当前位置:文档之家› heic在线转换器

heic在线转换器

heic在线转换器
heic在线转换器

heic在线转换器

对于怎么把heic变成jpg这个问题相信大家都想了解一番,那么小编就用一种最直接的方式不用下载任何软件就能轻松进行图片格式转换,一个名叫迅捷PDF转换器的heic在线转换器。

1、这里要给大家介绍的是迅捷PDF在线转换器,大家应该都知道,在线转换器一般来说是不需要付费的,而且在线转换既方便又快捷。

2、打开PDF在线转换器之后,我们点击页面上方的导航栏中的“文档转换——heic转jpg”就可以马上进入在线转换页面。

3、进入操作页面之后,我们点击“选择文件”将需要转换格式的heic文件打开。

4、视频文件打开之后,我们可以根据自身需求自定义设置功能参数,然后点击“开始转换”。

5、这样图片文件格式转换就开始了,等到heic转换成jpg 格式之后,点击“立即下载”即可。

以上就是有关迅捷PDF转换器的转换方法步骤,希望能帮到大家!

大数据结构课程设计——进制转换

数据结构课程设计 设计说明书 进制转换的实现 学生JUGG 学号¥#·· 班级Dota all star——成绩优秀 指导教师Puck dota科学与技术 天灾元年 3 月 14 日

Dota all star

课程设计任务书 天灾元年—近卫戊年第二学期 专业:ganker 学号:sadofaiofo : 课程设计名称:数据结构课程设计 设计题目:进制转换的实现 完成期限:自天灾元年年 3 月 1 日至近卫戊年年 3 月14 日共 2 周 设计依据、要求及主要容(可另加附页): 进制数制是人们利用符号进行计数的科学方法。数制有很多种,在计算机中常用的数制有:十进 制,二进制、八进制和十六进制。十六进制数有两个基本特点:它由十六个字符0~9以及A,B,C,D, E,F组成(它们分别表示十进制数0~15),十六进制数运算规律是逢十六进一,例如:十六进制数4AC8 可写成(4AC8)16,或写成4AC8H。 要求: (1)输入一个十进制数N,将它转换成R进制数输出,并可以进行逆转换。 (2)输入数据包含多个测试实例,每个测试实例包含两个整数N(32位整数)和R(2<=R<=16, R<>10)。 (3)为每个测试实例输出转换后的数,每个输出占一行。如果R大于10,则对应的数字规则参考 16进制(比如,10用A表示,等等)。 (4)界面友好。 指导教师(签字):教研室主任(签字): 批准日期:年月日 摘要

由于数制计算和不同数制之间转换的需要,设计了一个10进制转换其它进制(36进制以)及逆转换的软件,该软件具有简单的将10进制数转换成2、8、16进制数以及较复杂的高进制数的转换和逆转功能。本软件采用C语言编写以VC++作为软件开发环境,采用顺序栈存储方式来存储运算中的数位,借助栈后进先出的特点,易于结果输出。操作简单,界面清晰,易于为用户所接受。 关键词:进制转换;顺序栈;逆转换

二进制转换成BCD码 实验报告

一、实验目的 (1)进一步熟练掌握8086汇编语言编译调试工具和环境的操作; (2)掌握完整8086汇编的程序设计编写方法; (3)掌握简单的数值码制转换方法; (4)掌握键盘输出的DOS功能调用方法。 二、实验要求: 将AX中的一个二进制数(对应的十进制数范围是0-65535),转换成压缩性BCD 码表示的十进制,并从屏幕输出转换结果。要求用减法实现,并比较与除法方法进行运行速度比较。 三、实验及报告要求: 3.1、简要说明算法,并画出正确的程序流程图; 3.2、给出完整正确的源程序代码,要求给每一句伪指令或指令加上注释; 3.3、分别在DOS和Windows下编译、连接源程序生成可执行文件并调试,比较两个环境下生成的机器码的长度、寄存器内容、计算结果的异同。 3.4、如何观察转换过程中标志寄存器中各标志位的结果?如何观察转换结果的变化?试改变被转换数值,对结果与编制为的变化加以说明和解释。 3.5、写出完整的实验报告,特别是“实验结果”与“实验总结体会”部分,是评分的主要依据。 3.6、实验总结中要求结合实验中的经验、教训或体会对汇编语言格式、调试方法和微机原理学习方法作出总结。 四、程序流程图 减法。即五位数先循环减10000,直到不够减了,做减法的次数就是万分位的结果;将不够减之前一次的余数恢复,再循环减去1000,直到不够减了,做减法的次数就是千分位的结果;以此类推,最后恢复的正余数就是个位的结果. 除法。即五位数先除以10000,得到的商存放万位数的变量上;再将余数除以1000,得到的商存放千位数的变量上;之后将余数除以100,得到的商存放百分位的变量上;以此类推,最后的余数存放在个位的变量上。

(完整版)外文翻译--模拟与数字转换器-精品

模拟与数字转换器 前面我们已经提到,人们在模拟转换器、信号调节器和A/D转换器等的使用上已经积累了大量的经验。因此,目前大部分的系统自然都采用这些技术。然而,还有很大一部分测量方法实质是数字的,在个别的测量仪中使用这些方法时,需要用到一些积分电路,如频率计数和计时电路等来提供指示输出。另外,如果把这种转换器和电脑相连的话,就可以省去一些器材;因为很多有积分电路执行的工作可以由计算机程序代为执行。 柯林斯把在控制和测量系统中处理的信号分为以下几类: (1)模拟式。尽管系统的被测数最初通过传感器得到的是模拟信号,然后通过设计或采用原有的方法将模拟形式的信号转换成电模拟信号。 (2)数字码式。产生的信号是并行的数字信号,每一位的基数权重由预先编定的号码系统决定。在本书中这些仪器称作直接数字转换器。 (3)数字式。其中的函数是指测量参数时用到的量度标准,如对重复信号取平均值。这些仪器在后来称为频域转换器。 特别地,一些模拟转换器适合用一些特别的技术来把模拟量转换成数字输出。其中最通用的方法是同步法和相似仪器的方法,即产生载波频率的调制输出的方法。在用作普通的模拟量输出仪器时,输出量必须经过解调。解调后输出的是直流信号,支流信号的大小和方向描述了转换器运动元件的偏移。虽然使用传统的A/D转换技术可以用来产生数字信号,在提供高精度时采用这些新技术将同步输出直接变为数字输出,比用A/D转换方法更快。 直接数字转换器实际上用得很少,因为在自然现象中很少有那种由温度变化、压力变化等因素作用而产生的可测量的离散的变化量。在普通的仪器系统中使用直接数字转换器有如下优点(即使在完成安装时不使用计算机):(1)容易产生、处理和存储信号,如打控带、磁带等; (2)高精度和高分辨率的需要; (3)高介数字信号对外部噪声的抗干扰性; (4)在简化数据描述时的人机工程学优势(例如:数字读出器能避免读刻度或图表时的判度错误)。 在直接数字转换器中最能起作用的发展是轴编码器。轴编码器在机床和飞行系统中被广泛应用。利用这些设备能达到很高的精度和分辨率,而且这些设备能进行激动连接,给出任何可测量物理偏移的直接数字输出。这类系统通常的缺点是仪器的惯性及编码器限制了相应的速度,因而也限制了操作频率。 频域转换器在线系统(测量量较少时)有着特殊的地位。因为计算机能担当

高精度数模转换器

选择和使用高精度数模转换器 时间:2011-05-10 23:17:40 来源:作者:叶子 很多应用 (包括精密仪器、工业自动化、医疗设备和自动测试设备) 都需要高准确度数模转换。在 16 位分辨率时要求准确度好于约±15ppm 或±1LSB 的电路中,设计师传统上一直被迫使用大量校准,以在所有情况下保持准确度。新型高精度 DAC 使得能够采用一个单片式 DAC 来实现±4ppm 准确度或±1LSB (在 18 位分辨率条件下),而无需校准。在本文中我们将对高精度数模转换器的选择和使用过程中所涉及的问题进行研究。 DAC 的架构对于 DAC 的技术规格及其对电路板设计师的要求均有影响。为了实现最佳性能,需要谨慎地考虑 DAC 上的电源、基准和输出放大器所产生的影响。 过采样或增量累加 DAC 过采样或ΔΣ ADC 采用一个低分辨率 DAC (通常仅 1 位),在其前后分别布设一个噪声整形数字调制器和一个模拟低通滤波器。最准确的商用增量累加 DAC 实现±15ppm 的准确度,但是需要 15ms 才能稳定,并要承受相对较高的 1μV/√Hz 噪声密度。其它可购得的过采样 DAC 在 80us 内稳定,但是INL 较差,大约为 240 ppm。 合成 DAC 通过结合两个较低分辨率的单片 DAC,有可能构成一个高分辨率的合成 DAC。请注意,粗略 DAC 的分辨率和精细 DAC 的范围需要重叠,以确保所有想要的输出电压都可实现。粗略 DAC 的准确度和漂移一般将限制合成 DAC 的最终准确度,因此要提高准确度,就需要对合成 DAC 转移函数的特性和软件进行校正。也可能需要频率校准,以校正随温度、时间、湿度和机械压力产生的变化导致的漂移。 电阻串 DAC 电阻串 DAC 采用具有 2N 个分接点的一系列电阻分压器,以实现 N 位分辨率。采用电阻串架构的单片 16 位 DAC 一般含有一个较低分辨率的电阻串 DAC 和一个范围较小的 DAC,范围较小的 DAC 用于插入串器件之间,以实现 16 位分辨率。这种串+内插器方法的一个优点是,DAC 输出具有固有的单调性,无需微调或校准。 这类 DAC 的基准输入阻抗一般很高 (50KΩ~ 300kΩ),而且不受输入代码的影响,从而有可能使用一个非缓冲型基准。因为电阻串的输出阻抗随输入代码变化,所以大多数电阻串 DAC 含有集成的输出缓冲器放大器,以驱动电阻性负载。 尽管电阻串 DAC 的 DNL 本身非常好,但是 INL 由串联电阻器件的匹配决定,而且可能由于含有大量的独立器件而难以控制。直到最近,这类 DAC 的准确度一直限制在约±180ppm。最近的进步已经使得准确度提高到了±60ppm。例如,LTC2656 在 4mm x 5mm 封装中集成了 8 个 DAC 通道,在 16 位分辨率时具有±4LSB 的最大 INL。 阻性梯形或 R-2R 型 DAC 阻性梯形或 R-2R DAC 采用一种类似于图 2 所示的三端子结构,电阻器在 A 端和 B 端之间切换。请注意,A 端和 B 端上的阻抗与代码的相关性很高,而 C 端则具有一个固定阻抗。电阻器与开关的匹配情况将会影响这种结构的单调性和准确度。此类 DAC 一般经过修整或在出厂时经过校准,而且,具±1LSB INL 和 DNL 的单调 16 位阻性梯形电路 DAC 上市已有很长时间了。 电压输出 R-2R DAC 一种常见类型的 R-2R DAC 将C 端用作 DAC 输出电压,而 A 端连接到基准,B 端连接到地。输出阻抗相对于输入代码是恒定的,从而有可能以非缓冲方式驱动电阻负载。例如,LTC2641 16 位 DAC 能以非缓冲方式驱动 60kΩ负载,同时保持±1LSB 的 INL 和 DNL,并消耗不到 200μA 的电源电流。 这种方法的一个缺点是,基准阻抗随着输入代码大幅变化。由于 R-2R 梯形电路的本质,甚至DAC 输出电压中很小的变化也可能在基准电流中引起 1mA 或更大的阶跃变化。为此,必须由一个高性能放

模拟数字转换器的基本原理

模拟数字转换器的基本原理 我们处在一个数字时代,而我们的视觉、听觉、感觉、嗅觉等所感知的却是一个模拟世界。如何将数字世界与模拟世界联系在一起,正是模拟数字转换器(ADC)和数字模拟转换器(DAC)大显身手之处。任何一个信号链系统,都需要传感器来探测来自模拟世界的电压、电流、温度、压力等信号。这些传感器探测到的信号量被送到放大器中进行放大,然后通过ADC把模拟信号转化为数字信号,经过处理器、DSP或FPGA信号处理后,再经由DAC还原为模拟信号。所以ADC和DAC在信号链的框架中起着桥梁的作用,即模拟世界与数字世界的一个接口。 信号链系统概要 一个信号链系统主要由模数转换器ADC、采样与保持电路和数模转换器DAC组成,见图1。DAC,简单来讲就是数字信号输入,模拟信号输出,即它是一种把数字信号转变为模拟信号的器件。以理想的4 bit DAC为例,其输入有bit0 到bit3,其组合方式有16种。使用R-2R梯形电阻的4bit DAC在假定Vbit0到Vbit3都等于1V时,R-2R间的四个抽头电压有四种,分别为V1到V4。 采样保持电路也叫取样保持电路,它的定义是指将一个电压信号从模拟转换成数字信号时需要保持稳定性直到完成转换工作。它有两个阶段,一个是zero phase,一个是compare phase。采样保持电路的比较器通常要求其offset比较小,这样才能使ADC的精度更好。通常在比较器的后面需要放置一个锁存器,其目的是为了保持稳定性。 在采样电压快速变化时,需要用到具有FET开关的采样与保持电路。当FET开关导通时,输入电压保存在某个位置如C1中,当开关关断时,电压仍保持在该位置中进行锁存,直到下一个采样脉冲的到来。 ADC与DAC在功用上正好相反,它是模拟信号输入,数字信号输出,是一个混合信号器件。 模数转换器ADC ADC按结构分有很多种,按其采样速度和精度可分为: 多比较器快速(Flash)ADC; 数字跃升式(Digital Ramp)ADC; 逐次逼近ADC; 管道ADC;

数制转换数据结构课程设计报告

《数据结构》 课程设计报告书 题目:数制转换 系别:计算机科学与应用系学号: 学生姓名: 指导教师: 完成日期:2013—6—1

数制转换 1.需求分析 任意给定一个M进制的数x ,实现如下要求 1)求出此数x的10进制值(用MD表示) 2)实现对x向任意的一个非M进制的数的转换。 3)至少用两种或两种以上的方法实现上述要求(用栈解决,用数组解决,其它方法解决)。 2.概要设计 程序流程可以用以下流程图来刻画: A用数组实现 B用栈实现 3.详细设计 A.用数组实现该问题 D2M()函数和M2D()函数是实现该问题的主要函数。D2M()函数是实现十进制转换为其他进制的函数,它是将输入的十进制数x首先对需要转换的进制M取余,然后在对其取整,接着通过递归调用D2M()函数一次将得到的整数部分一次先取余后取整,并将所得的余数依次存入下一数组,然后逆向去除数组中的元素,即得到转换后的结果。而M2D()函数是实现其他进制M转换为十进制,并将其转换为非M进制。M进制转十进制则是从该M 进制数的

最后一位开始运算,依次列为第0、1、2、……..N位并分别乘以M的0、1、2、…..N次方,将得到的次方相加便得到对应的十进制数,再调用D2M()函数将其转换为非M进制的数。 B.用栈实现 栈具有后进先出的性质,具体实现方法和数组的方法有很大联系,不再过多解释。 4.调试分析 (1)构造栈的方法通过查阅书籍知道了。 (2)数组的递归调用查阅相关书籍了解了。 (3)为了让界面表达更清晰,多次调试完善了界面。 5.测试结果 下面是我的测试函数及运行结果: A.数组测试结果

高精度数模转换器AD420及其与MSP430的接口技术

高精度数模转换器AD420及其与MSP430的接口技术 1 概述 AD420是ADI公司生产的高精度、低功耗全数字电流环输出转换器。AD420的输出信号可以是电流信号,也可以是电压信号。其中电流信号的输出范围为4mA~20mA,0mA~20mA或0mA~24mA,具体可通过引脚RANGE SELECTl,RANGE SELECT2进行配置。当需要输出电压信号时,它也能从一个隔离引脚提供电压输出,这时需外接一个缓冲放大器,可输出0V~5V,0V~10V,±5V或±10V电压。 AD420具有灵活的串行数字接口(最大速率可达3.3 Mb/s),使用方便、性价比高、抑制干扰能力强,非常适合用于高精度远程控制系统。AD420与单片机的接口方式有2种:3线制和异步制。单片机系统通过AD420可实现连续的模拟量输出。其主要特点如下: ?宽泛的电源电压范围为12 V~32 V,输出电压范围为0V~-2.5 V; ?带有3线模式的SPI或Microwire接口,可采集连续的模拟输入信号,采用异步模式时仅需少量的信号线; ?数据输出引脚可将多个AD420器件连接成菊链型; ?上电初始化时,其输出最小值为0 mA,4 mA或O V; ?具有异步清零引脚,可将输出复位至最小值(0mA、4 mA或0V); ?BOOST引脚可连接一个外部晶体管来吸收回路电流,降低功耗; ?只需外接少量的外部器件,就能达到较高的精度。 AD420采用24引脚SOIC和PDIP封装,表1是其引脚功能说明。

2 工作原理 在AD420中,二阶调节器用于保持最小死区。从调节器发出的单字节流控制开关电流源,两个连续的电阻电容装置进行过滤。电容为电流输出额外增加的器件。输出电流则简单显示为4 mA~20 mA,OmA~20mA或0mA~24mA。AD420采用BiCMOS工艺,能够适合高性能的低电压数字逻辑和高电压模拟电路。

数字-模拟音频转换器

用户手册 数字-模拟音频转换器 2路光纤+2路同轴音频切换器 使用手册 产品型号:ADSW0006M1 聆听自然的声音! 备注 本公司保留不需要通知本手册读者而对产品实物的包装及其相关文档进行修改的权利。 ? 2012 本公司版权所有

引言 尊敬的客户: 您好! 非常感谢您购买本公司的产品。为了实现产品的最佳效果和保证安全,请您在对产品进行连接、操作、调试前仔细阅读本手册。此手册请予以保留,以备将来查阅。 本公司所生产的HDMI转换器、切换器、网线延长器、矩阵、分配器等系列产品,其设计之目的是为了让您的影音设备使用起来更便捷,更舒适,更高效,更节能。 这款音频转换器可以把四路SPDIF信号(2路光纤+2路同轴)信号自由切换到一路光纤信号输出,同时将LPCM格式的数字音频转换成立体声模拟音频输出。可广泛用于DVD播放机、蓝光机、网络播放器、高清播放器、PS2、PS3、Xbox360、PC等数字音频转换输出。 本公司所生产设备为以下应用提供解决方案:如对噪声、传输距离及安全有限制的场所、数据中心控制、信息分配、会议室演示以及教学环境和公司培训场所。 真诚服务是我们的理念,顾客满意是我们的宗旨。本公司将以最优惠的价格提供给客户最好的产品,并竭诚为客户提供优质服务。 产品简介 产品特点: ●4路SPDIF(2路光纤+2路同轴)数字音频输入,自由切换到一路光纤输出,同时转换成 1路L/R模拟音频输出和1路耳机输出 ●采用192KHz/24bit DAC音频转换芯片 ●光纤输出支持杜比AC3、DTS、THX、 HDCD、LPCM等数字音频格式 ●支持LPCM数字音频格式转换成模拟音频输出 ●自动检测识别输入数字音频信号格式,非LPCM音频输入时模拟输出自动静音 ●音频输入状态指示。当无音频输入或者输入错误数据时,对应通道指示灯开始闪烁 ●一键切换输入源及电源待机,操作方便快捷 ●耳机放大输出,能直接驱动3.5mm插头通用耳机 ●高品质音质,低噪音 ●断电记忆功能,重新开机后自动切换到上次使用信号通道 ●使用DC5V/1A外置电源适配器供电

进制转换编程报告

进制转换编程报告 一.引言: 进制转换是人们利用符号来计数的方法,包含很多种数字转换。进制转换由一组数码符号和两个基本因素(“基”与“权”)构成。 二.方法原理介绍: 十进制整数转换为二进制整数 十进制整数转换为二进制整数采用"除2取余,逆序排列"法。具体做法是:用2整除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为0时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。 十进制整数转二进制 如:255=(11111111)B 255/2=127=====余1 127/2=63======余1 63/2=31=======余1 31/2=15=======余1 15/2=7========余1 7/2=3=========余1 3/2=1=========余1 1/2=0=========余1 789=1100010101 789/2=394.5 =1 第10位 394/2=197 =0 第9位 197/2=98.5 =1 第8位 98/2=49 =0 第7位 49/2=24.5 =1 第6位 24/2=12 =0 第5位 12/2=6 =0 第4位 6/2=3 =0 第3位 3/2=1.5 =1 第2位 1/2=0.5 =1 第1位 原理: 众所周知,二进制的基数为2,我们十进制化二进制时所除的2就是它的基数。谈到他的原理,就不得不说说关于位权的概念。某进制计数制中各位数字符号所表示的数值表示该数字符号值乘以一个与数字符号有关的常数,该常数称为“位权” 。位权的大小是以基数为底,数字符号所处的位置的序号为指数的整数

进制转换程序设计

课程设计 题目不同数制的数据相互转换程序的 设计 学院计算机科学与技术 专业计算机科学与技术 班级计算机0605班 姓名余欢欢 指导教师刘传文 2009 年 1 月15 日 附件2:

课程设计任务书 学生姓名:余欢欢专业班级:计算机0605班 指导教师:刘传文工作单位:计算机科学与技术学院 题目: 初始条件: 理论:学完“汇编语言程序设计”、“课程计算机概论”、“高级语言程序设计”和“数字逻辑”。 实践:计算机学院科学系实验中心提供计算机和软件平台。如果自己有计算机可以在其上进行设计。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) (1)输入二进制,十六进制,十进制的无符号数,将它们转换成不同进制的形式,并且输出出来。 (2)程序应有操作提示、输入和输出,界面追求友好,最好是菜单式的界面。 (3)设计若干用例(测试数据),上机测试程序并分析(评价)所设计的程序。 (4)设计报告格式按附件要求书写。课程设计报告书正文的内容应包括: 在正文第一行写课程设计题目; 1.需求说明(要求、功能简述)或问题描述; 2.设计说明(简要的分析与概要设计); 3.详细的算法描述; 4.源程序与执行结果(含测试方法和测试结果); 5.使用说明; 6.总结,包括设计心得(设计的特点、不足、收获与体会)和展望(该 程序进一步改进扩展的设想)。 时间安排: 设计时间一周:周1:查阅相关资料。 周2:系统分析,设计。 周3~4:编程并上机调试。 周5:撰写课程设计报告。 设计验收安排:20周星期五8:00起到计算机学院科学系实验中心进行上机验收。 设计报告书收取时间:20周的星期五下午5:00之前。 指导教师签名: 2009年1月9日 系主任(或责任教师)签名: 2009年1月 9日

多通道高精度模数转换器AD7718 原理与应用

多通道高精度模数转换器AD7718原理与应用 解放军信息工程大学信息工程学院六系(450002)陈铖武安河 摘要:本文从外部引脚和内部可编程寄存器两方面讲解了多通道高精度模数转换器AD7718,并通过一个24bits分辨率的数据采集电路介绍了AD7718的应用。 关键词:模数转换器 AD7718 数据采集 The Principle And Application Of 10-Channel 24-Bit Resolution Σ-Δ ADCs AD7718 Institute of Information Engineering, Information Engineering University of PLA, Zhengzhou 450002,China Chen Cheng, Wu AnHe Abstract: The AD7718 is a 10-channel 24-bit resolution Σ-ΔAnalog To Digital Converter. This paper presents firstly its pin and consist, and then designs a data acquisition scheme. Key Words: ADC, AD7718, Data Acquisition 1 概述 在低频测量应用中,AD7718是一个单电源供电(+3V或+5V)的完整前端。其内部结构如图1所示。从图中可以看出片内有一个带PGA(Programmable Gain Amplifier,可编程增益放大器)的Σ-Δ型ADC(Analog to Digital Converter,模数转换器)。ADC的分辨率为24 bits ,PGA的范围为20~27,8档可编程。所以,AD7718能直接转换范围在20mV~2.56V之间的输入信号而无须信号调理电路。AD7718片内还有一个多路开关MUX,可以将模拟输入配置成4或5通道差分输入,也可以配置成8或10通道伪差分输入。AD7718需要外接32KHZ晶体,片内PLL通过它产生所需要的工作时钟。 图1 AD7718的内部功能框图

数字模拟转换器

数字模拟转换器 DAC 电脑对声音这种信号不能直接处理,先把它转化成电脑能识别的数字信号,就要用到声卡中的DAC(数字/模拟转换),它把声音信号转换成数字信号,要分两步进行,采样和转换。即数/模转装换器,一种将数字信号转换成模拟信号的装置。DAC的位数越高,信号失真就越小。声音也更清晰稳定。DAC格式是英文Digital Audio Compress的简称,是北京豪杰纵横网络技术有限公司(以超级解霸的成功开发而闻名),凭借自己多年积累的音频编码技术,独创自然声学模型,开发出的专业级音频压缩格式,超高音质,并且具有很好的定位能力。传统的音频压缩技术,基于人耳听觉模型,这种理论的依据是在一定的频率附近,大声音压过小声音,从而可以删去小声音;如一声巨响会让你听不到其他声音。事实上,人听不到小的声音,但可以分辨出这个小的声音,细听还是有的。所以DAC创造了自己的自然声学模型,保证了所有声音的分辨感觉。DAC 格式具有以下特点:支持AC-3、DTS同一级别的高质量音频压缩算法;支持频率从22K-1M;支持通道数从1-32通道,包括5.1和7.1;支持16位到32位;每通道独立编码,无干扰、串扰问题;每通道位率为75、100、120、150Kbps

等等。计算效率:采用100MHZ的PDA,完全能够实时解码播放高质量的44KHZ以上音乐,CPU占用50%左右。DAC格式具有以下优势:低码率时DAC压缩的大小与MP3差不多,但声音不发沙,定位感依然存在,与原始无损压缩相比只是会发现截止频率以上的声音有些小差别;中等码率时DAC音质与AC-3差不多,截止频率越过了人耳的范围,从仪器中可以测出;高码率时DAC音质与CD的差别是人耳几乎分辨不出来,只能从仪器中的波形进行比较才能分出差别;DAC的效率绝对不会发沙,因为它不删去频率,它不认为人耳听不到;也不会发闷,因为它不针对低质量的音频进行处理。 标准确定标准的确定要让市场应用说了算DAC在数字家庭中,可以用于建立高质量的电影院级数码音响系统及其处理。由于计算效率高,占用CPU少,DAC还可以支持互联网高质量音频实时传送和编解码的需求。豪杰公司DAC格式的推出,填补国内空白,节约外汇资金,对我国音频产业推动作用不可小视。DAC格式的推广目标就是要使DAC逐步成为音频编码的市场标准之一。“世上本没有路,走的人多了也就成了路”。标准也是这样,用的人多了才能成为标准,市场应用是检验标准成功与否的关键。标准并不唯一,就音频编码来说,MP3、WMA都可以称为市场标

数据结构 设计进制转换计算器

天津职业技术师范大学Tianjin University of Technology and Education 《面向对象程序设计》 课程设计报告 设计进制转换计算器 学院:信息技术工程学院 专业:计算机科学与技术 班级学号:14 学生姓名:** 指导教师:***

2012年12月 一.课程设计名称:采用面向对象的程序设计方法设计实现二进制、八进制、十进制、十六进制之间的进制转换计算器。 二.实用工具软件:Microsoft Visual C++ 三.课程设计内容简介: #include #include #include//字符串头文件 #include class GY//各进制转换为十进制 { public: GY() {} int ten()//十转二 { int ss,aa; cout<<"请输入一个十进制数"<>ss; aa=ss; int tw[10],i(0),j(0); while(ss) { tw[i]=ss%2; ss/=2; i++; } cout<<"转换为8进制为\n"<=0;j--) //输出二进制结果 cout<

数字转换器

数字—模拟转换器(DAC )原理研究 一.内容描述: D/A 转换器通常是把加权值与二进制码的各比特相对应的电压或者电流,按二进制码进行相加,从而得到模拟信号的方法。产生加权电压和电流的方法有使用负载电阻的方法和使用梯形电阻网络的方法。 二,原理描述 本次实验主要以三位转换器为主要的研究对象。先对其原理进行分析,如下 图所示为建立的电路图: 建立的仿真电路图: 假设输入的数字为D 2D 1D 0=001,即D 0=1时,此时只有一个开关接至电压源,其他的均接地,T 型电阻网络的等效电路: 2 2122 V 0 k Ω1k Ω 1k Ω 2k Ω 2k Ω2k Ω 2k Ω 2V s V s V s

根据戴维南等效电路,每等效一次电压源的值都缩小为原来的一半。下图为其等效电路图的演化过程: =》 =》 由于输出端开路则V0= 32 3 2s V ,同理当输入数字分别为010,100时即D 1, D 2分别单独

接至参考电压源V s ,根据上述方法,可求得D/A 转换器的输出电压分别为 V 0= 32?22s V , V 0=32?2 Vs ,对于任意输入的数字信号D 2D 1D 0, 根据叠加定理,可求得D/A 转换器的输出电压为:V 0= D 0?32?32s V + D 1?32?2 2s V ,+ D 2?32?2 Vs = 32?32 1 ?V D D D )222(001122++s 三 进行仿真实验: 1. 下图为建立的仿真电路图。 首先手动观察V0的值的变化:Di=1:开关接Vs Di=0:开关接地 进行仿真实验得到的结果建立表格得: 二进制数 000 100 101 010 011 001 110 111 电压值(v ) 0 1.0 5.0 2.0 6.0 4.0 3.0 7.0 输出矩形波时的仿真电路图:

模拟信号到数字信号转换器

K部分模拟信号到数字信号转换器 K.1 摘要 本章介绍了模拟信号到数字信号转换器电路板并包括介绍一个元件分布的丝网印层面。 其电路图可在总电路图集中找到;而元件表可在第七章中找到。模拟信号到数字信号的转换称为“A/D”或A到D转换。A/D转换器位于中心控制组合中。 ———————————————————————————————————————K.2 电路工作基本原理 从模拟输入板来的模拟音频信号进入A/D转换板,在这里信号被转换为12位数字音频信号,此功能由A/D转换集成块完成。其转换的速率为1.2到2.5微秒,主要取决于发射机载波频率。A/D转换过程是与发射载波RF信号同步的,因此PA模块的开关过程是在发射载波RF驱动器过零处进行的。来自A/D转换器的数字音频信号存贮在锁存器中。 锁存器的输出信号送至调制编码板,在编码板上信号被用来打开PA模块。锁存器输出也送入音频信号重现电路和在A/D板上的大台阶同步电路。重现的音频信号送入在控制器板(A38)上的包络误差电路。大台阶同步信号送“Dither”振荡器,其位于模拟信号输入电路板。 下面的说明请参阅模拟信号到数字信号转换电路板的电路图集(图839-7855-177)。 参阅第五章使用维护手册,作为调整和印制板维护操作过程参考。 参阅第四章全系统原理说明,来了解发射机音频和数字音频部分的总体说明和有关框图。 ———————————————————————————————————————K.3 电路说明 K.3.1 转换PA采样为A/D编码脉冲(T1,U29,Q9) 有两路RF采样信号输入到A/D转换器板。一路是RF分配器(A15)来的在J3-1和J3-2上的分配器采样频率输入信号。另一路是从输出合成器来的输出采样频率信号在J8-1和J8-2。作为这个采样的输入网络是一个R-C-L网络,它在525kHz处提供一个固定90°相移。跳转插头P11A-P11B允许不连接这个采样。 PA模块必须在RF驱动信号过零点时进行开关控制过程。在调制信号期间这个时间定位需要稍有移动尤其是对发射机载波频率的低频端,因此射频RF驱动信号和被90°相移的RF 输出其叠加在一起。两个信号矢量在R62迭加。其结果在有调制时输出有约+/-15°的相移值(在等宽的低端)。 射频RF输入送入宽带环形RF变压器T1的初级绕组。电阻R18和L-C网络及有关器件由针式双列直插开关S1部分选择提供可调整的,频率指定的相移(参阅在第五章中调谐和频率改变操作过程,及有关设置S1的使用维护信息)。 斯密特触发器U12C转换射频RF信号为TTL电平脉冲。二极管CR14和CR15使斯密特触发器的输入信号限制在+0.7和+4.3V之间。 K.3.2 频率分配器(U29,Q9) 在TP6的频率输出是RF输入频率(从J3的1脚),如果跳转插头插入在JP10的5脚和6脚之间。在TP6输出的是RF输入频率的一半如果跳转插头插在1脚和2脚之间。跳转插头插入3脚和4脚之间在TP6输出的是RF输入频率的三分之一。 跳转插头的位置取决于发射机工作频率。请参阅有关A/D转换器的电路图注释或频率

C51单片机课设报告(进制转换)

单片机原理课程设计报告题目:51单片机实现进制转换 专业:信息工程 班级:信息101 学号:1004020307 小组成员: 1004020103 指导教师:吴叶兰 北京工商大学计算机与信息工程学院

题目:51单片机实现进制转换 1、设计目的 1)熟悉51单片机的编程; 2)熟悉单片机开发的基本焊接; 3)熟悉单片机元件的使用方法; 4)熟悉C51的软件开发环境(编程软件Keil、烧录软件STC_ISP_v479) 2、设计要求 1)按键输入数据,具有确定和清零功能; 2)1602液晶屏幕显示,具有显示输入输出和提示功能; 3)2,、8、10、16进制数可任意互相转化; 3、硬件电路设计(包括电路图及说明) 1)控制模块: 控制模块是由1块STC89C52、1个12MHz无源晶振、1个复位电路22uF电容、1个1k欧姆电阻、1个8位1k欧姆排阻组成。 STC89C52是STC公司生产的一种低功耗、高性能CMOS8位微控制器,具有 8K 在系统可编程Flash存储器。STC89C52使用经典的MCS-51内核,但做了很多的改进使得芯片具有传统51单片机不具备的功能。在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash,使得STC89C52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。具有以下标准功能: 8k字节Flash,512字节RAM, 32 位I/O 口线,看门狗定时器,内置4KB EEPROM,MAX810复位电路,3个16 位定时器/计数器,4个外部中断,一个7向量4级中断结构(兼容传统51的5向量2级中断结构),全双工串行口。另外 STC89C52 可降至0Hz 静态逻辑操作,支持2种软件可选择节电模式。空闲模式下,CPU 停止工作,允许RAM、定时器/计数器、串口、中断继续工作。掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。最高运作频率35MHz,6T/12T可选。芯片实际选用的STC89C52与 protues模拟电路图中的AT89C52功能基本相同,区别在于烧录程序的方式。 2)显示模块: 显示模块由1块1602液晶显示屏、16根数据线组成。 1602液晶也叫1602字符型液晶,它是一种专门用来显示字母、数字、符号等的点阵型液晶模块。它由若干个5X7或者5X11等点阵字符位组成,每个点阵字符位都可以显示一个字符,每位之间有一个点距的间隔,每行之间也有间隔,起到了字符间距和行间距的作用,正因为如此所以它不能很好地显示图形(用自定义CGRAM,显示效果也不好)。1602LCD是指显示的内容为16X2,即可以显示两行,每行16个字符液晶模块(显示字符和数字)。液晶显示屏际实际选用的是QC1602A与 protues模拟电路图中的LM016功能基本相同。

高精度模数转换器(ADC)

Σ-Δ转换器的特点是将绝大多数的噪声从动态转移到阻态,因而Σ-Δ转换器通常被用于对成本与精度有要求的低频场合。CS1232是芯海科技公司自主设计的一款高精度模数转换器(ADC),采用先进的3阶Σ-Δ 转换技术,可用于低电平、高精度测量,尤其适用于衡器领域,软件和硬件上不需要做任何修改,即可完全兼容于TI公司的ads1232。 CS1232的有效精度达到23.5位,可以在3.3V-5.5V的电压范围内正常工作,工作电压范围宽,并且内置4.9152M晶振,无需外部提供时钟信号,如果同时运行多个芯片,还可以使用外部时钟。通过控制PDWN引脚为低电平,可以使芯片进入掉电工作模式,功耗电流仅1μA。片内有两路差分通道,可用于多通道测量。片上内置低噪声的仪用放大器,最高128倍,可以直接测量幅度较小的微小信号。输出速度可以选择10Hz或80Hz,采用10Hz的数据速率时,可拟制50Hz和60Hz的干扰信号。CS1232的增益温漂约2pp/℃,并内置温度传感器,可以监测环境温度。 关键特性及结构 CS1232包括一个高性能Σ-ΔADC、低噪声放大器(PGA)、多路复用器、时钟、校准寄存器和串行外围接口,图1为CS1232的内部结构图。 CS1232内置一路Σ-Δ ADC,ADC采用三阶Σ-Δ调制器,通过低噪声仪用放大器结构实现PGA放大,PGA=1时,有效分辨率23.5位;PGA=128时,有效分辨率可达21位,内部放大器具有低噪声、低温漂等优点。CS1232的参数配置都通过外部引脚控制,无需寄存器编程。 图1: CS1232的内部结构图。 典型应用设计 传统的精密数据转换器解决方案不能兼备低噪声和低功耗的特性,而CS1232因为具有功耗低、噪声小、温漂系数小等特点,特别适合于衡器仪表、电子天平、数字传感器等小信号测量领域。图2给出了CS1232的仪表方案典型应用电路。 图2:采用CS1232的仪表方案典型应用电路。 图2中的传感器是电阻应变式传感器。根据电阻应变式传感器的原理,四片应变片构成全桥桥路,在电桥供电端施加恒定的直流电压,则电桥输出端的电压将与其上所承受的压力成正比,由此可根据输

数据结构课程设计报告-进制转换

课程设计报告 设计题目:进制转换问题 学生姓名: 专业:信息安全 班级:信息安全10-02 学号: 指导教师: 完成日期:2011年12月 课程设计报告的内容及要求 一、问题描述: 任意给定一个M进制的数x ,请实现如下要求: 1、求出此数x的10进制值(用MD表示) 2、实现对x向任意的一个非M进制的数的转换 3、至少用两种或两种以上的方法实现上述要求(用栈解决,用数组解决,其它方法解决)软件环境:Vc6.0编程软件 二、实验环境 运行平台:Win32 硬件:普通个人pc机 软件环境:VC++6.0编程软件 三、解决办法: 1、用数组实现该问题: ten_else()函数是实现十进制转换为其它进制的函数,先设置一个while循环,当十进制数g等于零时停止,再将输入的十进制数x取首先对需要转换的进制M取余,然后再对其取整,并将所得的余数依次存入一个数组中,然后逆向取出数组中的元素,即得到转换后的结果。将其他进制M转换为十进制,并将其转换为非M进制数是在主函数中实现的。M进制转十进制则是从该M进制数的最后一位开始算,依次列为第0、1、2…n位并分别乘以M 的0、1、2…n次方,将得到的次方相加便得到对应的十进制数,再调用ten_else()函数将其转换为非M进制的数。实际上十进制起到了一个桥梁作用。 2、用栈实现该问题: 与数组方法核心思想相同,stack定义栈,初始化一个空栈,然后判断是否为空,接着是去栈顶元素(用z表示栈顶元素),数据入栈,出栈的操作。栈具有后进先出的性质,故其用s.pop()取数较数组的逆向取数较为方便,体现了栈的优越性。

四、设计和编码的回顾讨论和分析 (1)函数ten_else()的作用体现在将任意10进制数转换为非10进制数,程序能实现1~16进制的相互转换。在10进制以上的数需要用字母表示,由此设计了switch函数,当出现余数大与10的情况可以调用相应的字母。考虑到最终结果是所求余数的倒序,添加新的整型变量j,通过一个for循环实现倒序。 (2)编程初期设计了else_ten函数,后几经修改将其融入main函数中较为直观。 (3)当输入10进制以下的数向10进制转换时候较为简单,程序中设计char型数组s[maxnum]来统计所输入数据的位数,不需要用户输入。在求10进制的时候通过for循环求一个累和即可。 (4)当输入10进制以上的数设计字母较为复杂,通过对ASCⅡ表的理解设计程序。 (5)在用栈法实现非10进制向10进制转换的时候遇到了些麻烦,当输入8A的时候程序将8当成字符类型,将其编译为数字56,导致最终转换结果出现错误。于是通过查阅ASCⅡ表对程序做出了修正,设计了条件语句if(z<=57)z-=48;if(z>=65){z-=65;z+=10;} 五、程序框图 六、经验和体会 (1)我们在写程序的时候要多角度考虑问题,比如题目中要求栈法与数组方法同时去实现进制转换问题。在编译过程中我们可以将特殊的问题逐渐的化为一般问题,比如10进制转换到16进制是,我举的例子是200转换为C8。 (2)通过此次课程设计的考验,让我们回顾了算法与数据结构这门课的主要内容。掌握了如何分别用数组和栈来实现数据存储与转换,加深了对栈的掌握和操作,以及栈先进后出的特点。 (3)在程序的调试初期,我们遇到了许多问题,暴露了对编译软件不熟悉的弊端,如设置断

进制的转换系统实验报告

课程名称: 《数据结构》课程设计 分数_______ 课程设计题目:进制转化系统 姓名:朱其奎 院系: 计算机学院 专业:计算机科学与技术学院 年级: 三 学号: E01114288 指导教师:王爱平 2013 年 10月 12 日 目录: 1课程设计的目的 (3) 2 需求分析 (3) 3 课程设计报告内容 (3)

3.1概要设计 (3) 3.2详细设计 (x) 3.3调试分析 (5) 3.4用户手册 (9) 3.5测试结果 (9) 3.6程序清单 (9) 4 小结 (11) 5 参考文献 (11) 1.课程设计的目的 (1) 熟练使用 C 语言编写程序,解决实际问题; (2) 了解并掌握数据结构与算法的设计方法,具备初步的独立分析和设计能力; (3) 初步掌握软件开发过程的问题分析、系统设计、程序编码、测试等基本方法和技能; (4) 提高综合运用所学的理论知识和方法独立分析和解决问题的能力; 2. 需求分析

任意给定一个M进制的数x ,请实现如下要求: ①求出此数x的10进制值(用MD表示) ②实现对x向任意的一个非M进制的数的转换。 ③至少用两种或两种以上的方法实现上述要求(用栈解决,用数组解决,其它方法解决)。 3 课程设计报告内容 ①求出此数x的10进制值(用MD表示) ②实现对x向任意的一个非M进制的数的转换。 ③分别用栈解决,用数组解决该问题。 3.1概要设计 1: 输入数据 2: 求该数的十进制MD 3: 向任意的一个非M进制数转换 4: 使用栈的方式求该数的十进制MD和非M进制的转换 5: 保存数据 6: 退出程序 3.2详细设计 数组实现任意进制的转化 int SJZ(char a[],int m) { int len1,sum; int num; int i,j,k; len1=strlen(a); sum=0; num=0; if(m==10) { for(i=len1-1,j=1;i>=0;i--) { sum+=(int(a[i]-48))*j; j*=10; } } else { for(i=len1-2,j=1;i>=0;i--,j++) { if(a[i]-48>9)

相关主题
文本预览
相关文档 最新文档