基于转底炉直接还原技术
- 格式:ppt
- 大小:24.43 MB
- 文档页数:95
直接还原铁工艺技术的对比分析论述张建国【期刊名称】《资源再生》【年(卷),期】2018(000)002【总页数】5页(P57-61)【作者】张建国【作者单位】北京瀚川鑫冶工程技术有限公司【正文语种】中文在低于矿石融化状态下,通过固态还原,把铁矿石炼制成铁的工艺称作直接还原法,用这种方法生产出的铁也叫作直接还原铁(DRI),由于这种铁保留了失去氧时形成的大量微小气孔,在显微镜下观察形似海绵,所以直接还原铁也称为海绵铁。
直接还原铁是精铁粉在炉内经低温还原形成的低碳多孔状物质,其化学成分稳定,杂质含量少,主要用作电炉炼钢的原料,也可作为转炉炼钢的冷却剂,如果经过二次还原还可供给粉末冶金用。
从上世纪80年代末以来,我国一直宣传推广使用直接还原技术,并对直接还原技术进行了广泛的开发研究,取得了众多成果,为直接还原技术发展奠定了基础。
但是,因铁矿、煤炭、气源等原燃料条件限制,中国直接还原发展的实际成效不大,与钢材、生铁等行业相比还有相当差距。
一、直接还原铁的应用优势直接还原铁生产是指在低于熔化温度之下将铁矿石还原成海绵铁的过程,与传统高炉炼铁方法相比取消了焦炉、烧结等工序,具有流程短、污染小、消耗少,不受炼焦煤短缺影响等优点。
同时海绵铁中硫、磷、硅等有害杂质含量低,有利于电炉冶炼优质纯净钢种。
近年来,由于钢铁产品向小型轻量化、功能高级化、复合化方向发展,因此钢材产品中的非金属材料和有色金属的使用比例在增加,在废钢的破碎分拣过程中,又不能完全有效的剔除非金属和有色金属材料,况且,即使是纯粹完全的黑色废钢料,由于来源不同,化学成分波动也是较大的。
致使加工后的成品入炉废钢的质量很难掌握控制,给电炉炼钢作业带来一定的困难。
如果用一定比例的直接还原铁(30~50%)作为稀释剂与废钢搭配使用,不仅可增加钢的均匀性,还可以改善和提高钢的物理性质,从而达到生产优质钢的目的。
因此,直接还原铁不仅仅是优质废钢的替代品,还是生产优质钢必不可少的高级原料(如天津无缝钢管公司的国外产品设计中就明确要求,必须配置50%的直接还原铁)。
OTS还原法——车底炉工艺的工业化应用汪寿平汪翔宇摘要:在国家十二五规划中,非高炉炼铁技术依旧是国家鼓励的项目之一。
非高炉炼铁技术近年来也一直是冶金行业关注的热点。
直接还原铁作为电炉钢生产高品质的纯净钢急需的原料,也是装备制造业高纯净钢铸、锻件坯料生产的急需原料,特别是钢铁产量的增长,原料问题显得更加突出,开发适用于综合利用低品位难处理矿和多金属伴生矿资源的新的直接还原工艺和装备,成为我国直接还原工作者急待开发的重大课题。
目前,以车底快速还原炉为核心、以粒铁法生产工艺为支撑、以气氛保护技术为保障、以自动装卸料机组和原料处理磨选矿成套工艺设备为配套的OTS还原法体系已经形成,其工业化项目开始进入市场。
一.前言笔者在《2007中国直接还原铁市场研讨会》上提出了“隧道窑还原法的发展——OTS还原法——隧道车底式快速还原炉直接还原铁工艺”的思路,是在总结隧道窑反应罐还原法优缺点的基础上提出的。
隧道窑反应罐还原法是瑞典人赫格拉斯发明的,100多年来,在为粉末冶金领域提供高性能、高品位的优质还原铁粉和为直接还原铁领域提供高品位、高金属化率的海绵铁方面,一直居于不可替代的地位。
但是,隧道窑反应罐还原法存在自身固有的缺点,如产能小、工业化程度低、能耗高、生产成本高等,我们一方面努力在大型化、工业自动化和节能降耗等方面进行改进和完善,另一方面努力向南亚、中亚和东南亚形成出口能力,将隧道窑反应罐还原法推广应用于国际直接还原铁市场,以适应发展中国家钢铁工业的需要。
在国家十二五规划和国家发改委《产业结构政策调整指导目录(2011年本)中,非高炉炼铁技术依旧是国家鼓励的项目之一。
非高炉炼铁技术近年来也一直是冶金行业关注的热点。
直接还原铁作为电炉钢生产高品质的纯净钢急需的原料,也是装备制造业高纯净钢铸、锻件坯料生产的急需原料,特别是钢铁产量的增长,原料问题显得更加突出,开发适用于低品位难处理矿和多金属伴生矿资源综合利用的直接还原工艺和装备,成为我国直接还原工作者急待开发的重大课题。
钒钛铁矿的直接还原工艺我国富有钒钛磁铁矿,特别是四川攀西地区的储量达到100亿吨以上。
目前钒钛磁铁矿的利用途径主要是传统的“高炉—转炉”流程回收铁和钒,而钛则由于进入高炉渣,目前尚无合理手段回收利用,从而造成钛资源的浪费。
采用直接还原技术冶炼钒钛磁铁矿,是实现铁、钒、钛资源综合利用的一个重要研究方向。
近年来,攀钢集团公司对钒钛矿直接还原工艺开展了研究,取得了重要进展。
与普通矿不同,钒钛磁铁矿直接还原具有自己的特点,一是矿相结构复杂,含铁物相还原难度按Fe2O3、Fe2TiO5、Fe3O4、FeO、Fe2TiO4、FeTiO3、FeTi2O5顺序递增,且固溶MgO增加了还原的复杂程度和难度。
二是贮存于2FeO·TiO2、FeO·TiO2和FeO·2TiO2中的铁较难还原,约占全铁含量的1/3以上,因而钒钛磁铁矿直接还原需要更高的还原温度、更好的还原气质量和更长的还原时间。
三是还原过程中出现的膨胀和粉化现象比普通矿更严重。
攀钢的研究工作表明:采用回转窑、竖炉、流化床、焦炉式等设备进行直接还原钒钛磁铁矿,均存在着不同程度的工艺与设备难题,如回转窑结圈、竖炉结瘤等。
相比之下,转底炉的工艺特性和设备特点能够很好地满足钒钛矿直接还原的要求,是钒钛矿直接还原及资源综合利用的较好选择。
由于转底炉直接还原具有高温、快速的工艺特点和炉底与炉料相对静止不动的设备特点,能够缓解还原过程球团膨胀粉化的严重程度,降低球团强度的要求,从而获得更好的可操作性,使其能够满足钒钛磁铁矿直接还原要求,实现铁、钒、钛资源综合回收利用。
攀钢现已建设年处理钒钛矿10万吨的直接还原转底炉试验生产线,以加快钒钛矿直接还原及钒钛资源综合利用的产业化进程。
转底炉是直接还原的关键设备,同时需要解决燃烧供热、传热和还原的问题。
关键在高温还原二区,为了获得适宜的气氛组成、避免球团表面再氧化,二次空气的控制必须精确。
另外,布料装置的设计采用振动给料,通过数学模型控制,确保扇形料面均匀。
目录1.概述 (1)2.国际熔融还原技术发展 (3)2.1.工业化的COREX工艺 (5)2.2.进入示范性工厂试验的Hismelt技术 (7)2.3.FINEX技术 (8)2.4.第三代炼铁法--ITmk3 (9)3.国内熔融还原(非高炉炼铁)技术发展现状 (11)3.1.概述 (11)3.2.2T/h的半工业联动热态试验装置-COSRI (11)3.3.宝钢Corex 3000 (14)3.4.20万吨纯氧非高炉炼铁工业试验装置 (14)3.5.8m3一步法熔融还原试验装置 (18)3.6.基于氢冶金的熔融还原炼铁新工艺 (20)3.6.1.万吨级两级循环流化床示范装置-营口中板厂 (21)3.6.2.宝钢万吨级两级冷态循环流化床装置建设 (24)3.7.直接还原在国内的发展 (24)3.8.几种非高炉炼铁的综合分析 (26)4.炼铁技术的发展方向 (28)4.1.欧盟——ULCOS超低CO2排放钢铁技术研究 (28)4.2.日本——COURSE50技术研究 (30)4.3.中国——新一代可循环钢铁流程工艺技术技 (30)5.具有自主知识产权的熔融还原炼铁技术发展建议 (31)5.1.建立长期开发组织机构与募集资金 (31)5.2.加强合作、充分利用现有成果深入研究 (31)5.3.新一代具有自主知识产权的熔融还原流程建议 (32)熔融还原炼铁技术综述全强1.概述改革开放30年来,中国钢铁冶炼技术取得了巨大的进步。
在炼铁领域,技术进步的主要表现是装备的大型化、操作的自动化信息化、生产的高效与清洁化,高风温技术、富氧技术、喷煤技术、煤气干式除尘技术、煤气余压发电、煤气燃气技术、高炉长寿技术、与高炉废弃物的综合利用等方面的应用取得明显的进步。
据2010年的统计,国内炼铁产量已超过5.9亿吨,约占世界产量的40%。
其中大于1000m3以上高炉的产量约为60%,也就是说,按照国家产业政策的要求,有40%的产能需要进行技术改造。
第20卷第2期材 料 与 冶 金 学 报Vol 20No 2 收稿日期:2021 01 08. 基金项目:国家重点研发计划项目(2017YFB0304000). 作者简介:郑占一(1995—),男,硕士研究生,E mail:zhengzy@stumail neu edu cn. 通讯作者:齐凤升(1980─),男,副教授,E mail:qifs@mail neu edu cn.2021年6月JournalofMaterialsandMetallurgyJune2021doi:10 14186/j cnki 1671-6620 2021 02 002转底炉内冶金粉尘还原过程数值模拟郑占一,齐凤升,刘中秋,李宝宽(东北大学冶金学院,沈阳110819)摘 要:基于计算流体力学方法并以收缩核模型为基础建立了转底炉内燃烧、烟气流动、气体与冶金粉尘球团传热传质及冶金粉尘球团化学反应的全耦合数学模型,计算了中径36m的转底炉内流场、温度场及冶金粉尘球团内铁氧化物的还原反应,重点分析了球团内部各种铁氧化物浓度及球团的金属化率.采用文献中球团在高温硅钼炉内进行的还原实验验证了模型的可靠性.结果表明,在本文工况下,经过一个工作周期(25min),炉膛内烟气流速随流动方向逐渐增大,转底炉中径处球团温度为1416 7K,铁的浓度由3477 50mol/m3增长至9719 94mol/m3,冶金粉尘球团的金属化率最高可达90 85%,平均金属化率为81 42%.关键词:转底炉;冶金粉尘球团;收缩核模型;直接还原;金属化率中图分类号:TF062 文献标识码:A 文章编号:1671 6620(2021)02 0085 07NumericalsimulationofmetallurgicaldustreductionprocessinrotaryhearthfurnaceZhengZhanyi,QiFengsheng,LiuZhongqiu,LiBaokuan(SchoolofMetallurgy,NortheasternUniversity,Shenyang110819,China)Abstract:Afullycoupledmathematicalmodelofcombustion,gasflow,heatandmasstransfer,chemicalreactioninmetallurgicaldustpelletswasestablishedbasedoncomputationalfluiddynamicsmethodandshrinkingcoremodel.Theflowandtemperaturefield,reductionreactionofironoxideofa36mrotaryhearthfurnacewerecalculatedbythismathematicalmode.Themolarityofironoxidesandtheironmetallizationrateofcompositepelletswereanalyzed.Theresultsofreductionexperimentintheliteraturewascarriedouttoverifythereliabilityofthemodel.Duringoneworkingcycle(25min),theresultsshowthatThevelocityofgasinthefurnaceincreasedgraduallywiththeflowdirection.Thetemperatureofthepelletsatthemiddlediameteroftherotaryherathfurnacewas1416 7K,andtheironmolarityincreasesfrom3477 50mol/m3to9719 94mol/m3,thehighestironmetallizationrateofthepelletswas90 85%,andtheaverageironmetallizationratewas81 42%.Keywords:rotaryhearthfurnace;metallurgicaldustpellets;shrinkingcoremodel;directreduction;ironmetallizationrate 钢铁行业是我国经济的支柱性产业,其生产过程会产生大量的冶金粉尘,产生量约为粗钢产量的8%~12%[1-2].2020年我国钢铁行业粗钢产量为10 65亿t,冶金粉尘产量至少为8518万t.钢铁企业冶金粉尘的含铁量(质量分数)一般在30%~70%[3-4],还含有ZnO,Pb,KCl,NaCl等成分.转底炉十余年来从加热炉转变为冶炼设备,既可用于铁精矿的煤基直接还原,又可处理钢铁企业的冶金粉尘[5],逐渐成为处理冶金粉尘的主要设备.转底炉还原冶金粉尘的工作过程涉及炉底球团直接还原、炉内烟气流动、传热传质、煤气燃烧等复杂过程,因此对转底炉工作过程的研究十分困难.一些学者进行了转底炉数学模型的研究,主要是转底炉热平衡计算和炉内状态模拟[6-7]及对转底炉的加热制度和加热设备的模拟计算[8-9].刘颖等[10-11]以球团为研究对象,建立了转底炉还原冶金粉尘球团过程一维非稳态数学模型,研究了影响球团金属化率的主要因素,按重要程度排序依次为:炉膛温度>球团直径>反应时间>碳氧比.Wu等[12-13]建立了转底炉直接还原过程的集成模型,将转底炉的三维CFD模型与球团内部直接还原的一维模型进行迭代,描述金属氧化物的还原过程.Dasgupta等[14]在转底炉还原球团矿的数学模型中将单球团模型扩展为多层球团模型,给出了时间-温度和时间-温度-化学吸热等值线,以及多床层系统产生的净热流和一氧化碳产生量.这些对球团的研究模型能够反映球团内部组分的化学反应状况及浓度变化,但缺少球团化学反应与转底炉内部过程的耦合计算,不能反映球团在转底炉各个位置的状态.本文采用数值模拟方法建立了转底炉内燃烧与冶金粉尘球团中铁氧化物还原的全耦合数学模型,分析了冶金粉尘球团在随炉底转动过程中的温度变化,以及金属氧化物浓度、金属化率等参数.该数学模型解决了冶金粉尘球团运动与炉膛加热的传热传质问题,以及转底炉中的冶金粉尘球团中铁氧化物的还原问题,为转底炉工业应用提供理论指导.1 数学模型1 1 几何模型根据实际尺寸建立转底炉几何模型,如图1所示,转底炉中径为36m,炉宽5 27m,炉高1 615m.烧嘴布置在距炉底0 8075m处,内侧布置烧嘴26个,外侧布置烧嘴38个,各区域角度及出口、入口如图1(a)所示.对计算区域进行网格划分,考虑计算量、计算速度和时间成本,经网格无关性验证,确定网格数量为150万个,炉膛上方燃烧区域为非结构网格,炉底料层区域为结构化网格,如图1(b)所示.1 2 控制方程1 2 1 基本控制方程在转底炉工作中伴随着燃烧、传热传质及化学反应等过程,这些物理化学变化在转底炉工作过程中相互作用.转底炉内部烟气流动、传热传质及化学反应过程满足质量、动量及能量守恒.各个过程的守恒方程如下:连续性方程:ρt+ ·(ρ珒ν)=0(1)动量方程:t(ρ珒ν)+ ·(ρ珒ν 珒ν)=!"#烧嘴还原一区还原四区还原二区还原二区均热区预热区布料排料区烟气出口物料出口物料入口烧嘴还原三区$%&' $%&'$%&''(&($)&(*(&( *+&'排烟区,-.图1 转底炉几何模型及网格划分Fig 1 GeometricmodelandgridsofRHF(a)—几何模型;(b)—网格划分- p+·μ 珒ν+ 珒ν()T-23 ·珒ν[]I(2)能量方程:tρ()E+ ·珒νρE+()[]p= ·keff T-∑ihi珒J()i(3)式(1)~(3)中,ρ为密度,kg/m3;t为时间,s;珒ν为速度矢量,m/s;p为压力,Pa;μ为黏度,Pa·s;I为单位张量;E为总能量,J/kg;T为温度,K;keff为有效传热系数,W/(m·K);hi为显焓,J/kg;Ji为扩散通量,kg/(m3·s).1 2 2 湍流模型对于转底炉内烟气的湍流流动,采用标准k-ε模型.湍动能k和耗散率ε的控制方程为:tρ()k+ ·ρk珒()ν=·μ+μtσ()k[]k+68材料与冶金学报 第20卷Gk+Gb-ρε-YM(4)t(ρε)+ ·(ρε珒ν)=·μ+μtσ()ε[]k+C1εεkGk-C2ερε2k(5)式(4)~(5)中,k为湍动能,m2/s2;μt为湍流黏度,Pa·s;ε表示湍动能耗散率;Gk表示速度梯度产生的湍动能,J/(m3·s);Gb表示浮力产生的湍动能,J/(m3·s);YM表示波动和扩张对总耗散率的影响;模型常数分别为C1ε=1 44,C2ε=1 92,σk=1 0,σε=1 3.1 2 3 燃烧模型组分输运模型是通过求解混合物中各个组分的对流、扩散和反应确定的守恒方程,可以描述化学物质的混合和传输过程.本文使用组分输运模型模拟各组分的质量分数:t(ρYi)+ ·(ρ珒νYi)=- ·珒Ji+Ri(6)燃烧模型采用基于涡耗散模型的湍流-化学相互作用模型,反应产物的净生成率由式(7)和式(8)计算结果的最小值表示:Ri,r=v′i,rmiAρεkminwRv′R,rm()R(7)Ri,r=v′i,rmiABρεk∑PwP∑Njv″j,rmj(8)式(6)~(8)中,Yi为组分i的质量分数;wP为生成物组分的质量分数;Ri为化学反应源项,kg/(m3·s);A和B为经验系数,A=4,B=0 5;v′i,r为反应物的化学计量数;v″j,r为生成物的化学计量数;mi为反应物i的分子质量;mj为生成物j的分子质量;wR为任一反应物的质量分数;mR为任一反应物的分子质量.1 2 4 辐射模型离散坐标辐射模型求解范围涵盖整个光学深度,有较高的精确度,且适用于滑移网格的计算,可表示为:·(I(珒r,珒s)珒s)+(a+σs)I(珒r,珒s)=an2σT4π+σs4π∫4π0I(珒r,珒s′)Φ(珒s·珒s′)dΩ′(9)式(9)中,珒r为位置向量;珒s为方向向量;珒s′为散射方向矢量;a为吸收系数;n为折射率;σs为散射系数;σ为Stefan Boltzmann常数,5 67×10-8W/(m2·K4);I为辐射强度,W/sr;Φ为相函数;Ω′为立体角,sr.1 2 5 多孔介质模型转底炉炉底为一层冶金粉尘球团,料层空间被流体与固体混合物占据,并随着炉底转动.本研究将料层假设为一层多孔介质,用以描述流体在料层区域流动时产生的压降,同时将多孔介质区域的温度作为冶金粉尘球团反应前沿面温度.通过源项的方式实现化学反应过程中球团与炉内烟气的传热传质.多孔介质区域控制方程如下:动量方程:(γρf珒ν)t+ ·(γρf珒ν珒ν)=-γ p+ ·(γτ)-μα珒ν+C212ρ|珒ν|珒()ν(10)能量方程:tγρfEf+(1-γ)ρsE[]s+ ·珒ν(ρfEf+p[])= ·keff T-(∑ihiJi)+(τ·珒ν[])+∑jRj·ΔHj(11)式(10)~(11)中,γ为多孔介质的孔隙率;ρf和ρs分别为流体和固体的密度,kg/m3;Ef和Es为流体与固体的能量,J/kg;Rj为化学反应速率,mol/(m3·s);ΔHj为化学反应焓变,J/mol.1 2 6 收缩核模型对于冶金粉尘球团内部铁金属氧化物的还原,真正的还原剂为固体碳.固体碳直接还原铁氧化物可以看作铁氧化物的一氧化碳间接还原反应和碳气化反应的加和,铁氧化物的还原遵循Fe2O3→Fe3O4→FeO→Fe的逐级还原规律.本文模型中考虑的化学反应如下:碳的气化反应:C+CO2=2CO铁氧化物的还原:3Fe2O3+CO=2Fe3O4+CO2Fe3O4+4CO=3Fe+4CO2,T<843KFe3O4+CO=3FeO+CO2,T>843KFeO+CO=Fe+CO2在生产中,将冶金粉尘球团布置在转底炉炉底,球团在炉底转动过程中接受烟气与炉壁的辐射热量,温度升高,然后在热力学条件允许时发生一系列的化学反应.本模型中使用收缩核模型描述球团内部进行的铁金属氧化物的还原反应,以78第2期 郑占一等:转底炉内冶金粉尘还原过程数值模拟气固相反应动力学模型计算球团化学反应速率[15],通过自定义标量输运方程的形式与炉膛内的控制方程进行耦合求解,计算球团中各组分收缩核半径.控制方程为:mj t=-k·π·d2j·Mj·Rs,j可简化为:rjt=-k·Mjρj·Rs,j(12)式中,rj为各组分收缩核半径,m;Mj为各组分摩尔质量,kg/mol;ρj为各组分密度,kg/m3;Rs,j为各化学反应界面反应速率,mol/(m2·s).碳的气化反应速率为:Rs,C=kCe-ECRTρC(pCO2-peqCO2)(13)铁氧化物还原反应速率为:Rs,FexOy=kFexOye-EFexOyRTρFexOy(pCO-pFexOy,eqCO)(14)式(13)~(14)中:Rs,C为碳气化反应速率,mol/(m2·s);kC为碳气化反应指前因子,mol/(m·kg·s·Pa);ρC为碳的质量浓度,kg/m3;pCO2为反应体系中CO2分压,Pa;peqCO2为碳气化反应达到平衡时CO2分压,Pa;Rs,FexOy为各铁氧化物还原反应速率,mol/(m2·s);kFexOy为铁氧化物还原反应指前因子,mol/(m·kg·s·Pa);ρFexOy为铁氧化物的质量浓度,kg/m3;pCO为反应体系中CO分压,Pa;pFexOy,eqCO为碳气化反应达到平衡时CO分压,Pa;EC为碳气化反应表观活化能,J/mol;EFexOy为铁氧化物还原反应表观活化能,J/mol;R为理想气体常数,8 314J/(mol·K).1 3 边界条件燃料和助燃气体入口为烧嘴出口,形状分别为圆形和与该圆同心的圆环.入口类型为速度入口,入口速度由气体流量折算.表1为流量27000m3/h、预热温度523K下的燃料成分.助燃空气流量为9500m3/h,富氧用氧气流量为3000m3/h,预热温度为773K.烟气出口类型为压力出口,转底炉各壁面为恒定温度,炉顶为120℃,炉墙及炉底为90℃.多种冶金粉尘与黏结剂通过配比后混合,通过造球机制作成冶金粉尘球团.球团的主要成分如表2所示,本模型中将冶金粉尘球团假设为半径8mm的圆球团,球团进入转底炉前的温度为310K.通过滑移网格方法实现冶金粉尘球团随炉底在炉内的转动,转动速度为0 0035rad/s.表1燃料成分(体积分数)Table1 Fuelcomposition(volumefraction)% COO2CO2H2N223 3500 82929 1751 49745 149表2 冶金粉尘球团主要成分(质量分数)Table2 Chemicalcompositionofthepellet(massfraction)% TFeFe2O3FeOMFeCaOMgOCZn其他42 8027 1212 7313 919 011 8012 951 9120 572 模型验证采用文献[12]中的实验数据对模型进行验证,将4,10,16,22min时球团金属化率的模拟值与实验值进行对照.金属化率为转底炉还原冶金粉尘球团的一个主要的技术指标,其计算公式为:η=MFeTFe×100%(15)表3为转底炉工作不同时间后球团金属化率的模拟和测量结果.由于初始阶段的球团成分不同,转底炉工作10min内球团金属化率模拟和测量结果相差较大.10min后模拟的转底炉状态接近实验状态,可用于模型验证.最终预测误差在7 82%以内(一般误差在10%以内被认为准确性较好),验证了数学模型的可靠性.表3 球团金属化率Table3 Ironmetallizationrateofthepelletst/min实验值模拟值相对误差%47 232 1—1037 935 7-6 161663 458 8-7 822277 681 54 7888材料与冶金学报 第20卷3 结果与讨论3 1 转底炉内流场和温度场分布特征图2为转底炉运行一个周期(25min)后,炉膛烧嘴处(距炉底0 8075m)速度场矢量图.结果表明,燃气与助燃气体以恒定速度经烧嘴喷入炉膛内部,炉膛内烟气逆时针流向物料入口,烟气流速随流动方向逐渐增大,最后从烟气出口流出.图3为炉底冶金粉尘球团的温度分布图.温度为310K的冶金粉尘球团随着炉底的转动进入转底炉内.冶金粉尘球团顺时针运动接受烟气与炉壁的辐射热量,温度升高.在转底炉中径处球团升温最快,靠近转底炉内侧及外侧墙壁的球团则升温较缓.冶金粉尘球团在出口处被加热至1416 7K,在出口处靠近内侧及外侧墙壁的球团温度则介于1250~1300K之间.3 2 铁氧化物的还原图4为转底炉运行一个周期后冶金粉尘球团内部各种铁氧化物的收缩核半径云图,从中可以看出当冶金粉尘球团达到临界反应温度后,铁氧化物以Fe2O3→Fe3O4→FeO的顺序逐级进行还原反应.图4(a)表明Fe2O3的收缩核半径在满足Fe2O3还原反应的条件后迅速减小,这是由于Fe2O3的还原反应所需的热力学和动力学条件较为简单,因此在转底炉中径处球团中Fe2O3的收缩核半径在450s内减小至0.达到临界温度843K后,Fe3O4与FeO均参与反应,收缩核半径开始减小.由于CO还原FeO需要较高的热力学及动力学条件,从图4(b)和(c)中可以看出,Fe3O4的收缩核半径减小较快,FeO的收缩核半径在还原过程中减小得较为缓慢,两者均未完全反应.!"#$%!&#%'!!#'($#$)*+%$'#'&"#$,&#&%!#''-./0图2 转底炉烧嘴处速度矢量图Fig 2 VelocityvectordiagramatburnerofRHF!"#"$%&'"((&%$)*+),-$.""&/-))""..-).".0*-1)/10-1.,$(-()&,1-(.&.)-0)$0$-*/)1&-*11$,-..(,/-.1(./-//图3 转底炉内冶金粉尘球团温度分布g 3 TemperaturedistributionofthepelletsinRHF!"#""$""#""%&"#""'("#""')"#""*%"#""*+"#""&'"#""&""#"")&"#"",("#"",)"#""+%"#""++"#"""'"-./-01-21图4 转底炉内铁氧化物收缩核半径Fig 4 RadiusofironoxideunreactedcoreinRHF(a)—Fe2O3;(b)—Fe3O4;(c)—FeO 98第2期 郑占一等:转底炉内冶金粉尘还原过程数值模拟 图5为冶金粉尘球团在转底炉工作一个周期后,球团内铁氧化物及铁的浓度云图.由图中可以看出,反应发生后Fe2O3的浓度减小,Fe的浓度在还原区域不断增大,而Fe3O4和FeO在还原区域由于存在相互转化,所以浓度先上升后下降.同时,冶金粉尘球团温度分布的不均匀导致在转底炉径向上的铁氧化物的浓度分布不均匀.图6为转底炉运行一个周期后中径处的铁氧化物浓度变化曲线图.从图中可以看出,炉底在运动至距转底炉入口约65°时,Fe2O3开始反应,运行至距入口150°时Fe2O3的反应基本完成,其浓度由2373mol/m3减少到0.Fe3O4和FeO的浓度是一个先升高后降低的过程,炉底运动至距入口约145°时Fe3O4的浓度升高至最大,为1092 18mol/m3.FeO在距入口约100°时开始富集增多,在距入口180°时浓度达到最大,为3981 80mol/m3.转底炉中FeO的浓度最大为4612 95mol/m3,出现在靠近转底炉的侧壁处,这是由于在侧壁处的温度较低,FeO的反应速率较小,造成FeO的富集时间较长,富集量较大.!"#!$#%&#%'#()*)+,,((,)+-,(,).+,,/01.+-,/12-+,,/-(-+-,/)-1+,,//01+-,/,/*+,,0.*+-,1*0+,,-,0+-,))2+,,/12+-,,34563).1/(+2-.).2+.(.,0-+02)0((+)-)--0+0()(2-+(2),)/+*/(*10+()(-+.+12((./+/1/2**+1)/*/.+/,/.-,+-2//0*+,.2()+-,34563)2*()+022(**+*(00)/+--0)0-+)0*2)2+(/*.2)+,.*,.1+0*11,,+121/-.+-(-*,0+)--(1(+/0.0/1+,/.)12+0.)2()+1*).**+-,34563)/,2(+/0/,/.+/12)1+/-0-0+/.*0,+/)*,(+//)(.+/,-.1+,2.10+,0)2,+,1)/(+,-().+,./-1+,)*0+,/,34563)图5 转底炉内铁及铁氧化物的摩尔浓度Fig 5 MolarityofironandironoxideinRHF(a)—Fe2O3;(b)—Fe3O4;(c)—FeO;(d)—Fe 图7展示了转底炉内冶金粉尘球团在炉底中径处铁的浓度及球团的金属化率.结果表明,铁氧化物在进入还原区域、经过逐级反应后,浓度不断增大,在反应后期浓度增长放缓.这是由于在反应过程中收缩核半径不断减小,反应界面的面积不断减小,使反应放缓.在转底炉工作一个周期后,转底炉中径处的冶金粉尘球团中铁的浓度由3477 50mol/m3增长至9719 94mol/m3;同时,在转底炉的中径处球团金属化率由32 50%增大至90 85%.图8展示了转底炉工作一个周期后,出口处的冶金粉尘球团的金属化率.结果表明,在出口中心处球团的金属化率最大,为90 85%;中09材料与冶金学报 第20卷心两侧的球团金属化率逐渐减小,出口处的冶金粉尘球团平均金属化率为81 42%.!"#$% !"%$& !"$'(')''#('#''*(+%''角度,- .&(++&+++%(++%+++#(++#+++*(++*+++(+++ ,-/01 /2%.图6 转底炉中径处铁氧化物浓度变化曲线Fig 6 MolarityofironoxideinthemiddlediameterofRHF!"#$% #&'(角度!" )*+,++-*+-++,*+'++浓度球团金属化率,++.+/+0+1+*+2+'+球团金属化率!3,++++.+++/+++1+++*+++2+++'+++图7 转底炉中径处铁的浓度及球团金属化率Fig 7 MolarityofironandironmetallizationinthemiddlediameterofRHF球团金属化率!"#$#%#&'&%$距离!(&'')*)'+*+',*,'-*图8 转底炉出口处球团金属化率Fig 8 TheironmetallizationofthepelletsattheoutletofRHF4 结 论(1)在本文工况下的转底炉中径处,Fe2O3的浓度在450s内由2373mol/m3降低至0,Fe3O4和FeO的浓度则是先升高后降低,Fe3O4的浓度在达到最大值1092 18mol/m3后也迅速减小,FeO经历了1047s的反应后浓度为923 50mol/m3. (2)球团直径对球团还原的影响分为两个阶段,在750~1250s的反应阶段含碳球团直径较大,金属化率升高得较快;在1250s之后,球团金属化率随着球团直径的减小而升高得缓慢.(3)冶金粉尘球团在转底炉内经过一个周期(25min)的工作过程后,金属化率最高达90 85%,转底炉出口处的平均金属化率为81 42%.参考文献:[1]佘雪峰,薛庆国,王静松,等.钢铁厂含锌粉尘综合利用及相关处理工艺比较[J].炼铁,2010,29(4):56-62.(SheXuefeng,XueQingguo,WangJingsong,etal.Comprehensiveutilizationandrelativetreatmentofzinc containingdustinironandsteelworks[J].Ironmaking,2010,29(4):56-62.)[2]陈砚雄,冯万静.钢铁企业粉尘的综合处理与利用[J].烧结球团,2005,30(5):42-46.(ChenYanxiong,FengWanjing.Onthecentralizedtreatmentandcomprehensiveutilizationofmetallurgicaldust[J].SinteringandPelletizing,2005,30(5):42-46.)[3]CantarinoMV,FilhoCDC,MansurMB.Selectiveremovalofzincfrombasicoxygenfurnacesludges[J].Hydrometallurgy,2012,111/112:124-128.[4]SenkD,GudenauHW,GeimerS,etal.Dustinjectioninironandsteelmetallurgy[J].ISIJInternational,2006,46(12):1745-1751.[5]熊华文,戴彦德.转底炉直接还原技术对钢铁行业资源综合利用的意义及发展前景分析[J].中国能源,2012,34(2):5-7,13.(XiongHuawen,DaiYande.Significanceforresourcecomprehensiveutilizationofrotaryhearthfurnacedirectreductioninsteelindustryandanalysisofitsdevelopingprospects[J].EnergyofChina,2012,34(2):5-7,13.)[6]徐萌.转底炉煤基热风熔融炼铁工艺的基础性研究[D].北京:北京科技大学,2006.(XuMeng.Fundamentalresearchoncoalhot-airrotaryhearthfurnaceprocess[D].Beijing:UniversityofScienceandTechnologyBeijing,2006.)[7]高金涛,周春芳,朱荣,等.转底炉分区域供热研究[J].北京科技大学学报,2014,36(S1):110-116.(GaoJintao,ZhouChunfang,ZhuRong,etal.Researchontheheatsupplyofdifferentsectionsinarotaryhearthfurnace[J].JournalofUniversityofScienceandTechnologyBeijing,2014,36(S1):110-116.)(下转第96页)19第2期 郑占一等:转底炉内冶金粉尘还原过程数值模拟二者呈线性关系.(2)较大的气化剂流速会影响流体和颗粒间的换热时间,恶化换热效果.对于气固顺流式移动床应当合理地控制气化剂流速.(3)出口气体中CO的质量分数随着气化剂流速的增加而降低,减小焦炭直径有助于加快气化反应的速率,出口气体中CO的质量分数随着焦炭直径的减小而增大.参考文献:[1]毛艳丽,曲余玲,王涿.高炉熔渣处理及显热回收工艺的研究进展[J].上海金属,2013,35(3):45-50.(MaoYanli,QuYuling,WangZhuo.Reviewofblastfurnacemoltenslagtreatmentandsensibleheatrecoverytechnologies[J].ShanghaiMetals,2013,35(3):45-50.)[2]LiP,QinQ,YuQB,etal.Feasibilitystudyforthesystemofcoalgasificationbymoltenblastfurnaceslag[J].AdvancedMaterialsResearch,2010,97/101:2347-2351.[3]杨世亮.流化床内稠密气固两相流动机理的CFD-DEM耦合研究[D].杭州:浙江大学,2014.(YangShiliang.CFD DEMcouplinginvestigationofdensetwo phaseflowmechanismsinfluidizedbeds[D].Hangzhou:ZhejiangUniversity,2014.)[4]YanLB,CaoY,ZhouH,etal.Investigationonbiomasssteamgasificationinadualfluidizedbedreactorwiththegranularkinetictheory[J].BioresourceTechnology,2018,269:384-392.[5]LiuDY,ChenXP,ZhouW,etal.SimulationofcharandpropanecombustioninafluidizedbedbyextendingDEM CFDapproach[J].ProceedingsoftheCombustionInstitute,2011,33(2):2701-2708.[6]KuXK,LiT,L v sT.CFD DEMsimulationofbiomassgasificationwithsteaminafluidizedbedreactor[J].ChemicalEngineeringScience,2015,122:270-283.[7]LiuML,ChenM,LiTJ,etal.CFD-DEM-CVDmulti physicalfieldcouplingmodelforsimulatingparticlecoatingprocessinspoutbed[J].Particuology,2019,42:67-78.[8]LiuDY,BuCS,ChenXP.DevelopmentandtestofCFD DEMmodelforcomplexgeometry:acouplingalgorithmforFluentandDEM[J].Computers&ChemicalEngineering,2013,58:260-268.[9]CroweCT,SommerfeldM,TsujiY.Multiphaseflowswithdropletsandparticles[M].Florida:CRCPress,1998.[10]GidaspowD.Multiphaseflowandfluidization:continuumandkinetictheorydescription[J].JournalofNon NewtonianFluidMechanics,1994,55(2):207-208.[11]王帅.流化床内稠密气固两相反应流的欧拉 拉格朗日数值模拟研究[D].杭州:浙江大学,2019.(WangShuai.Eulerian Lagrangiansimulationofdensereactivegas solidflowsinfluidizedbeds[D].Hangzhou:ZhejiangUniversity,2019.)(上接第91页)[8]LandfahrerM,SchlucknerC,PrielerR,etal.DevelopmentandapplicationofanumericallyefficientmodeldescribingarotaryhearthfurnaceusingCFD[J].Energy,2019,180:79-89.[9]赵凯,宫晓然,胡长庆,等.转底炉用蓄热式烧嘴的模拟[J].材料与冶金学报,2015,14(2):121-125.(ZhaoKai,GongXiaoran,HuChangqing,etal.Asimulationfornozzleofrotaryhearthfurnace[J].JournalofMaterialsandMetallurgy,2015,14(2):121-125.)[10]刘颖.转底炉内冶金粉尘含碳球团直接还原过程数学模型研究[D].北京:北京科技大学,2015.(LiuYing.Mathematicalmodelinvestigationofdirectreductionofcarbon containingpelletsmadeofmetallurgicaldustinarotaryhearthfurnace[D].Beijing:UniversityofScienceandTechnologyBeijing,2015.)[11]LiuY,SuF,WenZ,etal.CFDmodelingofflow,temperature,andconcentrationfieldsinapilot scalerotaryhearthfurnace[J].MetallurgicalandMaterialsTransactionsB,2014,45(1):251-261.[12]WuYL,JiangZY,ZhangXX,etal.Modelingofthermochemicalbehaviorinanindustrial scalerotaryhearthfurnaceformetallurgicaldustrecycling[J].MetallurgicalandMaterialsTransactionsB,2017,48(5):2403-2418.[13]WuYL,JiangZY,ZhangXX,etal.Processoptimizationofmetallurgicaldustrecyclingbydirectreductioninrotaryhearthfurnace[J].PowderTechnology,2018,326:101-113.[14]DasguptaS,SaleemS,SrirangamP,etal.Acomputationalstudyonthereductionbehaviorofironore/carboncompositepelletsinbothsingleandmulti layerbedrotaryhearthfurnace[J].MetallurgicalandMaterialsTransactionsB,2020,51(2):818-826.[15]华一新.冶金过程动力学导论[M].北京:冶金工业出版社,2004:162-165.(HuaYixin.Introductiontokineticsofmetallurgyprocess[M].Beijing:MetallurgicalIndustryPress,2004:162-165.)69材料与冶金学报 第20卷。
我国煤基直接还原炼铁工艺发展摘要:对我国目前主要应用的直接还原工艺—回转窑、隧道窑、转底炉以及新发展的直接还原技术做了简要的介绍,分析了各种工艺的优缺点;针对钒钛磁铁矿冶炼,攀钢采取了转底炉—电炉联合使用的直接还原工艺,并新建一条年处理能力10万t钒钛矿的生产试验线.关键词:直接还原;转底炉;回转窑;隧道窑0 引言直接还原法是以气体燃料、液体燃料或非焦煤为能源,在铁矿石(或含铁团块)软化温度以下进行还原得到金属铁的方法.其产品呈多孔低密度海绵状结构,被称为直接还原铁(DRI)或海绵铁.直接还原实现了无焦炼铁,比高炉炼铁碳耗低、CO2排放少,有利于节省能源、保护环境.海绵铁杂质成分低,是冶炼优质钢的原料,也可作为高炉炼铁、转炉炼钢、铸铁、铁合金、粉末冶金的原料,有色冶金的置换剂、水处理的脱氧剂等,应用范围广、需求量大[1].2008年我国直接还原铁消费量为260 万t,但产量仅为60多万吨,远不能满足国内需求.随着我国电炉炼钢规模的不断扩大,废钢价格不断攀升,直接还原铁供不应求,市场潜力巨大,因此,在我国因地制宜发展直接还原工艺势在必行.直接还原按照还原剂的不同分为气基还原和煤基还原两大类,气基还原主要包括Midrex法和HYL—Ⅲ法,具有生产规模大、成本低、环境影响小等优点[2].煤基直接还原包括回转窑法、转底炉法等,与气基还原相比,生产规模较小、产量较低.虽然气基直接还原工艺占据了大部分的直接还原生产能力,但其需用天然气做燃料.在我国,由于天然气相对缺乏,使气基发展受到限制,而我国的煤炭储量却较为丰富,这一资源条件决定了现阶段我国以煤基直接还原法为主,因此,深入研讨煤基直接还原的生产工艺对我国的直接还原工业发展具有深远的意义.1 直接还原工艺简介1.1 回转窑回转窑直接还原主要有三种工艺方案,一步法:精矿配加粘结剂制成生球铺布在移动的链篦机上,利用回转窑高温废气进行干燥预热后直接进入回转窑生产DRI,所有工序在一条流水线上连续完成;二步法:先用精矿烧制成氧化球团再将其送入回转窑生产DRI,造球和还原分别独立进行,故称"二步法";冷固球团法:与一步法相似,先将精矿配加特殊粘结剂造球,在较低温度下(200 ℃)干燥固结,然后送入回转窑还原,省略了高温焙烧氧化固结的过程[3].回转窑工艺具有代表性的SL/RN法流程如图1所示.铁矿石、煤粒、熔剂等原料从窑尾加入回转窑中,窑体缓慢旋转使炉料在升温和反应的同时向出料端移动.窑头外设有烧嘴燃烧燃料,形成的废气则由窑尾排除.炉料与炉气逆向运动,炉料在预热段被加热,使水分蒸发和石灰石分解,达到800 ℃后,煤中的固体碳开始还原铁矿石中的氧化铁,直到获得海绵铁或铁料,而碳则转变成CO气体,CO在氧化区被燃烧成CO2,放出热量以满足还原反应的要求.回转窑内反应温度控制在1 100 ℃以下,经8~10 h完成还原反应后出窑.产品排出窑后进入回转冷却筒冷却得到海绵铁或粒铁,也可以送电炉直接炼钢.与高炉工艺相比较,回转窑工艺设备简单,投资少,适用于地方钢铁工业,弥补了高炉—转炉工艺的不足,此外,回转窑还适用于复合矿冶炼,冶金灰尘及各种工业废渣的回收利用,减少环境污染,降低了钢铁生产能耗.同时,回转窑工艺也存在一些缺点,包括窑内结圈、还原温度低(1 100 ℃以下)、流程长、对块矿或球团矿冷强度要求高、要求使用低硫煤等[4].我国山东鲁中矿山公司通过采取提高冷固烧结球团的冷热态强度、加强还原煤的选择和管理、优化回转窑的送风、抛煤、控温温度等措施,预防并降低回转窑结圈,取得了较好的收效.图1 SL/RN法工艺流程1.2 隧道窑隧道窑工艺即将精矿粉、煤粉、石灰石粉,按照一定的比例和装料方法,分别装入还原罐中,然后把罐放在罐车上,推入条形隧道窑中或把罐直接放到环形轮窑中,料罐经预热到1 150 ℃加热焙烧和冷却之后,得到直接还原铁.目前江苏永钢集团拥有两条260 m长煤气隧道窑,为亚洲最长隧道窑.隧道窑生产海绵铁工艺流程如图2所示.图2 隧道窑生产海绵铁工艺流程煤基隧道窑直接还原工艺具有技术成熟、作简单的特点,可因地制宜采用此工艺,利用当地小型分散的铁矿及煤矿资源优势,发展直接还原铁生产,为电炉提供优质原料.但是,总体上讲,我国隧道窑直接还原中存在生产规模较小、能耗高、污染严重、缺乏稳定的原料供应渠道等问题[5],所以,提高机械化程度、改变原料入炉方式、改进燃料及其燃烧、增设余热回收等成为各厂家不断努力改进工艺的方向.我国已建成或正在建设的隧道窑有100多座,约70多个单位规划建设产能5~30 万t/a的隧道窑直接还原铁厂,在不断总结实践经验的基础上,改进现行工艺,开发出诸如大型隧道窑直接还原、AMR—CBI隧道窑直接还原工艺、宽体球状海绵铁隧道窑、L-S快速还原工艺等多种新技术,掀开了隧道窑工艺规模扩大、产能提高、机械及自动化提升的序幕.1.3 转底炉转底炉煤基直接还原是最近几十年间发展起来的炼铁新技术,代表工艺为Fastmet,它由美国Midrex公司与日本神户制钢于20世纪60年发,是采用环形转底炉生产直接还原铁的一种方法.经过多年的半工业性试验和深入的可行性研究,现已完成工艺作参数和装置设计的优化.Fastmelt和ITmk3工艺是在此基础上增加对直接还原铁的处理.图3显示了这三种以转底炉为主体的直接还原工艺流程.图3 转底炉直接还原工艺流程煤粉与铁精粉按比例混匀制成球团,干燥后以1~3层球铺放在转底炉床面,随着炉底的旋转,炉料依次经过预热区、还原区和冷却区.还原区内球团被加热到1 250~1 350 ℃,由于煤粉与铁氧化物紧密接触,铁氧化铁被碳迅速还原成DRI,成品在800~1 000 ℃左右连续从转底炉卸出.球团矿在炉底停留8~30 min,这取决于原料特性、料层厚度及其他因素,成品可作电炉热装炉料或者转炉炉料,也可冷却或生产热压块(HBI).Fastmet工艺技术特点:①在高温敞焰下加热实现快速还原,反应时间只需10~20 min,生产效率高;②原料来源广泛,铁原料方面,除使用高品位粉矿、精矿外,还可用氧化铁皮、代油铁泥、炼钢粉尘、含En、Pb、As等有害杂质的铁矿等;还原剂方面,除煤以外焦末、沥青均可利用,不必担心出现结圈问题;③炉料相对炉底静止,对炉料强度要求不高;④废气中含有大量显热,可用作预热空气、干燥原料等[6]. Fastmelt工艺流程基本与Fastmet一致,只是在后续添加一个熔炉来生产高质量的液态铁水.Itmk3工艺是使金属化球团在转底炉中还原时熔化,生成铁块(Nuggets),同时脉石也熔化,形成渣铁分离.当然转底炉也存在着设备复杂、炉内气氛难控制、传热效率低以及对还原剂硫含量要求严格的缺点.就目前转底炉工艺开发的水平和规模而论,与高炉还有较大差距,但仍存在发展的广阔空间,天津荣程联合钢铁集团已兴建一条100万t级Fastmet生产线,建成目前世界最大的转底炉.另外,用转底炉可处理一些特殊铁矿,如含锌、铅、砷等有害杂质,或含镍、钒、钛等有用元素,均可利用转底炉的工艺优势,或高温挥发,或选择性还原,配合后续工艺,实现资源综合利用.马钢尘泥脱锌转底炉工程项目于2008年5月开工建设,2009年7月6日正式竣工投产,建成了整套转底炉(RHF)脱锌工艺技术装置,不仅解决了含锌尘泥循环利用的后顾之忧,而且将综合利用技术上升到高品质资源化水平.1.4 其他新工艺1.4.1 PF法煤基竖炉直接还原工艺中冶集团北京冶金设备研究设计总院,结合国内情况创新发明了PF法竖炉直接还原工艺.PF法是在吸收K-M法外热式竖炉煤基直接还原工艺的经验基础上,设计的以一种中国特色的罐式还原炉为主反应器的直接还原法.这种工艺技术可靠,技术经济指标在各种煤基直接还原工艺中属先进水平.PF法直接还原工艺流程如图4所示.图4 PF法直接还原工艺流程PF法直接还原工艺主要特点[1]:1)主体设备选用外热式竖炉,预热、还原、冷却三段根据不同的作用和温度选用不同材质和结构,便于传热和化学反应进行,提高热效率和设备寿命.2)原燃料适用性强,对精矿、还原剂和燃料没有特殊要求.3)采用外配碳工艺,还原剂适当过量,扩大了煤的选用范围,造球工艺也因不定量配入煤粉而简化,球团强度较高,DRI质量较好.4)多个反应罐可并列组成任意规模的还原设备,设计和组织生产灵活.1.4.2 低温快速还原新工艺2004年钢铁研究总院提出了低温快速冶金新工艺.新工艺利用纳米晶冶金技术的特点将铁矿的还原温度降低到700 ℃以下.新流程分为气基和煤基两种方法,工艺流程如图5、图6所示.图5 煤基低温快速还原新工艺图6 气基低温快速还原新工艺煤基法使用煤粉为还原剂,在700℃左右快速还原铁精矿粉;气基法使用还原性气体还原铁精矿粉,还原温度可低于600℃.新工艺具有能耗低、环境友好等特点,省去了烧结或造球工艺,缓解了钢铁行业对焦煤的依赖,符合我国国情[7].2 攀钢现状钒钛磁铁矿是攀西地区的特色资源,与普通矿相比,钒钛矿直接还原温度较高、还原时间较长,还原过程产生特有的膨胀粉化现象,因此,存在竖炉结瘤、流化床失流和黏结、回转窑结圈等技术难题.高炉流程冶炼钒钛矿,只回收了铁和钒,钛进入高炉渣没有回收,造成钛资源的大量流失.2005年以来,攀钢科研人员在充分吸收、借鉴新流程及相关研究成果的基础上,通过大量的试验研究,针对钒钛磁铁矿特点,提出并验证了钒钛磁铁矿"转底炉直接还原—电炉深还原—含钒铁水提钒—含钛炉渣提钛"工艺路线,彻底打通了钒钛矿资源综合利用新工艺流程,稳定获得了质量满足要求的低碳生铁、达到GB3283-87要求的片状V2O5和PTA121质量要求的钛白产品.依托该研究成果,攀钢集团攀枝花钢铁研究院于2008年5月4日正式启动了攀钢10 万t/a钒钛矿资源综合利用新工艺中试线工程项目,新建一条转底炉—熔分电炉联合使用,年处理能力10万t钒钛矿的试验生产线,为更深入地研究实践,实现转底炉处理钒钛矿的规模化生产提供了广阔的平台.中试线工艺流程如图7所示.本流程采用硫含量较低的白马铁精矿,还原剂采用无烟煤煤粉,粘结剂为有机粘结剂,原料混合后经高压压球机压球,生球烘干后进入转底炉系统.球团在转底炉内停留10~30 min后出料,金属化球团直接热装进入熔分电炉,在一定温度下还原后,产出含钒铁水及含钛炉渣.继续对铁水进行脱硫、提钒后,得到半钢、脱硫渣及钒渣,半钢进入铸铁机铸铁,生产出铸铁块.钛渣制取钛白,实验室条件下钛回收率达到80%以上;钒渣制取钒氧化物(V2O5),实验室条件下,钒回收率达到65%以上.与高炉流程相比,转底炉流程采用100%钒钛矿冶炼,克服了高炉流程必须配加普通矿的不足,在当前铁资源紧张的形势下,有助于充分发挥攀西地区资源优势,拉动区域经济发展.此外,转底炉流程的铁精矿不需烧结处理,不使用焦炭,从根本上避免了烧结烟气脱硫、焦煤资源采购困难以及环保压力大等问题.3 结语图7 资源综合利用中试线工艺流程煤炭资源总量丰富、焦煤短缺,铁矿资源储量大、富矿少、贫矿和共生矿多是中国钢铁工业面临的现实状况.这种能源、资源结构给煤基直接还原法生产海绵铁的发展提供了机遇.转底炉直接还原技术由于在生产率、规模化、投资费用、单位成本等方面都占有明显的优势,可作为发展直接还原技术的首选工艺.鉴于转底炉处理钒钛磁铁矿技术尚属世界首创,并无较多的经验借鉴,因此要大力开展针对钒钛磁铁矿直接还原的基础研究工作,在实践中借鉴各种直接还原方法已取得的成果,开拓创新,开创钒钛矿直接还原新纪元.参考文献[1] 陈守明,黄超,张金良.煤基竖炉直接还原工艺//2008年非高炉炼铁年会文集.中国金属学会,2008:132-135.[2] 杨婷,孙继青.世界直接还原铁发展现状及分析.世界金属导报,2006.[3] 刘国根,邱冠周,王淀佐.直接还原炼铁中的粘结剂.矿产综合利用,2001(4):27-30.[4] 韩跃新,高鹏,李艳军.白云鄂博氧化矿直接还原综合利用前景.金属矿山,2009 (5):1-6.[5] 魏国,赵庆杰,沈峰满,等.非高炉生产技术进步//2004年全国炼铁生产技术暨炼铁年会文集.2004:878-882.[6] 陶晋. 环形转底炉直接还原工艺现状及发展趋势. 冶金信息工作, 1997.6.[7] 郭培民,赵沛,张殿伟.低温快速还原炼铁新技术特点及理论研究.炼铁,2007,26(1): 57-60.来源:攀枝花钢铁研究院网站。
三氯化铁分解-重铬酸钾滴定法测定直接还原铁中亚铁郑玲;陶俊【摘要】提出了用三氯化铁分解试样、重铬酸钾滴定法测定亚铁的分析方法.试样用三氯化铁溶液溶解,金属铁被氧化为二氯化铁进入溶液,亚铁留在沉淀中,过滤、分离,在隔绝空气的条件下,以盐酸和氟化钾溶液溶解沉淀,二苯铵磺酸钠为指示剂,用重铬酸钾标准溶液滴定.本文对方法中试剂浓度、用量、时间、滴定介质、干扰元素等影响因素进行试验,确定了三氯化铁溶液浓度和用量为100 g/L和30 mL、搅拌时间为20 min的最佳实验条件.该法测定直接还原铁中亚铁,相对标准偏差小于2%,加标回收率在98%~101%之间.【期刊名称】《冶金分析》【年(卷),期】2010(030)002【总页数】3页(P78-80)【关键词】直接还原铁;亚铁;三氯化铁;滴定法【作者】郑玲;陶俊【作者单位】昆明钢铁股份有限公司技术中心,云南昆明,650302;昆明钢铁股份有限公司技术中心,云南昆明,650302【正文语种】中文【中图分类】O657.23在直接还原炼铁技术中,转底炉煤基直接还原工艺是近年来备受关注的新炼铁工艺。
该工艺以矿粉、煤粉复合含碳球团为原料,在1 300~1 350℃的温度下,使得球团快速还原,得到金属化率为85%以上的金属化球团,即直接还原铁。
得到的直接还原铁可以直接入高炉代替部分球团矿或者烧结矿,从而降低高炉焦比和能耗,提高高炉利用系数。
直接还原铁的质量由金属化率来衡量,而亚铁含量的高低直接影响直接还原铁的质量。
铁矿石和烧结矿中亚铁的测定方法已有报道[1-4],直接还原铁过程中亚铁的测定虽有过报道[5],但操作麻烦。
因此建立一个简单而准确测定亚铁的方法具有重要意义。
本文建立用三氯化铁分解试样,将金属铁和亚铁分离,用重铬酸钾滴定法测定亚铁的分析方法。
试验结果表明测定误差在化学分析国家标准允许差范围,是测定直接还原铁中亚铁的一种准确、快速、有效的方法,为直接还原铁中亚铁的测定提供了一条有效途经。