配方设计表汇总
- 格式:doc
- 大小:88.00 KB
- 文档页数:6
180个化妆品成熟配方(180).txt柔软霜(W/O型,氨基酸凝胶乳化)[配方]油分液体石蜡30.0%微晶蜡2.0凡士林5.0表面活性剂二聚甘油二油酸脂5.0防腐剂适量香料适量水相(1)L-谷氨酸钠1.6L-丝氨酸0.4精制水13.0水相(2)丙二醇3.0精制水40.0[制法] 将水相(1)在50℃加热溶解后,搅拌下逐渐加入到同样50℃加热的表面活性剂中,组成W/D*乳化组成自物(氨基酸凝胶)。
将油相在70℃加热溶解后,再向其中加入W/D乳化组成物,均一地分散。
随后将水相(2)在70℃加热后,也加入上述的分散液中,一面充分搅拌一面添加,使用均质搅拌机将其均一乳化后,脱气,过滤,冷却至30℃。
*表示表面活性剂相返回180个化妆品成熟配方 (1).txt2、雪花膏(O/W型,肥皂+非离子表面活性剂)[配方]油分硬脂酸8.0%硬脂醇4.0硬脂酸丁酯6.0保湿剂丙二醇5.0表面活性剂单硬脂酸甘油酯2.0碱氢氧化钾0.4防腐剂适量抗氧化剂适量香料适量精制水74.6[制法]将保湿剂、碱加入到精制水中在70℃加热调整。
将油分溶解后,加入表面活性剂、防腐剂、抗氧化剂、香料,在70℃调整。
将此油相加入到水相中进行预乳化。
用均质搅拌机将乳化粒子均一后,脱气,过滤,冷却。
返回180个化妆品成熟配方 (2).txt3、柔软霜(O/W型,肥皂+非离子型表面活性剂)[配方]油分鲸蜡醇5.0%硬脂醇3.0凡士林5.0角鲨烷10.0甘油三-2-乙基已酸脂7.0保湿剂二丙二醇5.0甘油5.0表面活性剂丙二醇单硬脂酸酯3.0POE(20)鲸蜡醇醚3.0碱三乙醇胺1.0防腐剂适量抗氧化剂适量香料适量精制水53.0[制法]将保湿剂、碱加入到精制水中在70℃加热调整。
油分加热溶解后,加入表面活性剂、防腐剂、抗氧化剂和香料,在70℃调整。
将此加入上述水相中进行预乳化。
用均质搅拌机将乳化粒子均一后,脱气,过滤,冷却。
返回180个化妆品成熟配方 (3).txt4、柔软霜(O/W型,非离子表面活性剂)[配方]油分硬脂酸6.0%硬脂醇2.0加氢羊毛脂4.0角鲨烷9.02-辛基十二烷醇10.0保湿剂1,3-丁二醇6.0PGE15004.0表面活性剂POE(25)鲸蜡醇醚3.0单硬脂酸甘油酯2.0防腐剂适量抗氧化剂适量香料适量精制水54.0[制法]将保湿剂加入精制水中在70℃加热调整。
堆肥生产中,如果仅仅通过感官或经验来判断原料搭配是否合理、水分调节是否适宜,往往偏差较大,特别是当原料或工艺发生变化时,差异会更大,这也是造成产品质量不稳定的重要原因。
要优化堆肥条件和配方,必须按照原料理化参数,通过科学的计算来确定。
堆肥配方的形成就是对C/N和水分的平衡过程,目的是使它们均处于合理的范围内。
通常一个指标先调整合适后,堆肥的配方就可基本确定下来,若需要进一步调整比例,则一般要在不明显影响第一个指标的情形下对第二个指标进行优化。
一、C/N堆肥化过程中,碳素是堆肥微生物的基本能量来源,也是微生物细胞构成的基本材料。
堆肥微生物在分解含碳有机物的同时,利用部分氮素来构建自身细胞体,氮还是构成细胞中蛋白质、核酸、氨基酸、酶、辅酶的重要成分。
据研究,一般情况下,微生物每消耗25g有机碳,需要吸收1g氮素,微生物分解有机物较适宜的C/N为25左右。
C/N过高,微生物生长繁殖所需的氮素来源受到限制,微生物繁殖速度低,有机物分解速度慢,发酵时间长;有机原料损失大,腐殖质化系数低;并且还会导致堆肥产品C/N高,施入土壤后易造成土壤缺氮,从而影响作物生长发育。
C/N过低,微生物生长繁殖所需的能量来源受到限制,发酵温度上升缓慢,氮过量并以氨气的形式释放,有机氮损失大,还会散发难闻的气味。
合理调节堆肥原料中的碳氮比,是加速堆肥腐熟,提高腐殖化系数的有效途径。
常见的有机固体废物含碳量一般为40~55%,但氮的含量变化却很大,因此C/N的变幅也较大。
一般禾本科植物的C/N较高,大约在40~60之间,畜禽粪便、城市污泥C/N较低,大约为10~30。
为达到理想的堆肥有机物分解速度,通常用C/N较高的秸杆粉、草炭、蘑菇渣等与C/N较低的畜禽粪便、城市污泥等进行混合调整。
在堆肥化过程中,由于微生物的作用,有近2/3的碳素会以CO2的形式释放出来,剩余部分与氮素一起合成细胞生物体,所以堆肥化过程是一个C/N逐渐下降并趋于稳定的过程,腐熟堆肥的C/N一般为15:1左右。
Product:CLOUDY ORANGESTEP 1 — ENTERING SPECIFICATIONS AND INGREDIENTS LISTEnter the stipulated beverage specifications in the appropriate cells of the block.The specified volume of the final beverage, 1000 liters, is the key value on which all the calculations in this exercise will be based. Note that the Brix and acidity values are entered in percentage format. This will facilitate formula calculations in the spreadsheet by not having to multiply or divide formulas by 100, where applicable. The D20 figure is obtained from the Brix/density tables for the 13.0 Brix value.Enter the ingredient names in the formulation block in the descending order listed in Figure15.2. This is done to accommodate certain spreadsheet formula calculations, as will be seen in thenext steps of the exercise. Note that vitamin C is represented by its common chemical name, ascorbic acid.STEP 2 — CALCULATING THE “TOTALS” VALUESIn cell E14, enter +B6. This will copy the beverage volume, 1000 liters.In cell F14, enter +B8. This will copy the beverage D20 value.In cell G14, enter +E14*F14. This calculates the mass of the 1000 liters of beverage.In cell H14, enter +G14*B7. This calculates the total dissolved solids in 1000 liters ofbeverage.In cell I14, enter +B9*B6. This calculates the kilograms of citric acid for the 0.24% acidityspecification.STEP 3 — ENTERING INGREDIENTS QUANTITIESThe formulation quantities of water, sugar, and CAA are not entered in thisstep. For the other ingredients, proceed as listed. Powdered ingredients, the quantities of which aremeasured by mass, are entered in column G “kg.” For the sodium benzoate in cell G8, enter+B10/1000000*B6, which will result in the kilograms required for the 300 ppm preservativespecification. In cell G9, enter 0.100 for the amount of Sunset Yellow established in previous laboratory trials as the required color level for the beverage. In cell G12, calculate how much ascorbic acid in kilograms is required for the 30 mg per 100 ml beverage by entering the somewhat long cell formula +B11*10*1000/1000000 (which could be simplified to +B11/100).For the liquid ingredients, orange flavor, and neutral cloud, you already established in laboratory trials the required quantities. However, you measured these by volume in liters. These values are 1.0 liters of flavor and 1.2 liters of neutral cloud. Enter these volume values in the “liter” columnin cells C10 and C11, respectively.These volume values need to be converted to mass kilogram values, the reason for which will become clearer when we calculate the sugar and water quantities. At this stage, it can be explained that the neutral cloud liquid has dissolved solids and has a Brix value of its own. In previous chapters, it was explained that in the soft drinks industry, all dissolved solids are, for convenience sake, considered as sucrose or sugar (see Chapter 1). The solids of the neutral cloud must be taken into consideration as contributing to the final beverage Brix 13.0.According to the suppliers’ specification sheets, the orange flavor has a D20 of 0.85, while the neutral cloud’s D20 is at 1.06. Enter these values in the D20 column in cells F10 and F11, respectively. To calculate the orange flavor mass, enter +E10*F10 in cell G10. For the mass of cloud, enter +E11*F11 in cell G11. At this stage, the spreadsheet formulation template should appear as displayed in Figure 15.4.STEP 4 — CALCULATING CITRIC ACID ANHYDROUSThe total CAA mass of 2.400 kg in cell I14 is the quantity required for the 0.24% acidity specification. This is not necessarily the quantity of the CAA ingredient in the formulation, as other ingredients often contribute to the total acidity of the beverage. In our case, this applies to the ascorbic acid, which will contribute to the acidity titration of the beverage. In this acidity titrationtest, the results of all acids present are expressed in terms of CAA.According to molecular weight equivalents, 1.00 kg of ascorbic acid is equivalent to 0.36 kgCAA. Therefore, the ascorbic value of 0.300 kg in cell G12 needs to be converted to CAA and recorded in cell I12 of the CAA column. Enter +0.36*G12 in cell I12. This value will be 0.108 kg.STEP 5 — CALCULATING THE SUGAR QUANTITYAs mentioned previously, it is standard practice in the soft drinks industry to consider all soluble solids in a beverage as sucrose (or sugar in common terminology). Examples of such solids arethe organic acid acidulants, preservatives, colorants, minerals and salts, gums and thickeners, to name just a few.This is not only a matter of “convenience” but also is practical, as Brix refractometers arecalibrated on refractive indices of sucrose solutions. It would immensely complicate matters if, for each of the myriad soluble solids that could be present in soft drink formulations, we would need specially calibrated instruments. Most of these nonsugar soluble solids are in such relatively minute quantities when compared to those of sugar that the error of considering them as sucrose is very small. However, these types of ingredients do contribute to the overall Brix reading of the beverage, and they must be taken into account when calculating the sugar quantity for a beverage formulation. This is also true for liquid ingredients that contain soluble solids. Examples of such ingredientsare fruit juice concentrates that contain relatively large quantities of natural sugars other than sucrose (e.g., glucose and fructose) as well as organic acids and minerals. Flavor emulsions and clouding agents also contain nonsucrose soluble solids in the forms of soluble gums and emulsifiers, suchas in the case of the neutral cloud in our exercise formulation.Therefore, all ingredients that contribute nonsucrose soluble solids to a beverage formulationform part of the total soluble solids. These ingredients and the sugar make up the total kilogramsof solids in the formulation, which in turn, determines the final Brix of the beverage. It is for thisreason that the column “Kg Solids” exists in our spreadsheet template.To determine the amount of sugar required, we must subtract the total nonsugar soluble solidsfrom the target total solids in the formulation. To do this, we need to transfer all the soluble solids quantities to their respective cells in the “Kg Solids” column. This applies first to all the powdered ingredients, which are 100% soluble, so that their already recorded masses in the template completed up to this stage are also their “Kg Solids” values.As it is customary to measure water by volume in liters, this quantity must be converted toliters using the magical water D20 number 0.99717 often mentioned in this handbook. Enter thisfigure into cell F13. In cell E13 of the “liters” column, enter +G13/F13. The liters of ingredientwater will work out to 913.816 liters.This figure of water liters is actually not required for a beverage formulation. Usually in such formulations, the water quantity is stated as “water to final volume,” or in the equivalent beverage mixing instruction, as “top up to final volume with water.” Still, it is good to have this figure on record if onlyto indicate how much water there is to “play” with to dissolve ingredients in preparing a laboratory sample of the beverage in a product development project or in the preparation bulk RTD beverage inthe factory.This is the final step in the formulation design exercise. The actual formulation for 1000 litersof beverage, composed of columns D and G as depicted in Figure 15.7, can now be transcribed toany format required and used as a master formulation document.。
名称牛脆筋 腱子肉 羊排 牛腩 小排 大肠 牛尾 酱脊骨红烧肉土豆实用才是硬道理原料加工配比表(附表一)配料加工时间10 斤 水 17 斤 盐 40 克 鸡粉 40 克 味精 40 克20 分钟10 斤 水 8 斤 老抽 100 克 味精 40 克 鸡粉 40 克 葱姜各 1 两盐 50 克12 分钟10 斤 10 斤 10 斤 10 斤 10 斤 10 斤10 斤水 16 斤 盐 50 克 鸡精 40 克 味精 50 克 葱 1 两水 8 斤 老抽 100 克 盐 40 克 味精 40 克 葱姜各 1 两鸡精 40 克水 8 斤 盐 50 克 味精 40 克 鸡精 40 克 葱姜各 1 两水 7 斤 盐 50 克 味精 40 克葱姜各 1 两水 17 斤 盐 50 克 味精 50 克 鸡精 50 克 葱姜各 1 两水 12 斤 老抽 150 克 盐 50 克 味精 50 克 葱姜各 1 两鸡精 50 克冰糖 100 克 水 12 斤 酱油 500 克 味精 100 克 鸡精 100 克 葱姜各 1 两桂皮、八角、香叶15 分钟 20 分钟 12 分钟 18 分钟 15 分钟 18 分钟80 分钟20 分钟 南瓜7 分钟芋头 20 分钟 老来少芸豆美文欣赏20 分钟凉菜茄子:18 分钟实用才是硬道理1、 走过春的田野,趟过夏的激流,来到秋天就是安静祥和的世界。
秋天,虽没有玫瑰的芳香,却有秋菊的淡雅,没有繁花似锦,却有硕果累累。
秋天,没有夏日的激情,却有浪漫的温情,没有春的奔放,却有收获的喜悦。
清风落叶舞秋韵,枝头硕果醉秋容。
秋天是甘美的酒,秋天是壮丽 的诗,秋天是动人的歌。
2、 人的一生就是一个储蓄的过程,在奋斗的时候储存了希望;在耕耘的时候储存了一粒种子;在旅行的时候储存了风景;在微笑的时候储存了 快乐。
聪明的人善于储蓄,在漫长而短暂的人生旅途中,学会储蓄每一个闪光的瞬间,然后用它们酿成一杯美好的回忆,在四季的变幻与交替之 间,散发浓香,珍藏一生! 3、 春天来了,我要把心灵放回萦绕柔肠的远方。
DIY 比较全的化妆品配方(2010-11-21 14:58:00)转载▼标签:diy化妆品时尚洁面类:1、控油去痘洁面摩斯(150ML):适用油性,混合性,痘痘等问题肌肤;材料:VB61克,壬二酸衍生物5ML,氨基酸起泡剂50ML,甘油5ML,水溶润肤脂2克,茶树纯露87ML ,摩斯瓶1个2、温和保湿洁面摩斯(150ML):适用中性,干性肌肤,婴儿孕好可用;材料:氨基酸起泡剂50ML,甘油5ML,玻尿酸原液8ML,洋甘菊纯露87ML,摩斯瓶1个3、美白去黄洁面摩斯(150ML):适用需美白,偏黄肌肤;材料:VB3 2克,人参萃取液10ML,氨基酸起泡剂50ML,甘油5ML,玻尿酸原液8ML,橙花纯露75ML摩斯瓶1个爽肤水,控油水类:小黄瓜清爽保湿精华液天然保湿因子5ML1,3—丁二醇4ML玻尿酸原液20ML海藻糖1克橙花纯露60ML精华液,精华素类:配方举例:熊果苷美白嫩肤精华液熊果苷2g桑白皮提取液4ml木瓜酵素6G玻尿酸原液20ml甘油5ml水溶VE 1ml复方抗菌剂5滴纯水或玫瑰纯露62ml熊果素美白淡斑霜小麦胚芽油10ml简易乳化剂2。
5ml熊果苷3g甘草提取液5ml维生素B3 2g1,3-丁二醇5ml苯氧乙醇0.5ml纯水或纯露至100%制作方法:1、将熊果苷加入纯水中预溶,如果不能完全溶解,只需稍稍加热即可2、加入VB3,搅拌使之溶解3、依次加入其它成分,搅拌均匀成乳霜状注意事项:熊果苷在碱性环境下易分解,注意膏霜乳液等体系PH控制在5—7。
在工厂操作时一般是等膏霜乳化完成后,50℃时,加入少量水溶解的NaHSO3或Na2SO3.(建议添加量在0。
3—0。
4%)。
但我们DIY时,可以不加入此成分加入含油酸、亚油酸的天然植物油(小麦胚芽油),可促进熊果苷协同增效作用。
摘抄网络配方:仿美体考究橙花人参收敛水―简单篇橙花纯露50ml人参萃取液5ml玻尿酸原液20ML水溶神经酰胺2ml (非敏感皮肤或者过敏皮肤无需添加)制作方法:将以上原料混合摇匀即可.TIPPS:建议放入冰箱,3个星期左右用完.人参弹性紧肤凝露:进阶篇任何皮肤包括老化皮肤速成透明胶3-5G保加利亚玫瑰纯露50ml透明质酸原液20ML人参萃取液5ml海藻萃取液5ml制作方法:将纯露混合3-5G速成透明胶,搅拌均匀5-10分钟后变成均匀凝胶,然后加入其它成分搅拌均匀即可。
2
3无毒聚氯乙烯塑料软管配制
聚氯乙烯树脂 100g(sg-4)
DOP 24g
DBP 24g
硬脂酸钡 1g
硬脂酸钙 0 . 8g
石蜡 0 . 8g
各组分作用
DOP(邻苯二甲酸二辛酯)是重要的通用型增塑剂,为聚氯乙烯树脂的加工的重
要增塑剂。
DBP(邻苯二甲酸二丁酯)增塑剂、软化剂。
硬脂酸钡、硬脂酸钙是配方中的稳定剂。
石蜡为配方中的润滑剂。
4聚丙烯抗老化配方优化设计
基体 PP 100份
光稳定剂受胺阻稳定剂944 0.6份
紫外线吸收剂苯并三唑类UV-328 0.4份
抗氧化剂抗氧化剂215 0.8份
5低倍发泡PP泡沫塑料
一步法化学发泡聚丙烯配方
组分用量(份数)PP 100
HMSPP 10—15
AC 发泡剂2-4
碳酸钙2-4
抗氧剂1010 1
滑石粉 1
硬脂酸钙 1
6聚丙烯增韧配方设计
7 酚醛树脂胶粘剂配制
8 硬质
PVC 饮用给排水管配方设计
10无毒聚氯乙烯塑料软管的配制
11北方用不透明PVC凉鞋加工配方
12 软质PVC耐老化配方设计
PVC SG-4 100份
DOP 35份
TCP 15份
环氧大豆油 5份
硬脂酸钡 2.5份
硬脂酸锌 0.5份
UV-P 0.3份
TPP 0.3份
碳酸钙 8份
13矿泉水包装用聚氯乙烯塑料瓶
1.有机锡系(食品级)(份数)
2.PV C(K = 57~ 58) 100.0
3.MBS抗冲改性剂15.0
4.加工助剂 2.0
5.混合内润滑剂 1.2
6.高分子复合醋0.2
7.氧化聚乙烯蜡0.1
8.T890硫醇辛基锡 1.8
9.蓝色色粉适量
14阻燃绝缘聚乙烯电缆料配制
1.聚乙烯 100
2.十溴二苯醚 35。