光学冷加工毕业设计
- 格式:doc
- 大小:201.00 KB
- 文档页数:31
激光光斑尺寸的测量和研究摘要激光光斑尺寸是标志激光器性能的重要参数,也是激光器在应用中的重要参量。
本文主要介绍了两种测量激光光斑尺寸的方法:刀口扫描法,CCD 法。
分析了利用刀口法测量高斯光束腰斑大小的测量实验装置,并阐述了具体的测量过程。
此方法对激光光斑大小测量是可行的。
实验装置简单实用。
CCD法是利用CCD作为探测传感器,可以更精确地测出激光器的光斑尺寸和束腰光斑尺寸,克服了传统测量的繁杂过程,并用计算机控制及数据处理,测量精度得到提高,为激光器性能研究和光信息处理提供了一种新的方法。
本文给出了这两种方法测得的数据及处理结果。
结果表明,刀口扫描法对高能量光束半径的测量特别实用,装置简单,可在普通实验室进行测量。
CCD法检测的直观性好,不需要辅助的逐行扫描机械移动,成像精度和检测精度高。
关键词激光光斑尺寸;Matlab;CCD传感器;刀口法The Measurement and Research of Laser SpotSizeAbstractThe size of Laser spot is not only one important parameter of laser performance, but also in laser application.This paper introduces two methods of measuring laser spot diameter: scanning method, CCD: knife method. We analyze of measurement is cut the size of the gaussian beam waist measurement device spot, and elaborates on process of the measurement. Using this method of laser spot size measurement is feasible. The experiment device is simple and practical. CCD method uses the CCD sensor as a detection can be more accurate to measure the size of the laser spot and waist size spot, overcoming traditional measurement process and using computer control to deal with data processing, and the measurement accuracy is improved, providing a new method for laser performance study and light information processing. At the same time, it gives two methods of measured data and processing results.The results show that the method of blade scanning is practical for high-energy beams radius’s measurement. Simple device can be operated in ordinary laboratory. CCD detection method is visually good, and do not need to manufacture progress ive-scan auxiliary of the machine movement, the imaging accuracy and precision is the higherKeywords Laser spot size; Matlab; CCD sensor; knife-edge method.哈尔滨理工大学学士学位论文目录摘要 (I)Abstract (II)第1章绪论 (4)1.1 课题背景 (4)1.2 国内外研究现状 (5)1.3 论文研究的内容 (7)第2章激光光斑测量方法探究 (8)2.1 刀口扫描法测激光光斑直径研究 (8)2.2 CCD测激光光斑直径方法 (12)2.3 本章小结 (20)第3章激光光斑尺寸的测量与数据分析 (21)3.1 刀口法测光斑直径 (21)3.1.1 90/10刀口法理论及方法 (21)3.1.2 计算理论 (23)3.1.3 实验数据处理 (23)3.1.4 实验分析 (25)3.2 CCD法测激光光斑方法 (25)3.2.1 用CCD拍摄光斑图像 (25)3.2.2 Matlab的图片处理 (26)3.2.3 图像处理结果 (26)3.2.4 实验分析 (29)3.3 本章小结 (30)结论 (31)致谢 (32)参考文献 (33)附录A 英文原文 (34)附录B 中文译文 (38)附录C Matlab程序 (42)第1章绪论1.1课题背景激光技术对国民经济及社会发展有着重要作用,激光技术是二十世纪与原子能、半导体及计算机齐名的四项重大发明之一。
光学冷加工工艺流程光学冷加工是一种利用激光技术进行加工的方法,它可以在材料表面形成微小的热效应区域,通过控制激光加热时间和能量密度,实现材料的冷加工。
光学冷加工广泛应用于精密加工、微纳加工和光学元件制备等领域,具有高效、高精度和无损伤等优点。
光学冷加工的工艺流程主要包括以下几个步骤:1. 材料准备:首先需要选择适合光学冷加工的材料,常见的材料有金属、陶瓷、玻璃等。
对于需要进行精密加工的材料,还需要进行表面处理,以消除材料的氧化层和污染物。
2. 激光加工参数设置:根据具体的加工要求,需要设置激光的加热时间和能量密度。
加热时间和能量密度的选择需要考虑材料的热导率、熔点和热膨胀系数等因素。
3. 激光加工设备调试:将激光加工设备进行调试,确保激光的功率和焦点等参数满足要求。
同时,还需要保证加工设备的稳定性和安全性,以防止意外事故的发生。
4. 加工操作:将待加工的材料放置在加工平台上,并通过光学系统将激光聚焦在材料表面。
激光加热后,材料会在短时间内形成微小的热效应区域。
在这个过程中,需要保持激光加工头与材料表面的距离恒定,并控制激光加热时间和能量密度,以控制热效应区域的形成和扩散。
5. 加工结果检验:完成加工后,需要对加工结果进行检验。
通常可以通过显微镜观察材料表面的形貌和微观结构变化,并使用精密测量仪器对加工尺寸进行测量。
如果加工结果符合要求,即可进行下一步的处理;如果加工结果不理想,可以调整加工参数进行再次加工。
光学冷加工工艺流程的关键在于控制激光加热时间和能量密度,以及保持激光加工头与材料表面的距离恒定。
这样可以控制材料的热效应区域,实现微小区域的冷加工。
同时,光学冷加工还可以利用光学系统的特性,实现对材料的精密加工和微纳加工。
光学冷加工具有高效、高精度和无损伤等优点,广泛应用于光学元件制备、微电子器件制备和材料表面处理等领域。
综上所述,光学冷加工工艺流程包括材料准备、激光加工参数设置、激光加工设备调试、加工操作和加工结果检验等步骤。
毕业设计光学设计软件OSLO的应用光学设计软件OSLO是一款用于光学系统设计和分析的专业软件工具,被广泛应用于光学器件、激光系统、光学仪器、显微镜等领域。
本文将介绍OSLO软件的基本功能和应用,并说明其在毕业设计中的应用。
首先,OSLO软件具有丰富的光学元件库,可以轻松地建立复杂的光学系统模型。
它提供了一系列常见的光学元件,如透镜、反射镜、偏振器、滤光片等。
此外,OSLO软件还允许用户自定义新的光学元件,扩展了设计灵活性。
其次,OSLO软件提供了强大的光学系统设计和分析功能。
通过OSLO软件,用户可以对光学系统的像差、波前畸变、光斑大小、光损耗等参数进行准确的计算和优化。
它还提供了光路追迹、波面优化、像差修正等高级功能,帮助用户实现更精确和高效的光学系统设计。
在毕业设计中,OSLO软件可以应用于多个领域。
比如,在光学器件设计方面,OSLO可以辅助设计和优化透镜系统、光学棱镜、成像系统等。
学生可以利用OSLO软件进行光学元件的选择、位置的优化,从而实现光学器件的优化设计。
此外,在激光系统设计中,OSLO软件也能够起到关键作用。
通过OSLO软件,学生可以设计和分析激光器的光学系统,优化激光光束的质量和功率输出。
对于研究激光器的同学来说,OSLO软件是一个不可或缺的工具,能够提供精确的光学仿真和分析结果。
此外,OSLO软件还可以应用于光学仪器和显微镜的设计。
例如,学生可以利用OSLO软件设计显微镜物镜和目镜的光学系统,优化系统的分辨率和放大倍数。
对于需要进行光学测量或观察的毕业设计项目来说,OSLO软件可以提供非常重要的帮助。
综上所述,光学设计软件OSLO在毕业设计中具有广泛的应用。
它提供了丰富的光学元件库和强大的设计分析功能,能够帮助学生进行复杂光学系统的设计和优化。
因此,对于从事光学相关领域的毕业设计项目来说,OSLO软件是必不可少的工具。
通过合理的使用OSLO软件,学生可以更好地完成光学器件、激光系统、光学仪器等方面的设计任务。
光学冷加工的工艺流程光学冷加工是一种高精密度、高表面质量的精密加工技术。
它通过使用激光光束或电子束来对工件进行局部熔化或蒸发,然后再利用凝固后的残余热进行表面精密加工。
光学冷加工技术在微纳米加工领域具有广泛的应用,主要包括微纳米精密加工、微纳米表面处理和微纳米结构制备等方面。
光学冷加工的工艺流程可以分为以下几个步骤:首先是工件的装夹与定位。
在进行光学冷加工之前,需要将工件进行装夹,并对其进行精确定位,以保证加工的精度和稳定性。
其次是光源的选择和调节。
在光学冷加工中,通常会选择激光光束或电子束作为加工源,需要根据具体的加工任务选择合适的光源,并对其进行调节和优化。
接下来是能量传递和局部加热。
在光学冷加工中,光束或电子束会对工件表面进行局部加热,使其局部熔化或蒸发。
然后是凝固和形成残余热。
在加热后,工件表面会迅速凝固,形成残余热。
最后是残余热的利用和表面精密加工。
利用残余热对工件表面进行精密加工,例如去除表面残余材料、形成微纳米结构等。
总的来说,光学冷加工的工艺流程包括装夹定位、光源选择调节、能量传递局部加热、凝固形成残余热和残余热利用表面精密加工。
这个工艺流程是非常复杂的,需要对设备和工艺参数进行精确控制,以保证加工的精度和质量。
下面我们将从光学冷加工的原理、应用和发展趋势等几个方面对其进行更详细的介绍。
首先是光学冷加工的原理。
光学冷加工是基于光热效应的一种加工技术。
光热效应是指当光束或电子束照射到物体表面时,光能或电子能被吸收,导致局部温度的升高。
在光学冷加工中,光束或电子束通过对工件表面进行局部加热,使其局部熔化或蒸发,然后利用凝固后的残余热进行表面精密加工。
这种加工方式具有高精度、高表面质量和高加工效率的优点,特别适用于微纳米加工领域。
光学冷加工技术在微纳米加工领域具有广泛的应用。
它可以用于微纳米精密加工,例如微孔加工、微型器件加工等;还可以用于微纳米表面处理,例如表面改性、表面粗糙度调控等;还可以用于微纳米结构制备,例如微纳米结构的形成、微纳米光栅的制备等。
光学冷加工工艺流程
《光学冷加工工艺流程》
光学冷加工是一种高精度、高效率的先进加工工艺,它通过激光或光纤激光束来加工材料,可实现微米级甚至亚微米级的加工精度。
下面我们来介绍一下光学冷加工的工艺流程。
首先,工件的表面要进行预处理,包括清洗、除油等,以确保激光束能够顺利地照射到工件表面。
其次,选择合适的激光加工设备,根据工件的材料和加工要求来确定激光功率、频率、加工速度等参数。
然后,将工件放置在加工台上,调整激光束的焦距和聚焦点位置,使其能够准确地照射到工件表面。
接下来,启动激光加工设备,激光束照射到工件表面后,可以选择不同的加工模式,如脉冲激光加工、连续激光加工等,根据具体的加工要求进行调整。
在加工过程中,监控工件表面的温度和形变情况,及时调整激光参数,以确保加工的精度和质量。
最后,完成加工后,对工件表面进行清洗、除渣等处理,然后进行质量检测,确保加工的精度和质量达到要求。
总而言之,光学冷加工工艺流程包括预处理、选型、调整、加
工和后处理等多个环节,只有严格按照流程操作,才能实现高精度、高效率的加工。
希望通过不断的技术创新和工艺改进,光学冷加工能够在更广泛的领域得到应用,为制造业的发展贡献更大的力量。
光学冷加工抛光技术
光学冷加工抛光技术是一种利用光学原理进行表面修整和抛光的高精度加工方法。
相比传统的机械抛光,光学冷加工抛光技术具有以下优势:
1. 高精度: 光学冷加工抛光技术可以达到亚纳米级的表面精度,适用于高要求的光学元件和器件的加工。
2. 无接触: 光学冷加工抛光技术利用光束进行加工,不需要与
工件接触,避免了机械抛光可能带来的刮擦和损伤。
3. 无热效应: 光学冷加工抛光技术在抛光过程中不会产生热量,避免了传统热加工可能引起的热应力和热变形问题。
4. 高效率: 光学冷加工抛光技术可以同时对多个表面进行加工,提高了加工效率。
光学冷加工抛光技术的基本原理是利用光束的聚焦和控制来进行表面修整和抛光。
通过调整光束的聚焦参数,可以控制加工深度和加工形状,从而实现精确的表面加工。
光学冷加工抛光技术在光学器件制造、半导体加工、精密机械加工等领域有着广泛的应用。
它不仅可以提高光学元件和器件的质量和性能,还可以降低制造成本和提高生产效率。
第一章前言随着光学设计的发展,光学仪器已经普遍应用在社会的各个领域。
光学仪器的核心部分是光学系统。
光学系统成像质量的好坏决定着光学仪器整体质量的好坏。
然而,一个高质量的成像光学系统要靠良好的光学设计去完成。
光学设计的理论和方法也在发生着日新月异的变化。
光学是研究光的行为和性质,以及光和物质相互作用的物理学科。
光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组描述;同时,光具有波粒二象性,需要用量子力学表达。
光的本性也是光学研究的重要课题。
微粒说把光看成是由微粒组成,认为这些微粒按力学规律沿直线飞行,因此光具有直线传播的性质。
我们通常把光学分成几何光学、物理光学和量子光学。
所谓光学系统设计即设计出系统的性能参数、外形尺寸、和各光组的结构等,大体上分为两个阶段,第一阶段为“初步设计”或者“外形尺寸设计”,即根据仪器总体的设计要求,从仪器总体出发,拟定出光学系统的原理图,并初步计算系统的外形尺寸,以及系统中各部分要求的光学特性。
第二阶段称为“像差设计”,一般称为“光学设计”,即根据初步设计的结果,确定每个透镜的具体结构参数,以保证满足系统光学特性和成型质量成像质量的要求。
一个光学仪器工作性能的优劣,初步设计是关键,当然在初步设计合理的条件下,如果像差设计不当,同样也可能造成不良后果。
一个好的设计应该是在满足使用要求的情况下,结构设计最简单的系统。
光学设计是20世纪发展起来的一门学科,至今已经经历了一个漫长的过程。
光学系统设计的具体过程:制定合理的技术参数,光学系统总体设计和布局,光组的设计(包括选型,初始结构的计算,像差校正、平衡与像质评价),长光路的拼接与统算,绘制光学系统图、部件图和零件图,编写设计说明书,进行技术答辩。
光学设计的设计步骤为选择系统的类型,分配元件的光焦度,校正初始像差,减小残余像差(高级像差)。
重复以上步骤,最终会找到一个满意结果。
本次设计主要采用ZEMAX光学设计软件已经专门的绘图软件、撰写公式的软件。
光学冷加工抛光技术引言:光学冷加工抛光技术是一种先进的表面加工技术,可以在不增加材料温度的情况下,提高材料表面质量和精度。
本文将对光学冷加工抛光技术进行详细介绍,并探讨其在工业制造领域的应用前景。
一、光学冷加工抛光技术的原理光学冷加工抛光技术是利用激光在材料表面产生微观热效应,通过控制激光参数和加工条件,实现对材料表面的微观结构调控和去除。
具体来说,光学冷加工抛光技术利用高能激光束对材料表面进行扫描,产生微小的熔融区域和快速冷却,使材料表面的微观结构发生变化,从而实现抛光效果。
二、光学冷加工抛光技术的优势1. 高效性:光学冷加工抛光技术可以快速去除材料表面的缺陷和粗糙度,大大提高加工效率。
2. 精度高:光学冷加工抛光技术可以实现对材料表面微观结构的精细调控,从而获得高精度的表面质量。
3. 热影响小:光学冷加工抛光技术在加工过程中不会增加材料的温度,避免了热引起的变形和损伤。
4. 环保性:光学冷加工抛光技术不需要使用化学溶剂和磨料,减少了对环境的污染。
三、光学冷加工抛光技术的应用领域1. 光学元件制造:光学冷加工抛光技术可以用于制造光学镜面、透镜等光学元件,提高其表面质量和光学性能。
2. 精密机械制造:光学冷加工抛光技术可以应用于精密机械零件的加工,如航空航天器件、半导体器件等,提高其表面质量和加工精度。
3. 光纤通信:光学冷加工抛光技术可以用于光纤端面的加工,提高光纤的传输效率和信号质量。
4. 光学薄膜涂层:光学冷加工抛光技术可以用于光学薄膜涂层的制备,提高薄膜的平整度和光学性能。
四、光学冷加工抛光技术的发展趋势1. 多波长激光应用:将多种波长的激光进行组合,可以实现对不同材料的高效抛光。
2. 全自动化加工系统:引入机器视觉和自动控制技术,实现光学冷加工抛光技术的全自动化生产。
3. 远程加工能力:通过激光束传输技术,实现对远程材料的抛光加工,拓展了应用范围。
4. 材料适应性提高:研发新的材料适应性加工方法,扩大光学冷加工抛光技术的适用范围。
光学冷加工流程
光学冷加工流程是一种新兴的制造工艺,其利用激光的能量将物质加工成所需形状。
这种工艺具有高效、精密、绿色等特点,被广泛应用于航空航天、汽车工业、电子制造等领域。
光学冷加工的流程分为以下几个步骤:
1. 设计加工方案:首先需要根据产品的要求设计加工方案,确定加工的形状、尺寸、精度等参数。
2. 材料准备:根据加工方案选取合适的材料,进行清洗、烘干等处理,以确保加工质量。
3. 激光加工:将激光束照射在材料表面上,利用激光的能量将材料加工成所需形状。
激光加工的参数包括功率、焦距、扫描速度等,需要根据不同的材料和加工要求进行调整。
4. 加工后处理:加工完成后,需要对产品进行清洗、抛光、检验等处理,以确保产品质量。
在光学冷加工流程中,激光加工是关键的环节。
激光加工的优点是可以实现高精度、高效率的加工,同时不会产生明显的热影响区,避免了传统加工方法的变形和残留应力等问题。
激光加工的缺点是设备成本高、维护难度大,需要专业技术人员进行操作和维护。
光学冷加工流程的应用越来越广泛,如在航空航天领域中,利用光学冷加工可以制造出高强度、低重量的零部件,提高飞行器的性能和经济性;在汽车工业中,利用光学冷加工可以制造出高精度的汽车零部件,提高汽车的安全性和舒适性;在电子制造中,利用光学冷加工可以制造出微米级别的电子元器件,提高电子产品的性能和可靠性。
光学冷加工是一项具有广泛应用前景的制造工艺,其流程包括加工方案设计、材料准备、激光加工和加工后处理等环节。
通过不断的技术创新和工艺改进,光学冷加工将会有更加广阔的应用前景。
用户案例 项目名称:大口径光学元件冷加工工艺改进分析 项目单位 电子科技大学 单位网站: 注:内部资料 项目单位:电子科技大学
所属行业:制造业 案例描述:大口径光学元件在冷加工完成后可以获得很高的表面质量,但是在亚表面层往往隐藏了大量的缺陷。因此,需要改进工艺达到消除亚表面缺陷的目的。
通过Pro/Innovator和ARIZ算法求解,此问题得到4个的解决方案。
关键词:光学元件、表面质量,亚表面缺陷,冷加工,检测
问题描述: 1. 工作原理 大口径光学元件的冷加工工艺包括铣磨、精磨、初抛和精抛等工序,目的是获取很高的表面质量,但是在亚表面层往往隐藏了大量的缺陷。 2. 主要问题 抛光工序会形成亚表面缺陷,同时不能用光学方法直接观察到的亚表面缺陷。 3. 问题发生的条件 抛光工序在去除旧划痕的同时,不断地引入新划痕,然后被覆盖,形成亚表面缺陷。 4. 初步思路或类似问题的解决方案 快速抛光、磁流变抛光。 5. 待解决的问题 (1)抛光工艺不带入新的亚表面缺陷; (2)能检测亚表面缺陷。 6. 对新技术系统的要求 (1) 消除亚表面缺陷; (2) 无损检测亚表面缺陷。
解题流程 用户案例 1 Pro/Innovator解题流程 运用Pro/Innovator模块(图1),包括系统分析、问题树、三轴分析、知识库 本题目属于工艺质量改进范畴。
图2 解题流程 2 Pro/Innovator求解过程 2.1 工况介绍:
大口径光学元件的冷加工工艺包括铣磨、精磨、初抛和精抛等工序,亚表面缺陷的检测手段不足,并且目前工艺去除亚表面的效果不理想。 (1)大口径平面元件工艺定型 完成平面铣磨试验,实现了元件的外形尺寸快速成型,包括大面、侧面的铣磨,确定了加工工艺参数。侧面铣磨效率(180#砂轮),最大进刀量2mm,铣磨速度30mm/min;平面铣磨效率(180#砂轮), UBK7玻璃:0.10mm/min,熔石英玻璃:0.08mm/min 侧面铣磨垂直度优于90±2.5′;侧面平行度小于0.10mm;工作面面形0.02mm/Φ200mm;等厚0.02mm,达到初设的加工效率和技术指标要求,同时提高了元件的加工质量的一致性。 采用JP65.1单轴机,进行了各粒度金刚砂磨料精磨实验,达到精磨面形小于5um/Φ200mm,等厚小于0.02mm的精度要求。 抛光参数实验:抛光去除量在20~30um,片放窗口元件的小批量验证,面形精度达到要求。 在2m级环抛设备上进行了片放类和腔反类元件试生产和工艺验证工作,通过预埋在2.5米环抛机沥青中的温度传感器定期测量洁净水和沥青内部的温度,对温度对面形控制的影响进行了评估。并通过环抛面形实时监控系统的研究,跟踪面形变化规律,用于指导元件的面形修正,实现了单次透射波前畸变PV值达到初设的技术要求, 在现有设备和数控工艺软件基础上,以抛光盘尺寸参数为核心进行抛光参数组合设计和确定去除实验,研究不同尺寸抛光盘对不同波长面形误差的修正能力及对表面质量的影响,得到各种尺寸磨盘在不同抛光参数组合下的去除函数模型,对现有数控工艺软件固化的加工参数库进行有效地补充优化。通过实验得到了Φ80磨盘较优化的呈高斯曲线分布的去除函数模型。 (2)大口径球面透镜工艺定型 采用范成法铣磨球面方式,确定了工艺参数调整规范和调整精度要求,完成球面成型后的中心厚测量 用户案例 和等厚测量方法的验证。
一、专业基本介绍光学精密加工技术专业以服务长春光学企业、长春市和吉林省经济社会发展为宗旨,面向光学行业的生产、服务第一线,培养掌握光、机、电等学科的基本知识,具有光学冷加工、真空镀膜等制造专业领域和质量管理必备的基础知识和专业技能,能够独立完成光学加工与检测典型工作任务,具有光学工艺员、技术员、光机电产品营销、生产管理员岗位的综合职业能力的高素质劳动者和初中级技能人才。
本专业主要分为光学冷加工和光学镀膜两大方面,光学冷加工是把光学零件胚料加工成符合技术要求(包括曲率半径、面型精度、中心厚度、外观合格)的光学零件;光学镀膜是在真空状态下,将一些金属、介质材料蒸发,沉积在光学零件表面,形成薄膜,达到改变光在镜片表面光谱透反射特性。
满足规定的技术要求。
本专业学生毕业后主要面向光电制造类行业和光学相关产业,可从事镜片研磨岗位、光学镜片检测岗位、光学镀膜岗位、光学企业工艺员、光电产品销售及售后服务岗位、光电企业的设备基本维护和管理岗位的工作。
二、专业课程设置本专业程共设置公共基础课、专业技能课共15门课程,其中文化基础课8门,包括德育、体育与健康、语文、数学、英语、计算机基础、艺术、物理,专业核心课机5门,包括械识图(一)、工程光学基础、光学材料与辅料、光学元件检验、光学零件加工与检测岗位任务解析,专业技能方向课2门,学零件加工技术、光学零件镀膜;共计1430学时。
三、毕业要求1、知识要求:本专业毕业生必须掌握光学零件的加工原理,熟悉各种加工方法,对光学零件的标准和要求有全面的认识,对各种玻璃性能和辅助材料的性能通过实践进行认识,能够提高加工效率和防止光学零件表面腐蚀,熟悉光学零件的测量方法、测量精度分析,精通各种检测工具的使用方法和特点,要掌握一定的机械知识,了解各种机器设备的加工原理、机械结构、加工精度,熟练准确的设计工装夹具。
2、专业技能:1)基本的运算、实验、光学制图、机械设计等技能。
能够运用现代数学方法和运算工具(如微机操作、运算程序),解决光学加工中的实际问题;能够独立完成光学加工工艺设计、操作机械设备和对加工结果的分析整理;能够准确、熟练地绘制光学零件图;2)实际操作技能。
光学冷加工抛光技术光学冷加工抛光技术是一种利用光学原理进行表面加工的技术。
它通过利用光束的特性,对材料表面进行微小的位移和热效应,从而达到加工和抛光的目的。
这种技术具有高效、精确、无损伤等优点,在光学制造、精密加工、光学器件等领域具有广泛的应用前景。
光学冷加工抛光技术的原理是利用光束的特性对材料表面进行微小的位移。
光束通过加工头的透镜系统聚焦到材料表面上,形成一个微小的光斑。
当光斑移动时,光束对材料产生作用力,使材料表面产生微小的位移。
通过控制光斑的移动,可以实现对材料表面的加工和抛光。
光学冷加工抛光技术的另一个原理是利用光束的热效应。
光束在材料表面吸收时会产生热效应,使材料发生热膨胀。
通过控制光束的功率和时间,可以实现对材料表面的加工和抛光。
光学冷加工抛光技术具有许多优点。
首先,它是一种非接触的加工方法,不会对材料产生机械性损伤。
其次,它具有高效的加工速度和精确的加工控制能力,可以实现对复杂形状的材料进行加工和抛光。
此外,光学冷加工抛光技术还可以实现对材料表面的微观加工,使其具有更好的表面质量。
光学冷加工抛光技术在光学制造领域具有广泛的应用。
例如,在光学镜片的制造过程中,通过使用光学冷加工抛光技术可以实现对镜片表面的加工和抛光,使其具有更好的光学性能。
在激光器的制造过程中,光学冷加工抛光技术可以实现对激光器的反射镜表面的加工和抛光,提高激光器的效率和稳定性。
在光学器件的制造过程中,光学冷加工抛光技术可以实现对光学器件的表面的微观加工,提高器件的性能和可靠性。
光学冷加工抛光技术在精密加工领域也具有重要的应用价值。
例如,在微机电系统的制造过程中,光学冷加工抛光技术可以实现对微小器件的表面的加工和抛光,提高器件的性能和可靠性。
在半导体器件的制造过程中,光学冷加工抛光技术可以实现对半导体器件的表面的微观加工,提高器件的效率和稳定性。
此外,光学冷加工抛光技术还可以应用于金属材料的加工和抛光,提高金属材料的表面质量和耐蚀性。
光学冷加工的基础介绍摘要:本文介绍了光学冷加工的含义、特点并简单介绍了相关的一些产品,机器及其图形,本文详细论述了光学冷加工的加工过程(以球面透镜的加工为例)以及当前我国光学冷加工所存在的问题和提出了发展对策,并指出光学冷加工工艺对社会的重要性。
关键词:光学冷加工,球形透镜,毛坯加工,抛光。
Abstract: This article describes the meaning and the characteristics of the optical cold Processing, introducing a number of related products, machinery and graphics, briefly. The paper also discusses the process cold optics in details (spherical lens processing as an example),and refers to the questions in our country ’s optical cold Processing, Including the method of development, the importance of the optical cold Processing technology is also pointed out.一、光学冷加工的含义光学仪器制造已是一门古老的工程技术,照相机、望远镜及其显微镜等各种光学仪器中的光学零件(透镜,棱镜等)在加工过程中,不产生高温及高温反映或高温现象而又可以达到通过高温热加工的加工效果就称为“光学冷加工”。
下面是几种光学冷加工的产品:二、光学冷加工的特点1、光学冷加工与一般的机械加工有根本的区别,这些差别是由被加工材料的性能特殊及零件要求特别高的精度和光洁度所决定的.由于零件是以玻璃为原材料,它具有很高的硬度和脆性,因此,必须用比玻璃还硬的金刚砂或金刚钻来加工玻璃。
光学镜片冷加工镀膜膜系案例近年来,光学镜片冷加工镀膜膜系技术得到了广泛的应用和推广。
本文将以一个实际案例来说明这种技术的具体应用过程和效果。
这个案例发生在光学设备制造公司,该公司生产的光学镜片广泛应用于各种仪器设备中。
由于光学镜片在使用过程中容易受到污染和划伤的影响,因此需要进行冷加工镀膜膜系处理来增加其表面的硬度和耐磨性。
首先,该公司将光学镜片送交给专业的冷加工设备供应商。
该供应商拥有先进的冷加工设备和技术团队,能够根据客户的要求进行镀膜膜系处理。
在这个案例中,客户要求镀膜膜系的主要目的是增加光学镜片的硬度、耐磨性和光学性能。
然后,供应商将光学镜片进行前处理,包括清洗、除油、去污等工序。
这些工序的目的是将镜片表面的杂质和污渍完全清除,以确保后续的镀膜膜系处理能够得到最佳的效果。
接下来,供应商将光学镜片放置在冷加工设备中进行真空镀膜膜系处理。
该设备采用了先进的离子镀膜技术,能够在低温下对镜片表面进行镀膜处理。
镀膜过程中,通过控制设备参数和使用特定的镀膜材料,能够在镜片表面形成一层硬度较高的保护膜。
在此案例中,供应商采用了氮化硅和氧化硅等材料进行镀膜处理。
氮化硅可以提高镜片的硬度和耐磨性,氧化硅则可以提高镜片的抗污染性能。
经过一系列的镀膜处理,光学镜片的表面质量得到了明显的改善,不仅硬度和耐磨性得到了提高,而且抗污染性能和光学性能也大大改善。
最后,供应商将处理完的光学镜片进行严格的质量检测。
通过对镜片的硬度、耐磨性、光学性能等方面进行测试和评估,确保其质量符合客户的要求。
综上所述,光学镜片冷加工镀膜膜系技术在光学设备制造行业具有重要的应用价值。
通过该技术的处理,能够大幅度提高光学镜片的硬度、耐磨性和光学性能,延长其使用寿命,并且能够有效地防止镜片表面的污染和划伤。
这种技术不仅提升了光学设备的质量和性能,也提高了客户对产品的满意度。
河南工业职业技术学院 第 1 页 共 31 页 河 南 工 业 职 业 技 术 学 院 Henan Polytechnic Institute 毕业设计(论文)
题 目光学零件精磨加工工艺 班 级 精密 0601 姓 名 崔 四 海 指导教师
黄 长 春
河南工业职业技术学院
第 2 页 共 31 页 目录
摘要................................................................................................................................ 4 前言................................................................................................................................ 4 一 精磨的目的.............................................................................................................. 6 二 精磨的方法.............................................................................................................. 7 2.1散粒磨料精磨法...................................................................................................... 7 2.1.1精磨模的修整....................................................................................................... 7 2.1.2精磨工艺............................................................................................................... 8 2.1.3精磨机的精磨原理............................................................................................. 10 2.1.4 精磨的四大重点................................................................................................ 11 2.2金刚石磨具精磨.................................................................................................... 12 2.2.1金刚石磨具的制作............................................................................................. 13 3.1实际工作中精磨遇见的问题与解决方法............................................................ 16 四 冷却液.................................................................................................................... 17 五 金刚石精磨工艺因素的选择................................................................................ 18 六 面检........................................................................................................................ 19 6.1光圈概述................................................................................................................ 19 6.2光圈检验................................................................................................................ 19 6.2.1面本数与亚斯的计算方法................................................................................. 19 6.2.2原器检面注意事项............................................................................................. 19 6.3光圈的识别............................................................................................................ 19 6.4高低光圈的识别方法............................................................................................ 20 6.5光圈的度量............................................................................................................ 20 6.6 面形检测............................................................................................................... 20 七 精磨(抛光)检验................................................................................................ 22 7.1 线性尺寸检验....................................................................................................... 22 7.1.1 透镜中心厚度的检验........................................................................................ 22 7.1.2 棱镜理论高度................................................................................................... 22 河南工业职业技术学院 第 3 页 共 31 页 7.2 表面疵病检验...................................................................................................... 22 7.2.1 观察法................................................................................................................ 22 7.2.2 表面疵病的鉴别................................................................................................ 23 7.3光学零件的基本量测量..................................................................................... 23 7.3.1光学面形检测.................................................................................................. 23 7.3.2 曲率半径的测量............................................................................................. 23 八 模具检测与修整.................................................................................................. 24 8.1 精磨本体模凹模的检测和修整........................................................................... 24 九 任务书设计............................................................................................................ 25 1)精磨本体模的设计................................................................................................ 25 2)修模的设计............................................................................................................ 25 3)套圈的设计............................................................................................................ 25 4) 面本体的设计...................................................................................................... 25 5)面修模的设计........................................................................................................ 26 6) 面套圈的设计...................................................................................................... 26 结论.............................................................................................................................. 27 致谢.............................................................................................................................. 28 参考文献...................................................................................................................... 29