的工作流程 (15)4.1 开启仪器 (17)4.2 连接测试夹具 (17)4.3 设置测试参数 (18)4.4 执行测试 (20)4.5 分析测试结果 (21)五、矢量网络分析仪的测量原理 (22)5.1 矢量电压与电流的计算 (23)5.2 矢量信号的幅度与相位测量 (24)5.3 矢量网络的阻抗与导纳计算 (25)六、矢量网络分析仪的性能指标 (27)6.1 测量范围 (28)6.2 分辨率 (29)七、矢量网络分析仪的选择与使用注意事项 (30)7.1 根据需求选择合适的矢量网络分析仪 (32)7.2 使用前的准备工作 (33)7.3 测试过程中的注意事项 (34)7.4 测试后的数据处理与结果分析 (35)八、结论 (37)8.1 矢量网络分析仪在现代无线通信领域的应用价值 (37)8.2 对矢量网络分析仪未来发展的展望 (38)一、内容概览矢量网络分析仪(Vector Network Analyzer,VNA)是一种先进的微波测量设备,用于评估射频(RF)和微波系统的性能。
它通过精确测量和计算传输功率、反射功率以及其它关键参数,帮助工程师设计和优化无线通信系统、雷达系统和卫星通信系统等。
VNA的工作原理基于电磁波的叠加和干涉。
当一束电磁波通过一个同相位、同频率的平面波信号与一个反射波信号叠加时,会产生一个矢量信号。
这个矢量信号包含了关于系统性能的有用信息,如回波损耗、插入损耗、传输系数等。
罗德与施瓦茨 R&S®ZNC 矢量网络分析仪1ZNC 3矢量网络分析仪性能稳定面向未来的平台测试与测量产品手册| 01.002ZNC 3矢量网络分析仪简介对于网络分析仪,用户的期望是高可靠性,卓越的操作便捷性、高精度和大动态范围。
凭借先进的技术和用户友好的操作设计,罗德与施瓦茨在R&S®ZNC 矢量分析仪中实现了所有这些特性。
该网络分析仪的工作频率覆盖9 kHz 至3 GHz ,理想适用于移动通信和电子产品行业中的应用。
ZNC 是研发、生产和检修如滤波器和电缆等射频组件的最佳选择。
ZNC 拥有双向测试装置,可用于测量有源和无源 UT 的全部4个S 参数。
此外,提供的校准方法适用于产品研发和生产过程中的各种测试和测量环境。
该分析仪具有卓越的温度稳定度性和长期稳定性,可以连续数天不间断地测量,且无需重新校准。
这种双端口分析仪纵向尺寸小、结构紧凑,可以为测量预留充足的工作台空间。
该产品能耗低,采用了先进的冷却设计,因而工作噪音极低。
此外,低能耗也进一步降低了运行成本,对环境更加友好。
主要特点J频率范围:9 kHz 至3 GHz J动态范围:130 dB (最大值)J扫描时间短:11 ms 即可扫描完401个点J高温度稳定性:0.01 dB/ºC (典型值)J宽功率扫描范围:–50 dBm 至+13 dBm J中频带宽:1 Hz 至300 kHz J支持手动和自动校准J低迹线噪声:10 kHz IF 中频带宽时仅0.004 dB RMS J高分辨率、12.1" 大型显示屏J触摸屏用户界面北京海洋兴业科技股份有限公司(证券代码:839145)罗德与施瓦茨 ZNC 矢量网络分析仪 3ZNC 3矢量网络分析仪优点和主要特性速度快,精度高、可靠性好 — 高效率开发和生产的保证 J测量时间短 J 100 dB 动态范围时可达20次扫描/秒,可以直接用于滤波器调整J分段扫描速度快,精度高 J可以快速切换仪器的不同设置 J多种分析功能,迹线分析极其简便 J 支持时域分析,可用于故障距离(DTF)测量和滤波器调试Z 第4页网络分析更加简易J菜单结构简洁、清晰,操作效率高 J 可针对每个测量任务,对显示配置进行优化Z 第6页校准简便 — 支持手动或自动校准 J每个测试应用均可找到最佳校准方法 JT SM (直通, 短路, 匹配)—仅需五步操作即可完成全校准 J操作简便、无错误 — 30秒即可完成自动校准 J 高温度稳定性,可以支持长时校准间隔Z 第8页高价值性投资 J面向未来的应用 J测试系统的升级无需重新编制系统软件 J 支持多种用户语言的操作界面Z 第10页北京海洋兴业科技股份有限公司(证券代码:839145)4快速度、高精确和高可靠性—高效率产品研发和生产的保证采用分段扫描的滤波器测量测量时间短ZNB 具有测量速度快的特性,这得益于以下原因:信号合成器的设置时间短;直到显示模块的高速数据处理通路;高速LAN 或IEC/IEEE 总线将数据传输至控制器。
矢量网络分析仪基本原理
矢量网络分析仪(Vector Network Analyzer,VNA)是一种用
来测量电路参数的仪器。
它基于矢量信号的特性,可以测量和分析电路的传输、反射和衰减等参数。
矢量网络分析仪的基本原理是通过将被测电路与信号源和接收器相连,发送一系列频率和幅度可调的信号,并通过接收器测量被测电路的响应。
通过在发送和接收信号之间引入相位测量,可以得到复数形式的传输函数,进而得到电路的各种参数。
具体来说,在测量过程中,矢量网络分析仪会通过输入端口向待测电路发送信号,并通过输出端口接收到反射信号和传输信号。
反射信号是由待测电路中的反射和反射损耗引起的,而传输信号是通过电路中传输的信号。
测量过程中,矢量网络分析仪会比较输入信号和输出信号之间的相位和振幅差异。
从而,可以得到待测电路的反射系数和传输系数。
反射系数用于描述信号从待测电路反射回来的程度,传输系数用于描述信号从待测电路传输的程度。
通过测量反射系数和传输系数,矢量网络分析仪可以得到待测电路的S参数(Scattering Parameters),即反射系数和传输系
数与输入和输出端口之间的关系。
S参数可以用于描述电路的
功率传输、阻抗匹配和波导特性等。
总之,矢量网络分析仪通过测量反射和传输信号的相位和振幅差异来分析待测电路的特性。
它可以实时测量电路的S参数,
并提供精确的电路分析结果。
在电子设计、射频工程和通信系统等领域中,矢量网络分析仪被广泛应用于电路设计和性能分析。