裂项相消法求和(公开课)
- 格式:ppt
- 大小:342.00 KB
- 文档页数:14
裂项相消法(1)求和 1111122334(1)n S n n =++++⨯⨯⨯+…解:通项公式:()()()1111111n n n a n n n n n n +-===-+++所以 111111*********n S n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭…1111n n n =-+=+ (2)求和 1111377111115(41)(43)n S n n =++++⨯⨯⨯-+…解:()()()()()()43411111141434414344143n n n a n n n n n n +--⎛⎫===- ⎪-+-+-+⎝⎭ 得1111377111115(41)(43)n S n n =++++⨯⨯⨯-+… 11111111143771111154143n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦… 1114343n ⎛⎫=- ⎪+⎝⎭ ()343nn =+(3)求和 1111132435(2)n S n n =++++⨯⨯⨯+…()()()21111122222n n n a n n n n n n +-⎛⎫===- ⎪+++⎝⎭ ()()()()1111111113243546572112n S n n n n n n =++++++++⨯⨯⨯⨯⨯--++… 1111111111111112132435462112n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥--++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦…11111212n n =+--++ (仔细看看上一行里边“抵消”的规律 )311212n n =--++ 最后这个题,要多写一些项,多观察,才可能看出抵消的规律来。
倒序相加法如果一个数列{an},与首末两项等距的两项之和等于首末两项之和(都相等,为定值),可采用把正着写和与倒着写和的两个和式相加,就得到一个常数列的和,这一求和的方法称为倒序相加法.a1+an=a2+an-1=a3+an-2=……当{an}是等差数列,{bn}是等比数列,求数列{anbn}的前n 项和适用错位相减即{anbn}型 an 为等差bn 为等比。
裂项相消法求和封开县江口中学 授课班级:高三(21)班 授课教师:冯坚忠教学目标:掌握裂项相消法求和。
重点: 裂项公式难点: 裂项相消后剩余几项教学过程:一、创设情景,导入新课。
习题1(2015年全国1卷改编)已知21n a n =+,11n n n b a a += ,求数列}{n b 的前n 项和n S 。
二、例题研讨,方法总结。
例1.化简求和。
()()11111...1223341n n ++++⨯⨯⨯+ ()11112...133557(21)(21)n n ++++⨯⨯⨯-+ ()11113...2558811(31)(32)n n ++++⨯⨯⨯-+裂项相消法:把数列的各项分裂成一正一负两项,消去中间的一些项,达到化简求和的方法。
问题1.题目满足什么条件可以使用裂项相消法求和?引导学生观察例1中的裂项前后的最后一项(通项)。
()()111111n n n n =-++ ()11112()(21)(21)22121n n n n =--+-+ ()11113()(31)(32)33132n n n n =--+-+结论:数列的通项是一个分式,分母是关于n 的两式相乘,两式相减后是一个常数,跟等差数列一样。
所以有111111()n n n n a a d a a ++=-,其中1n n d a a +=-,称这一条为标准型裂项公式。
问题2.裂项相消后剩余几项?引导学生观察例1,不难发现标准型裂项相消后会剩余两项,一正一负。
那么是不是所有的符合裂项相消的问题最后都会剩余两项?()()1111111...12233411n n n n ++++=-⨯⨯⨯++()1111112...(1)133557(21)(21)221n n n ++++=-⨯⨯⨯-++ ()11111113...()2558811(31)(32)3232n n n ++++=-⨯⨯⨯-++例2.已知数列}{n a 的通项公式1(2)n a n n =+,求数列}{n a 的前n 项和n S 11111222n S n n ⎛⎫=+-- ⎪+⎝⎭裂项相消后剩余4项,两正两负。
第六章 数列第4讲 数列求和---裂项相消法和错位相减法 教案一、教学目标1、知识与技能:并理解数列求和中裂项相消法和错位性减法的本质,尝试探究数列求和中的不等式证明,加深对数列求和的认识。
2、过程与方法:通过学生对数列求和法的学习和理解,探究数列求和的本质和规律。
3、情感态度与价值观: 培养学生认真观察的习惯,培养学生掌握高考出题规律以及解题规律,提高学生做题和归纳总结的能力。
二、教学重难点1、重点:裂项相消法和错位性减法的解题规律和步骤2、难点:如何裂项以及错位相减时必须注意的几个点三、教学过程1、基础知识复习 (1)、公式求和法通过分析判断并证明一个数列是等差数列或等比数列后,可直接利用等差、等比数列的求和公式求和,或者利用前n 个正整数和的计算公式等直接求和。
因此有必要熟练掌握一些常见的数列的前n 项和公式.正整数和公式有:()();213211+=++++n n n ()()();6121212222++=+++n n n n ()().212132333⎥⎦⎤⎢⎣⎡+=+++n n n 温馨提示:公式法主要适用于等差、等比数列或可转化为等差、等比数列的数列的求和,一些综合性的数列求和的解答题最后往往就归结为一个等差数列或等比数列的求和问题.(2)分组求和法有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.形如:①{}n n b a +,其中{}{}⎩⎨⎧是等比数列;是等差数列;n n b a ②()()⎩⎨⎧∈=-==*N k k n n g k n n f a n ,2,,12, 温馨提示:在求和时,一定要认真观察数列的通项公式,如果它能拆分成几项的和,而这些项分别构成等差数列或等比数列,那么我们就可以用此方法求和.(3)并项求和法针对一些特殊的数列,将其某些项合并在一起就具有某种特殊的性质,因此,在求数列的前n 项和时,可将这些项放在一起先求和. 温馨提示:当一个数列连续的几项之间具有明显的规律性,特别是一些正负相间或者是周期性的数列等,可以考虑用并项求和的方法.(4)裂项相消法把数列的通项分成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.适用于类似⎭⎬⎫⎩⎨⎧+1n n a a c (其中{}n a 是各项不为0的等差数列,c 为常数)的数列,以及部分无理数列和含阶乘的数列等.用裂项法求和,需要掌握一些常见的裂项方法:()();11111⎪⎭⎫ ⎝⎛+-=+k n n k k n n ()()();12112121121212⎪⎭⎫⎝⎛+--=+-n n n n()()()()()();21111212113⎥⎦⎤⎢⎣⎡++-+=++n n n n n n n ()().114n k n k n k n -+=++为区分裂项规律,特选取两道题在此展示1、1n (n +1)=1n -1n +1;2、=11111111223341n S nn ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭()2n n 1+⎪⎭⎫⎝⎛+-21n 121n ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=211111161415131412131-121n n n n n S(5)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求和. 温馨提示:错位相减法适用于数列{}n n b a ,其中{}n a 是等差数列,{}n b 是等比数列.若等比数列{}n b 中公比q 未知,则需要对公比q 分11≠=q q 和两种情况进行分类讨论. 2、典例探究应用例1.S n =122-1+142-1+…+12n2-1=n 2n +1通过以上两个类型的区分,学生对此题不陌生,所以教师可以采取简单提示的方式让学生独立完成,并让学生板演,再指出学生的易错点,进而加深学生印象变式训练 1设数列n a 的前n 项和为n S ,()112,2*n n a a S n N +==+∈.(1)求数列n a 的通项公式;(2)令112(1)(1)n n n n b a a -+=--,求数列{}n b 的前n 项和n T ,求证:12n T <.用裂项相消法求和的关键是先将形式复杂的式子转化为两个式子的差的形式因此需要掌握一些常见的裂项技巧.此题难点在于能否正确裂项,学生在通分过程中可能存在一定困难,需加以引导。