光纤甲烷气体传感器
- 格式:doc
- 大小:268.00 KB
- 文档页数:6
ICS17.180.99CCS N10CSOE中国光学工程学会团体标准T/CSOE0001—2023本质安全型多通道光纤甲烷传感器Intrinsically Safe Multi-channel Optical Fiber Methane Sensors2023-07-17发布2023-07-31实施目次前言 (Ⅱ)1范围 (1)2规范性引用文件 (1)3术语和定义 (1)4系统结构 (2)5系统功能 (3)5.1基本功能 (3)5.2输出信号制式 (3)6技术要求 (3)6.1外观及结构 (3)6.2分辨力 (3)6.3测量值的重复性和测量误差 (3)6.4工作电压范围 (4)6.5光纤传输距离对测量误差的影响 (4)6.6工作稳定性 (4)6.7响应时间(T90) (4)6.8报警功能 (4)6.9绝缘电阻 (4)6.10工频耐压 (4)6.11环境适应性 (4)6.12防爆要求 (6)6.13电磁兼容性 (6)7试验方法 (6)7.1试验条件 (6)7.2测试方法 (7)8检验规则 (12)8.1概述 (12)8.2出厂检验 (13)8.3型式检验 (13)9标志、包装、使用说明书、运输和贮存 (14)9.1标志 (14)9.2包装 (14)9.3使用说明书 (14)9.4运输 (14)9.5贮存 (15)附录A(资料性)甲烷气体爆炸下限与体积浓度的换算关系 (16)前言本文件按照GB/T1.1—2020《标准化工作导则第1部分:标准化文件的结构和起草规则》的规定起草。
请注意本文件的某些内容可能涉及专利。
本文件的发布机构不承担识别专利的责任。
本文件由中国光学工程学会提出。
本文件由中国光学工程学会归口。
本文件起草单位:山东微感光电子有限公司、国家石油天然气管网集团有限公司科学技术研究总院分公司、山东省科学院激光研究所、天地(常州)自动化股份有限公司、中国科学院合肥物质科学研究院、南方科技大学、重庆大学、华中科技大学、厦门大学、山东星冉信息科技有限公司、光力科技股份有限公司。
2024年甲烷传感器市场分析现状引言甲烷传感器是一种用于检测、测量和监控环境中甲烷气体浓度的传感器设备。
由于甲烷是一种常见的可燃性气体,广泛应用于工业、家庭和能源领域。
本文将分析甲烷传感器市场的现状,并探讨未来的发展趋势。
市场规模及增长率甲烷传感器市场在过去几年中取得了稳定的增长。
据市场研究机构的数据显示,2019年全球甲烷传感器市场规模达到X亿美元,预计到2025年将达到X亿美元,年复合增长率为X%。
市场驱动因素甲烷传感器市场的增长得益于以下几个主要驱动因素:1.安全合规需求:随着对工业安全和环境保护意识的提高,对甲烷泄漏的检测和监控需求日益增加。
甲烷传感器作为一种关键的安全装备,在预防火灾和爆炸事故方面发挥着重要作用。
2.能源行业需求:甲烷传感器在石油和天然气行业中的应用非常广泛。
随着全球能源需求的增长,对甲烷传感器的需求也在相应增加。
3.政策支持:各国政府对甲烷泄漏的监管力度加大,相应的政策和法规要求也推动了甲烷传感器市场的增长。
市场细分甲烷传感器市场可以按照类型、应用和地区进行细分。
按照类型主要的甲烷传感器类型包括:•光学传感器•化学传感器•红外传感器其中,化学传感器占据了市场份额的大部分,但红外传感器由于其高精度和稳定性逐渐得到更多的应用。
按照应用甲烷传感器在各个行业中都有广泛的应用,包括:•石油和天然气行业:用于检测油气钻井、天然气输送管道和储罐中的甲烷泄漏。
•煤矿行业:用于监测煤矿井下的甲烷浓度,确保矿工的安全。
•城市气体检测:用于城市中公共场所如地铁站、车站等地的甲烷泄漏监测。
按照地区甲烷传感器市场在全球范围内都存在需求,主要的市场包括北美、欧洲、亚太地区和拉丁美洲。
在这些地区中,亚太地区的市场占据了最大份额,并且预计未来几年仍将保持高速增长。
市场竞争态势甲烷传感器市场竞争激烈,主要的厂商包括:•MSA Safety Incorporated•Drägerwerk AG•Siemens AG•Honeywell International Inc.•RKI Instruments, Inc.这些公司通过不断研发创新产品和提供一体化解决方案来保持市场竞争力。
甲烷传感器三对照标准
甲烷传感器的三对照标准主要包括以下几个方面:
1. 精度和准确性:这是衡量甲烷传感器性能的重要指标。
一般来说,甲烷传感器的精度应在±5%以内,准确性应在±10%以内。
2. 响应时间:响应时间是指传感器从接触甲烷气体到输出稳定信号所需的时间。
对于甲烷传感器,响应时间通常在几秒到几十秒之间。
3. 重复性:重复性是指传感器在相同条件下多次测量同一甲烷气体浓度时,测量结果的一致性。
良好的重复性可以确保传感器测量的准确性和可靠性。
这些标准主要从甲烷传感器的测量原理、性能要求、试验方法等方面进行了规范,是衡量甲烷传感器性能的重要依据。
西安石油大学本科毕业设计(论文)光纤甲烷气体传感研究摘要:瓦斯爆炸严重威胁到煤矿作业人员的生命安全,影响矿井的正常生产。
矿井中瓦斯的主要成分是甲烷,有效准确地预测甲烷爆炸的相关信息关系重大。
本文以甲烷为目标气体,针对光谱吸收型光纤气体传感器的解调系统进行研究。
在分析甲烷气体的近红外吸收谱线的基础上,利用DFBLD光源和光纤设计了低浓度气体谐波检测系统。
文中讨论了甲烷气体吸收光谱原理,并对甲烷气体吸收谱线进行了选择。
分析了光谱吸收型光纤气体传感器的两种检测方法——差分吸收检测法和波长调制谐波检测法并选择了波长调制谐波检测法。
建立了基于波长调制谐波检测技术的吸收型光纤气体传感器解调系统的实验模型,并对该模型进行了实验研究。
结果表明甲烷气体浓度与二次谐波信号电压值成线性关系。
其线性度拟合系数为0.9903,灵敏度为0.0457V/%。
根据光电微弱信号检测的原理以及波长调制谐波检测的光纤气体检测模型,设计了光电微弱信号检测系统。
完成了谐波检测微弱信号处理的锁相放大、高频正弦调制和倍频等电路的设计。
对电路的功能及性能进行了测试,结果表明解调系统稳定性高,重复性好,灵敏度高且结构简单成本低廉。
关键词:甲烷;光纤气体传感器;谐波检测;锁相放大;倍频电路西安石油大学本科毕业设计(论文)Research on Fiber-optic Sensing of Methane gasAbstract:The gas explosion seriously threatens the security of the coal miners as well as the mine pit regular production. In the mine pit methane is the principal constituent gas, accurately and effectively forecast the information of methane explodes is very significant. In this paper, the methane gas is considered as investigated gas, and author focused on the investigation of the absorption spectra fiber-optic gas sensor demodulation systems. Based on the analysis of the near-infrared absorption lines of methane gas, a low concentration of the gas detection harmonic wave system has been designed by using the DFBLD fiber-optic light source. The principle of absorption spectra of methane gas is discussed in this paper and the absorption lines of methane gas are carefully chosen. Two detection methods of spectra absorption fiber gas sensor have been analyzed which are differential absorption detection method and wavelength modulation harmonic wave detection method which is finally chosen. A model which is based on wavelength modulation harmonic wave analysis technique has been established and the experiments have been done. The result shows that there are linear relationship between the density of methane and the electric voltage of the second harmonic wave signal. The linearity fitting coefficient is 0.9903, and the sensitivity is 0.0457 V/%. As the principle of small photo-electrical signal detection as well as the model of fiber gas detection using wavelength modulation harmonic wave detection, a system of small photo-electrical signal analysis has been designed. A series of electrical circuits such as harmonic wave detected small signal phase locked amplification circuit, high frequency sine modulation and frequency doubled circuits have been designed. The function and performance of the said circuits have been tested. The results shows that this system performs as the characteristic of high stability, high repetition ability, high sensitivity, simple structure but relatively low cost.Key words:Methane; fiber-optic gas sensor; Harmonic detection; Phase-locked amplification; Frequency circuit西安石油大学本科毕业设计(论文)目录1 绪论 (1)1.1 课题的目的及意义 (1)1.2 光纤气体传感器的发展与现状 (1)1.2.1 气体传感器的研究过程与现状 (1)1.2.2 光纤气体传感技术和研究方法分类 (2)1.2.3 光纤气体传感器的特性 (4)2 广谱吸收型光纤气体传感器的检测原理及方法 (5)2.1 气体分子近红外谱区的选择吸收理论 (5)2.1.1 基频,泛频及组合频率光谱 (5)2.1.2 甲烷气体吸收光谱原理 (6)2.2 甲烷气体吸收谱线的选择 (6)2.3 吸收式光纤传感器的工作原理 (7)2.4 气体浓度谐波检测原理 (8)2.4.1 窄带光源谐波检测 (9)2.4.2 调制点的选取与谐波检测的稳定性 (11)2.4.3 谐波检测的方案 (11)2.4.4 激光器的频率调制 (13)2.4.5 谐波检测的讨论 (14)2.5 差分吸收检测原理 (15)2.5.1 单波长双路法 (15)2.5.2 双波长单光路法 (15)3 系统设计 (16)3.1 系统框图 (16)3.1.1 光源的选择及性能 (16)3.1.2 气室结构 (19)3.1.3 光纤与传感器件的耦合 (21)3.1.4 光探测器 (21)3.1.5 光源驱动,光源恒温 (22)4 解调系统硬件电路设计及实验 (23)4.1 高频调制电路设计 (23)4.2 叠加电路 (25)4.3 光电转换与前置放大电路 (26)4.4 带通滤波电路设计 (28)I西安石油大学本科毕业设计(论文)4.5 锁相放大电路设计 (29)4.5.1 锁相放大器原理 (29)4.5.2 锁相放大电路 (32)4.5.3 倍频电路 (35)4.5.4 移相电路 (36)4.6 实验结果分析 (36)结论 (40)参考文献 (42)致谢 (45)II西安石油大学本科毕业设计(论文)1 绪论1.1 课题的目的及意义在我国,煤炭行业中的瓦斯灾害始终是煤矿安全生产的大敌,目前已成为制约煤矿安全生产的主要矛盾。
光纤气体传感器综述随着科技的发展和应用的需求,气体传感器在环境监测、工业生产、医疗诊断等领域起着至关重要的作用。
而光纤气体传感器作为一种新兴的传感技术,在气体检测领域具有广泛的应用前景。
本文将对光纤气体传感器的原理、优势和应用进行综述。
一、光纤气体传感器的原理光纤气体传感器利用光纤的特性进行气体检测,其原理可以分为两种类型:吸收型和散射型。
吸收型光纤气体传感器是利用气体分子对特定波长光的吸收特性来检测气体浓度的变化。
当光纤传输的光束经过被测气体时,气体分子会吸收特定波长的光,使光强发生变化。
通过测量吸收光的强度变化,可以得到气体的浓度信息。
散射型光纤气体传感器则是利用气体分子对光的散射作用来检测气体浓度的变化。
当光纤传输的光束经过被测气体时,气体分子会散射部分光线,使光强发生变化。
通过测量散射光的强度变化,可以得到气体的浓度信息。
二、光纤气体传感器的优势与传统的气体传感器相比,光纤气体传感器具有以下优势:1. 高灵敏度:光纤气体传感器能够实现对微小浓度变化的检测,具有很高的灵敏度。
2. 快速响应:光纤气体传感器采用光学信号传输,传感器与检测器之间无需电信号传输,具有快速响应的特点。
3. 高稳定性:光纤传感器不受电磁干扰,具有较高的稳定性和可靠性。
4. 多通道检测:光纤气体传感器可以通过增加光纤传感器的通道数量,实现对多种气体的同时检测。
5. 长距离传输:光纤传感器可以实现远距离的信号传输,适用于需要长距离信号传输的场景。
三、光纤气体传感器的应用光纤气体传感器在环境监测、工业生产、医疗诊断等领域具有广泛的应用。
1. 环境监测:光纤气体传感器可以用于大气污染物、有害气体等环境因素的监测与检测,为环境保护提供重要依据。
2. 工业生产:光纤气体传感器可以用于工业生产中有害气体的检测与控制,保障工作场所的安全。
3. 医疗诊断:光纤气体传感器可以用于医疗诊断中气体浓度的监测,如呼吸氧浓度、麻醉剂浓度等,为医疗人员提供可靠的数据支持。
甲烷传感器的种类及应用甲烷传感器是一种广泛应用于各个领域的气体传感器,主要用于检测和监测环境中的甲烷浓度。
甲烷是一种常见的天然气,具有高度的可燃性和易燃性,因此及早探测和监测甲烷浓度对于防止火灾和保护生命和财产非常重要。
甲烷传感器可分为多种类型,下面介绍几种常见的类型及其应用:1.催化燃烧型甲烷传感器:这种传感器通过甲烷与催化剂反应产生燃烧,在气流中测量产生的温度变化来判断甲烷的浓度。
它通常具有高灵敏度和快速响应时间,广泛应用于燃气检测仪、工业安全监测系统和消防设备等领域。
2.热导型甲烷传感器:这种传感器通过测量甲烷气体与传感器间的热量传导差异来检测甲烷浓度。
甲烷与空气的热导率差异可以通过测量传感器的温度来分析甲烷浓度。
它通常被广泛应用于甲烷检测仪、矿井安全监测以及天然气输送和储存等领域。
3.电化学型甲烷传感器:这种传感器利用甲烷与电极间的电化学反应来判断甲烷浓度。
当甲烷存在时,它会参与氧化还原反应,并导致电极的电位变化,通过测量电位变化来判断甲烷的浓度。
电化学型甲烷传感器广泛应用于天然气检测、工业过程控制和石油开采等领域。
此外,还存在其他类型的甲烷传感器,例如红外传感器和光谱传感器等。
红外传感器通过测量甲烷分子对红外光的吸收来检测甲烷浓度,广泛应用于石油和天然气勘探、工业生产和管道检测等领域。
光谱传感器则通过测量甲烷分子在特定波段的吸收来判断甲烷浓度,可以应用于环境监测、气候研究和甲烷排放监测等领域。
总之,甲烷传感器是一类重要的气体传感器,种类繁多,广泛应用于环保、工业、安全等多个领域。
不同类型的甲烷传感器适用于不同的应用场景,如燃气检测、工业安全监测、矿井安全监测、天然气输送和储存等。
随着技术的不断进步,甲烷传感器的性能和精度也在不断提高,为保护环境和安全发挥了重要作用。
光纤甲烷气体传感器
摘要:基于甲烷气体近红外吸收的机理, 研究一种易于实现的光纤甲烷气体传感器。
分析了半导体激光器的调制特性和谐波检测的基本原理, 建立了传感器的数学模型。
系统采用分布反馈式半导体激光器做光源, 加入参考光路和参考气室, 使光源输出的中心波长锁定在气体的吸收峰上, 通过光源调制实现对甲烷气体浓度的谐波检测,提出实施改进方案,同时大气和工业污染中的其他气体分子的含量也可通过调换光源及相应的光学器件采用类似的方法测量。
关键字: 甲烷;近红外吸收;谐波检测;DFB 半导体激光器;
1. 引言
甲烷是一种易燃易爆气体,是沼气、天然气和多种液体燃料的主要成分。
其在大气中的爆炸下限为4. 9 % ,上限为15. 4 %。
在煤矿井下瓦斯气体中,甲烷所占的比重最大,在80 %以上。
在我国煤矿安全事故中,瓦斯爆炸造成的伤亡占所有重大事故伤亡人数50 %以上。
实时监测甲烷气体的浓度、防止爆炸,对于工矿安全运行、人身安全有着至关重要的作用。
目前,甲烷气体的监测主要采用的化学传感器和电子探测器,化学敏感元件容易受到表面污染,需要定期更换, 而且易受其他气体的干扰, 长时间工作时存在零点漂移和灵敏度变化, 会直接影响监测系统的可靠性,而电子传感器则需要防爆装置,还需要定期检验和校正。
光纤甲烷气体传感器是应用介质对光吸收而使光产生衰减这一特性的吸收型光纤气体传感器具有传输功率损耗小,传输信息容量大,抗电磁干扰能力强,且耐高温、高压、腐蚀,绝缘、阻燃、防爆,易于实现远距离实时遥测和良好的气体选择性等特点。
本文采用分布反馈式半导体激光器(DFB LD) ,其中心波长在1. 66 μm ,并与二次谐波检测技术相结合,实现了对甲烷气体的谐波检测。
2.基本原理
2.1 检测原理
当一束光强为I0 的平行光通过充有气体的气室时,如果光源光谱覆盖一个或多个气体吸收线,光通过气体时发生衰减,根据Beer-Lambert 定律,输出光强I ( t)与输入光强I0 ( t)和气体浓度之间的关系为:
0()()e x p [()]I t I t f C L α=- (1)
式中: α( f )为气体吸收系数, 即气体在一定频率f 处的吸收线型; L 为吸收路径的长度; C 为气体浓度。
对式(1) 进行变换,得: 0()
1
ln ()()I t c f I t α= (2)
所以通过检测输入光强和输出光强的变化,加上已知的光程,就可以测得气体的浓度值。
谐波检测技术被广泛地用于微弱信号检测。
其基本原理是通过高频调制某个依赖于频率的信号,使其“扫描”待测的特征信号,然后在信号处理系统中,以调制频率或调制频率的倍数作为参考信号,用锁定放大器记录下要得到的信息,这一特征信息具有调制信号的一系列谐波信息。
将式(1) 展开为傅里叶级数序列,它的一次谐波( f )和二次谐波信号(2 f ) 的系数分别为:
0f I I η= (3)
200
f I k C L I α=- (4) 下图是光经过气体的信号,一次谐波和二次谐波信号,可以看出经过谐波调制后信号明显加强,便于测量。
图 1 频率调制实例
由式(3) 、式(4) 可知,二次谐波和一次谐波的比值不含I 0 项,用比值作为系统的输出可
以消除光强波动等因素带来的干扰。
202f
f I k C L I αη=- (5)
根据Beer-Lambert 定律,如果激光器的中心波长和气体吸收峰中心波长对准,则通过测量光通过气体时的损耗就可以检测气体的浓度。
然而,一般气体的吸收峰很窄,光源波长随环境(温度) 的漂移将引起光源中心波长偏离气体吸收峰的中心波长,引起吸收系数随温度变化,因而也导致测量的不稳定。
通过光源频率调制和附加参考气体的方法将光源波长精确地稳定在气体吸收峰中心波长上,由于气体的吸收特性,光经过气体的频率调制转化为强度调制,其幅度大小正比于吸收峰的高度,也就正比于气体的浓度。
式(4)二次谐波的幅度可用于测量气体的浓度。
2.2 甲烷的吸收谱带特性
甲烷气体的本征吸收谱在λ1 = 3. 43μm 、λ2 =6. 78μm 、λ3 = 3. 31μm 和λ4 = 7. 66μm 处,然而工作在室温下的激光器仅对2μm 以下的波长适用,商用的低损耗光纤也限制在后者的波长范围内(1. 0 -1. 7μm ) 。
甲烷的结合带f 2 + f 3 和泛频带2 f 3 皆存在,分别为1. 3μm 和1. 6μm ,如图2 所示, 图2 表明,甲烷气体在1. 6μm 处的吸收强度远大于1. 3μm 的吸收强度。
图2 甲烷气体的吸收谱
由甲烷气体在1. 6μm处的精细结构谱可知(见图3) ,在1. 66μm支带吸收线是相当强的,而且水蒸气、二氧化碳等在此处无明显的吸收。
实验选用中心波长为1. 66μm的分布反馈式半导体激光器( DFB LD)作为光源。
图3 甲烷在1.66μm处的精细结构谱图
3.甲烷气体检测系统
3.1光源的选择
光纤气体传感器所选用光源应满足的条件是:输出中心频率同气体的吸收谱线特征相吻合, 与光纤的低损耗窗口相适应, 温度特性良好。
由以上分析可知DFBLD的光源的中心谱线就在1. 66μm处,因为分布反馈式( DFB )半导体激光器是将光栅放在半导体激光器的有源区内代替反射面进行反射, 由于光栅只反射一定波长的光波, 所以在多个频谱中选取了与光栅固有波长相同的光震荡, 具有谱线窄、功率大、单纵模运行等特点, 并且可以通过调制温度和注入电流来粗调和精调其输出波长。
分布反馈式半导体激光器作为光源的气体传感技术在灵敏度、选择性、动态范围、信噪比和响应时间等方面比传统方法有诸多优点, 是光纤气体传感器的首选光源。
3.2气室的选择
在实验室中我们采用的是封闭式的气室,这样有利于实验的操作,且不污染环境,气室
选用特殊设计的小型渐变折射率透镜构成的,其结构如图4, 小型渐变折射率透镜可以设计带尾纤, 能够与光纤很好地耦合。
图4 气室结构
在应用中,我们考虑采用开放式的气室,参考东京电力公司的一个气体检测设备用的探测头,其结构如图 5,用这种器件构成的气室耦合损耗小, 易准直, 小巧且易于安装。
图5 气体探测头的结构
图6 探测头的成品图
此气室探测头满足一下要求:
①在探测头中,光通过“space propagation component”(空间组件);
②空间组件中的损耗和噪声要小,便于测量低浓度甲烷气体;
③过滤器和空间组件可以更换;
3.3系统的组成
光纤甲烷传感系统框图如图7所示, 主要由光源部分、测量光路、参考光路、调制电路、光电转换和信号处理部分组成。
通过调节激光器的注入电流对其输出波长进行调制,使其扫描的范围正好覆盖气体的某一个吸收峰。
从DFB LD出射的激光经光隔离器到50:50的光纤耦合器, 一部分光到测量气室, 另外一部分到达参考气室, 参考气室装有100%的纯甲烷气体, 从参考气室输出的光经光电探测器转化为电信号, 由锁相放大器提取其一次谐波信号经积分器作为反馈信号使激光器的输出波长精确地锁定在气体的吸收峰上。
从测量气室输出的光经光电探测器转化为电信号, 用锁相放大器提取其二次谐波信号, 然后通过计算机进行数据采集与处理。
图7 甲烷气体检测系统框架图
3.4测量结果
通过测量不同浓度下的甲烷气体的二次谐波信号幅值,在根据测量值进行拟合,线性如图8,表明二次谐波信号的幅值与气体浓度之间有非常好的线性关系。
图8 甲烷气体浓度检测曲线
4.总结与展望
光纤气体检测技术是一种新兴的气体检测技术, 随着低损耗光纤的实用化, 它可以实现远距离传输信号, 把气体敏感单元放在易燃、易爆、有毒、高温的环境中, 在安全的地方进行信号处理, 而且它还不受电磁干扰, 测量灵敏度高, 响应速度快, 用波分复用技术易于组成传感网络。
且本检测系统可以通过改变激光器的中心波长来测量不同气体的浓度,由于采用全光纤结构,避免了复杂的光学系统,可以广泛用于石油、化工、管道、煤矿和环境保护等领域。
参考文献:
[1]
[2]
[3]
[4]陈林,景峰高功率LDA泵浦固体激光器研究[学位论文]
[5]杜秀兰,吴峰固体激光器灯泵浦和二极管泵浦方式比较[期刊论文]
[6]赵欣 LD端面泵浦Nd:YAG激光器的研究[学位论文]。