电磁感应现象习题复习题及答案
- 格式:doc
- 大小:711.50 KB
- 文档页数:14
一、电磁感应现象的练习题一、选择题:1.闭合电路的一部分导线ab处于匀强磁场中,图1中各情况下导线都在纸面内运动,那么下列判断中正确的是( C )A.都会产生感应电流B.都不会产生感应电流C.甲、乙不会产生感应电流,丙、丁会产生感应电流D.甲、丙会产生感应电流,乙、丁不会产生感应电流2.如图2所示,矩形线框abcd的一边ad恰与长直导线重合(互相绝缘).现使线框绕不同的轴转动,能使框中产生感应电流的是(BCD )A.绕ad边为轴转动B.绕oo′为轴转动C.绕bc边为轴转动D.绕ab边为轴转动3.关于产生感应电流的条件,以下说法中错误的是(ABC )A.闭合电路在磁场中运动,闭合电路中就一定会有感应电流B.闭合电路在磁场中作切割磁感线运动,闭合电路中一定会有感应电流C.穿过闭合电路的磁通为零的瞬间,闭合电路中一定不会产生感应电流D.无论用什么方法,只要穿过闭合电路的磁感线条数发生了变化,闭合电路中一定会有感应电流4.垂直恒定的匀强磁场方向放置一个闭合圆线圈,能使线圈中产生感应电流的运动是(CD )A.线圈沿自身所在的平面匀速运动B.线圈沿自身所在的平面加速运动C.线圈绕任意一条直径匀速转动D.线圈绕任意一条直径变速转动5.一均匀扁平条形磁铁与一线圈共面,磁铁中心与圆心O重合(图3).下列运动中能使线圈中产生感应电流的是(AB )A.N极向外、S极向里绕O点转动B.N极向里、S极向外,绕O点转动C.在线圈平面内磁铁绕O点顺时针向转动D.垂直线圈平面磁铁向纸外运动6.如图5所示,绕在铁芯上的线圈与电源、滑动变阻器和电键组成闭合回路,在铁芯的右端套有一个表面绝缘的铜环A,下列各种情况中铜环A中没有感应电流的是(A )A.线圈中通以恒定的电流B.通电时,使变阻器的滑片P作匀速移动C.通电时,使变阻器的滑片P作加速移动D.将电键突然断开的瞬间7.如图6所示,一有限范围的匀强磁场宽度为d,若将一个边长为l的正方形导线框以速度v匀速地通过磁场区域,已知d>l,则导线框中无感应电流的时间等于(C )A.d/v B.1/v C.(d-1)/v D.(d-2l)/v8.条形磁铁竖直放置,闭合圆环水平放置,条形磁铁中心线穿过圆环中心,如图7所示。
电磁感应现象习题综合题附答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)(1)求导体棒下滑的最大速度;(2)求当速度达到5m/s 时导体棒的加速度;(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).【答案】(1)18.75m/s (2)a=4.4m/s 2(3222mgs mv Rt【解析】【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R Rθ==, 解得: 222sin 18.75cos mgR v B L θθ==; (2)由牛顿第二定律有:sin cos mg F ma θθ-= ,cos 1BLv I A Rθ==, 0.2F BIL N ==, 24.4/a m s =;(3)根据能量守恒有:22012mgs mv I Rt =+ , 解得: 202mgs mv I Rt -=2.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ = 30°角固定,M 、P 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 1T .质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻值为r ,现从静止释放杆ab ,测得最大速度为v m .改变电阻箱的阻值R ,得到v m 与R 的关系如图乙所示.已知轨距为L = 2m ,重力加速度g 取l0m/s 2,轨道足够长且电阻不计.求:(1)杆ab 下滑过程中流过R 的感应电流的方向及R =0时最大感应电动势E 的大小; (2)金属杆的质量m 和阻值r ;(3)当R =4Ω时,求回路瞬时电功率每增加2W 的过程中合外力对杆做的功W . 【答案】(1)电流方向从M 流到P ,E =4V (2)m =0.8kg ,r =2Ω (3)W =1.2J 【解析】本题考查电磁感应中的单棒问题,涉及动生电动势、闭合电路欧姆定律、动能定理等知识.(1)由右手定则可得,流过R 的电流方向从M 流到P 据乙图可得,R=0时,最大速度为2m/s ,则E m = BLv = 4V (2)设最大速度为v ,杆切割磁感线产生的感应电动势 E = BLv 由闭合电路的欧姆定律EI R r=+ 杆达到最大速度时0mgsin BIL θ-= 得 2222sin sin B L mg mg v R r B Lθθ=+ 结合函数图像解得:m = 0.8kg 、r = 2Ω(3)由题意:由感应电动势E = BLv 和功率关系2E P R r =+得222B L V P R r=+则22222221B L V B L V P R r R r∆=-++ 再由动能定理22211122W mV mV =- 得22()1.22m R r W P J B L +=∆=3.图中装置在水平面内且处于竖直向下的匀强磁场中,足够长的光滑导轨固定不动。
高中物理电磁感应练习题及答案一、选择题1、在电磁感应现象中,下列说法正确的是:A.感应电流的磁场总是阻碍原磁通量的变化B.感应电流的磁场方向总是与原磁场的方向相反C.感应电流的磁场方向总是与原磁场的方向相同D.感应电流的磁场方向与原磁场方向无关答案:A.感应电流的磁场总是阻碍原磁通量的变化。
2、一导体在匀强磁场中匀速切割磁感线运动,产生感应电流。
下列哪个选项中的物理量与感应电流大小无关?A.磁感应强度B.导体切割磁感线的速度C.导体切割磁感线的长度D.导体切割磁感线的角度答案:D.导体切割磁感线的角度。
二、填空题3、在电磁感应现象中,当磁通量增大时,感应电流的磁场方向与原磁场方向_ _ _ _ ;当磁通量减小时,感应电流的磁场方向与原磁场方向 _ _ _ _。
答案:相反;相同。
31、一根导体在匀强磁场中以速度v运动,切割磁感线,产生感应电动势。
如果只增大速度v,其他条件不变,则产生的感应电动势将_ _ _ _ ;如果保持速度v不变,只减小磁感应强度B,其他条件不变,则产生的感应电动势将 _ _ _ _。
答案:增大;减小。
三、解答题5、在电磁感应现象中,有一闭合电路,置于匀强磁场中,接上电源后有电流通过,现将回路断开,换用另一电源重新接上,欲使产生的感应电动势增大一倍,应采取的措施是()A.将回路绕原路转过90°B.使回路长度变为原来的2倍C.使原电源的电动势增大一倍D.使原电源的电动势和回路长度都增大一倍。
答案:A.将回路绕原路转过90°。
法拉第电磁感应定律是电磁学中的重要规律之一,它描述了变化的磁场产生电场,或者变化的电场产生磁场的现象。
这个定律是法拉第在1831年发现的,它为我们打开了一个全新的领域——电磁学,也为我们的科技发展提供了强大的理论支持。
在高中物理中,法拉第电磁感应定律主要通过实验和理论推导来展示,让学生们能够更直观地理解这个重要的规律。
高中的学生们已经对电场和磁场的基本概念有了一定的了解,他们已经掌握了电场线和磁场线的概念,以及安培定则等基本知识。
高一物理电磁感应现象练习题及答案练习题一:1. 一根导线以速度v穿过磁感应强度为B的均匀磁场,导线长度为L,角度θ为导线与磁场方向的夹角。
求导线在时间Δt内所受到的感应电动势。
答案:感应电动势E = B * v * L * sinθ2. 一根导线以速度v进入磁感应强度为B的均匀磁场,导线的长度为L。
当导线完全进入磁场后,突然停止不动。
求此过程中导线两端之间的电势差。
答案:电势差V = B * v * L3. 一个长度为L的导线以速度v匀速通过磁感应强度为B的均匀磁场,当导线通过时间Δt后,磁场方向突然发生改变。
求导线两端之间产生的感应电动势。
答案:感应电动势E = 2 * B * v * L4. 一根长度为L的导线以速度v与磁感应强度为B的均匀磁场垂直相交,导线所受到的感应电动势大小为E,如果将导线切成长度为L/2的两段导线,两段导线所受感应电动势的大小分别是多少?答案:每段导线所受感应电动势的大小都是E练习题二:1. 一台电动机的转子有60个磁极,额定转速为3000转/分钟。
求转子在额定转速下的转子导线所受的感应电动势大小。
答案:转子导线所受感应电动势的大小为ω * Magnetic Flux,其中ω为角速度,Magnetic Flux为磁通量。
转速为3000转/分钟,转速ω =2π * 3000 / 60。
由于转子有60个磁极,每转所经过的磁通量为60 * Magnetic Flux。
因此,转子导线所受感应电动势的大小为60 * 2π * 3000 / 60 * Magnetic Flux。
2. 一根长度为L的导线以角速度ω绕通过导线轴线的磁感应强度为B的磁场旋转。
求导线两端之间的电势差大小。
答案:电势差V = B * ω * L3. 一根输电线路的电阻为R,长度为L,电流为I。
如果在电力系统中,磁感应强度为B的磁场垂直于导线方向,求输电线路两端之间的感应电动势。
答案:感应电动势E = B * L * I4. 一块矩形线圈有N匝,每匝的边长为a和b,磁通量为Φ,求矩形线圈所受到的感应电动势。
物理电磁感应复习题集及答案第一题:电磁感应基础知识1. 什么是电磁感应?2. 法拉第电磁感应定律是什么?3. 在一个圆形线圈中,磁场的变化如何影响感应电动势的大小?4. 什么是自感现象?5. 自感现象与互感现象有何异同?答案:1. 电磁感应是指当一个导体中的磁通量发生变化时,在导体中就会产生感应电动势和感应电流的现象。
2. 法拉第电磁感应定律是指导体中感应电动势的大小与磁场的变化率成正比,方向由右手定则确定。
3. 在一个圆形线圈中,磁场的变化越快,感应电动势就越大。
当磁场增强或减弱时,感应电动势的方向也会相应变化。
4. 自感现象是指一个导体中的电流变化时,导体本身会产生感应电动势和感应电流。
5. 自感现象与互感现象都是电磁感应现象,不同之处在于自感发生在导体本身,而互感发生在两个或多个相邻的线圈之间。
第二题:电磁感应的应用1. 什么是变压器?它如何工作?2. 什么是感应电动机?3. 什么是发电机?它是如何产生电能的?4. 什么是涡流?它对电磁感应有什么影响?5. 什么是励磁?6. 举例说明一种电磁感应的实际应用。
答案:1. 变压器是一种通过电磁感应原理来改变交流电压大小的电器设备。
它由一个主线圈和一个副线圈组成,通过磁场的感应作用,将输入电压变换为输出电压,实现电能的传输和变换。
2. 感应电动机是利用电磁感应原理来转换电能和机械能的装置。
它由一个定子和一个转子组成,当定子上的交流电流变化时,就会在转子上产生感应电流,从而使转子转动。
3. 发电机是一种将机械能转换为电能的装置。
它通过电磁感应原理,在导体中产生感应电动势,并通过电路系统将这种电动势转化为电流和电能的装置。
4. 涡流是指当导体中有磁场变化时,在导体内部会形成的电流环流动现象。
涡流的产生会导致能量损耗,并且会对电磁感应产生一定的影响。
5. 励磁是指为了使发电机和变压器等设备工作正常,需要通过外部电源向设备提供一定的励磁电流,以产生足够的磁场。
初三电磁感应练习题及答案练习题1:1. 一个导线以2.0m/s的速度从一个均匀磁场中通过,磁感应强度为0.4T,导线长度为0.5m。
求导线所受的感应电动势大小。
2. 一个长度为3.0m的导线以10m/s的速度垂直通过一个磁感应强度为1.5T的磁场,求导线两端之间的感应电势差。
3. 一个矩形导线框架的长边长度为2.0m,短边长度为0.5m,框架的整体电阻为6.0Ω。
当磁感应强度为0.8T时,框架被拉动,导线切割磁力线的速度恒定为3.0m/s。
求在导线上出现的电动势大小。
答案:1. 感应电动势的大小与磁感应强度、导线长度和导线在磁场中的速度有关。
根据公式E = B*d*l*v,其中B为磁感应强度,d为导线长度,l为导线在磁场中的速度,v为导线长度。
将已知值代入计算,得到E = 0.4T * 0.5m * 2.0m/s = 0.4V。
故导线所受的感应电动势大小为0.4V。
2. 感应电势差的大小取决于磁感应强度、导线长度和导线在磁场中的速度之积。
根据公式∆V = B*l*v,其中B为磁感应强度,l为导线长度,v为导线在磁场中的速度。
将已知值代入计算,得到∆V = 1.5T * 3.0m * 10m/s = 45V。
导线两端之间的感应电势差为45V。
3. 在导线上出现的电动势大小取决于磁感应强度、导线长度、导线在磁场中的速度和导线的电阻之积。
根据公式E = B*d*l*v/R,其中B为磁感应强度,d为导线长度,l为导线在磁场中的速度,R为导线的电阻。
将已知值代入计算,得到E = 0.8T * 3.0m * 2.0m * 0.5m/s / 6.0Ω = 0.8V。
在导线上出现的电动势大小为0.8V。
练习题2:1. 一个磁感应强度为0.5T的磁场垂直于一个半径为0.2m的圆环,圆环的电阻为2.0Ω。
圆环以5rad/s的角速度绕垂直磁场线旋转,求圆环上出现的感应电动势大小。
2. 一个长度为4.0m的直导线绕过一个半径为2.0m的圆形电感线圈,电感线圈中有100个匝。
电磁感应最新试题及答案一、选择题(每题4分,共40分)1. 一个闭合电路的一部分导体在磁场中做切割磁感线运动时,下列说法正确的是()。
A. 导体中一定产生感应电动势B. 导体中一定产生感应电流C. 导体中既不产生感应电动势也不产生感应电流D. 导体中可能产生感应电动势,也可能产生感应电流答案:D2. 法拉第电磁感应定律表明,感应电动势的大小与下列哪个因素无关?()A. 磁通量的变化率B. 导体切割磁感线的速度C. 导体的长度D. 导体中的电流答案:D3. 根据楞次定律,当磁通量增加时,感应电流产生的磁场方向应是()。
A. 与原磁场方向相同B. 与原磁场方向相反C. 与原磁场方向无关D. 无法确定答案:B4. 下列关于自感现象的描述,错误的是()。
A. 自感现象是电磁感应现象的一种B. 自感现象中产生的自感电动势与电流变化率成正比C. 自感现象中产生的自感电动势与线圈匝数成正比D. 自感现象中产生的自感电动势与电流变化率无关答案:D5. 一个线圈的自感系数与下列哪个因素无关?()A. 线圈的形状B. 线圈的匝数C. 线圈中是否有铁芯D. 线圈中通过的电流答案:D6. 两个线圈相互靠近时,如果一个线圈中的电流发生变化,则另一个线圈中()。
A. 一定产生感应电动势B. 一定产生感应电流C. 可能产生感应电动势,也可能产生感应电流D. 不会产生感应电动势,也不会产生感应电流答案:C7. 互感现象中,两个线圈的互感系数与下列哪个因素有关?()A. 线圈的匝数B. 线圈的形状C. 线圈中是否有铁芯D. 两个线圈之间的距离答案:C8. 根据法拉第电磁感应定律,感应电动势的大小与下列哪个因素成正比?()A. 磁通量的变化量B. 磁通量的变化率C. 磁通量的大小D. 磁通量的变化时间答案:B9. 一个闭合电路的一部分导体在磁场中做切割磁感线运动时,感应电动势的大小与下列哪个因素无关?()A. 导体切割磁感线的速度B. 导体的长度C. 磁场的磁感应强度D. 导体中的电流答案:D10. 一个线圈的自感系数与下列哪个因素无关?()A. 线圈的形状B. 线圈的匝数C. 线圈中是否有铁芯D. 线圈中通过的电流答案:D二、填空题(每题4分,共20分)11. 根据法拉第电磁感应定律,感应电动势的大小与磁通量的变化率成正比,公式为:E = ________。
九年级物理电磁感应题库及答案一、选择题1、下列设备中,利用电磁感应原理工作的是()A 电动机B 发电机C 电铃D 电磁铁答案:B解析:发电机是利用电磁感应原理工作的,闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就会产生感应电流。
电动机是利用通电导体在磁场中受力的作用而工作的;电铃和电磁铁是利用电流的磁效应工作的。
2、关于产生感应电流的条件,下列说法中正确的是()A 只要导体在磁场中运动,就会产生感应电流B 只要闭合电路的一部分导体在磁场中运动,就会产生感应电流C 只要闭合电路的一部分导体在磁场中做切割磁感线运动,就会产生感应电流D 闭合电路的全部导体在磁场中做切割磁感线运动,才会产生感应电流答案:C解析:产生感应电流的条件:一是“闭合电路”,二是“一部分导体”,三是“做切割磁感线运动”,三个条件缺一不可。
选项 A 中,导体在磁场中运动,如果不是闭合电路,或者导体没有做切割磁感线运动,都不会产生感应电流;选项B 中,闭合电路的一部分导体在磁场中运动,如果不是做切割磁感线运动,也不会产生感应电流;选项 D 中,闭合电路的全部导体在磁场中做切割磁感线运动时,也不一定会产生感应电流,比如全部导体都沿着磁感线运动。
3、如图所示,在探究“什么情况下磁可以生电”的实验中,保持磁体不动,下列现象描述正确的是()A 导线 ab 竖直向上运动时,电流表指针会偏转B 导线 ab 竖直向下运动时,电流表指针会偏转C 导线 ab 水平向左运动时,电流表指针会偏转D 导线 ab 静止不动时,电流表指针会偏转答案:C解析:产生感应电流的条件是闭合电路的一部分导体在磁场中做切割磁感线运动。
导线 ab 竖直向上或竖直向下运动时,都没有做切割磁感线运动,所以电流表指针不会偏转;导线 ab 水平向左运动时,做切割磁感线运动,电流表指针会偏转;导线 ab 静止不动时,没有做切割磁感线运动,电流表指针不会偏转。
4、下列电器中,工作时利用电磁感应原理的是()A 电烤箱B 电热水器C 发电机D 电熨斗答案:C解析:电烤箱、电热水器和电熨斗都是利用电流的热效应工作的,即电流通过电阻时会产生热量。
高中物理《电磁感应》练习题(附答案解析)学校:___________姓名:___________班级:___________一、单选题1.社会的进步离不开科学发现,每一步科学探索的过程倾注了科学家的才智和努力,以下关于科学家的贡献说法不正确的是()A.安培提出了分子电流假说,解释了磁现象B.奥斯特首先发现了电流的磁效应C.法拉第发现了电磁感应现象D.库仑测出了电子的电量2.如图甲所示,300匝的线圈两端A、B与一个理想电压表相连。
线圈内有指向纸内方向的匀强磁场,线圈中的磁通量在按图乙所示规律变化。
下列说法正确的是()A.A端应接电压表正接线柱,电压表的示数为150VB.A端应接电压表正接线柱,电压表的示数为50.0VC.B端应接电压表正接线柱,电压表的示数为150VD.B端应接电压表正接线柱,电压表的示数为50.0V3.如图所示,在匀强磁场中做各种运动的矩形线框,能产生感应电流的是()A.图甲中矩形线框向右加速运动B.图乙中矩形线框匀速转动C.图丙中矩形线框向右加速运动D.图丁中矩形线框斜向上运动4.下列物理学史材料中,描述正确的是()A.卡文迪什通过扭秤实验测量出静电引力常量的数值B.为了增强奥斯特的电流磁效应实验效果,应该在静止的小磁针上方通以自西向东的电流C.法拉第提出了“电场”的概念,并制造出第一台电动机D.库仑通过与万有引力类比,在实验的基础上验证得出库仑定律5.如图所示,将一个闭合铝框放在蹄形磁铁的两个磁极之间,铝框可以绕竖直轴OO'自由转动,蹄形磁铁在手摇的控制下可以绕竖直轴OO'转动。
初始时,铝框和蹄形磁铁均是静止的。
现通过不断手摇使蹄形磁铁转动起来,下列关于闭合铝框的说法正确的是()A.铝框仍保持静止B.铝框将跟随磁极同向转动且一样快C.铝框将跟随磁极同向转动,转速比磁铁小D.铝框将朝着磁极反向转动,转速比磁铁小6.如图所示,a、b是用同种规格的铜丝做成的两个同心圆环,两环半径之比为2:3,其中仅在a环所围成区域内有垂直于纸面向里的匀强磁场。
高中物理电磁感应基础练习题(含答案)一、单选题1.如图所示,导体ab是金属线框的一个可动边,ab边长L=0.4m,磁场的磁感应强度B=0.1T,当ab边以速度v=5m/s向右匀速移动时,下列判断正确的是()A.感应电流的方向由a到b,感应电动势的大小为0.2VB.感应电流的方向由a到b,感应电动势的大小为0.4VC.感应电流的方向由b到a,感应电动势的大小为0.2VD.感应电流的方向由b到a,感应电动势的大小为0.4V2.某同学用粗细均匀的金属丝弯成如图所示的图形,两个正方形的边长均为L,A、B t∆223.如图所示,在水平桌面上有一金属圆环,在它圆心正上方有一条形磁铁(极性不明),当条形磁铁下落时,可以判定()A.环中将产生俯视顺时针的感应电流B.环对桌面的压力将增大C.环有面积增大的趋势D.磁铁将受到竖直向下的电磁作用力4.如图所示,闭合线圈abcd 在磁场中运动到如图所示位置时,bc 边的电流方向由b →c ,此线圈的运动情况是( )A .向右进入磁场B .向左移出磁场C .向上移动D .向下移动5.如图所示,通电导线旁边同一平面有矩形线圈abcd ,则( )A .当线圈向导线靠近时,其中感应电流方向是a →b →c →dB .若线圈竖直向下平动,有感应电流产生C .若线圈向右平动,其中感应电流方向是a →b →c →dD .当线圈以导线边为轴转动时,其中感应电流方向是a →b →c →d6.如图所示,在磁感应强度大小为B 、方向垂直纸面向里的匀强磁场中,长为L 的金属杆MN 在平行金属导轨上以速度v 向右匀速滑动。
金属导轨电阻不计,金属杆与导轨的夹角为θ,电阻为2R ,ab 间电阻为R ,M 、N 两点间电势差为U ,则M 、N 两点电势BLv7.如图所示,先后以速度1v 和2v 匀速把一矩形线圈水平拉出有界匀强磁场区域,122v v =,则在先后两种情况下( )A .线圈中的感应电动势之比为21:1:2E E =B .线圈中的感应电流之比为12:1:2I I =C .线圈中产生的焦耳热之比12:2:1Q Q =D .通过线圈某截面的电荷量之比122:1q q =:8.粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行。
电磁感应现象习题复习题及答案一、高中物理解题方法:电磁感应现象的两类情况1.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=18(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.【答案】(1)11.5U B d (2)2221934-mU mgL B d;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:1 1.52UE U R U R=+⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:111E B dv =计算得出:111.5Uv B d=. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:12222B dv R U R R⋅=+计算得出:213Uv B d=;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722mg L mg L W mv mv μ︒︒⨯-⨯-=-安 根据功能关系可得产生的总的焦耳热 :=Q W 总安根据焦耳定律可得定值电阻产生的焦耳热为:122RQ Q R R=+总 联立以上各式得出:212211934mU Q mgL B d=-(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:221sin 37cos3702B d vmg mg Rμ︒︒--=计算得出:221mgRv B d =对cd 棒分析因为:2sin372cos370mg mg μ︒︒-⋅>故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫-+⨯⨯⨯= ⎪⎝⎭将221mgRv B d =代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为11.5UB d; (2)定值电阻上产生的热量为22211934mU mgL B d-; (3)2B 的大小为132B ,方向沿导轨平面向上.2.如图所示,足够长且电阻忽略不计的两平行金属导轨固定在倾角为α=30°绝缘斜面上,导轨间距为l =0.5m 。
沿导轨方向建立x 轴,虚线EF 与坐标原点O 在一直线上,空间存在垂直导轨平面的磁场,磁感应强度分布为1()00.60.8()0T x B x T x -<⎧=⎨+≥⎩(取磁感应强度B 垂直斜面向上为正)。
现有一质量为10.3m =kg ,边长均为l =0.5m 的U 形框cdef 固定在导轨平面上,c 点(f 点)坐标为x =0。
U 形框由金属棒de 和两绝缘棒cd 和ef 组成,棒de 电阻为10.2R =Ω。
另有一质量为20.1=m kg ,长为l =0.5m ,电阻为20.2R =Ω的金属棒ab 在离EF 一定距离处获得一沿斜面向下的冲量I 后向下运动。
已知金属棒和U 形框与导轨间的动摩擦因数均为33μ=。
(1)若金属棒ab 从某处释放,且I =0.4N·s ,求释放瞬间金属棒ab 上感应电流方向和电势差ab U ;(2)若金属棒ab 从某处释放,同时U 形框解除固定,为使金属棒与U 形框碰撞前U 形框能保持静止,求冲量I 大小应满足的条件。
(3)若金属棒ab 在x =-0.32m 处释放,且I =0.4N·s ,同时U 形框解除固定,之后金属棒ab 运动到EF 处与U 形框发生完全非弹性碰撞,求金属棒cd 最终静止的坐标。
【答案】(1)感应电流方向从b 到a ;0.1V;(2)0.48N ⋅s ;(3)2.5m 【解析】 【分析】 【详解】(1)金属棒获得冲量I 后,速度为24m/s Iv m == 根据右手定则,感应电流方向从b 到a ; 切割磁感线产生的电动势为1E B lv =其中11B =T ;金属棒ab 两端的电势差为12120.1V ab B lvU R R R ==+(2)由于ab 棒向下运动时,重力沿斜面的分力与摩擦力等大反向,因此在安培力作用下运动,ab 受到的安培力为2212212B l v F m a R R ==+做加速度减小的减速运动;由左手定则可知,cd 棒受到安培力方向沿轨道向上,大小为21212B B l v F R R =+安其中21T B =;因此获得冲量一瞬间,cd 棒受到的安培力最大,最容易发生滑动 为使线框静止,此时摩擦力沿斜面向下为最大静摩擦力,大小为11cos sin m f m g m g μαα==因此安培力的最大值为12sin m g θ; 可得最大冲量为()12122122sin 0.48m m g R R I B B l α+==N·s(3)当I =0.4N·s 时,金属棒获得的初速度为04/v m s =,其重力沿斜面分力与摩擦力刚好相等,在安培力作用下做加速度减小的减速,而U 形框在碰撞前始终处于静止; 设到达EF 时速度为1v ,取沿斜面向下为正,由动量定理得22212012B l vtm v m v R R -=-+ 其中0.32m vt x == 解得12m/s v =金属棒与U 形线框发生完全非弹性碰撞,由动量守恒得()11122m v m m v =+因此碰撞后U 形框速度为20.5m/s v =同理:其重力沿斜面的分力与滑动摩擦力等大反向,只受到安培力的作用,当U 形框速度为v 时,其感应电流为12de ab B lv B lvI R R -=+其中,de B ,ab B 分别为de 边和ab 边处的磁感应强度,电流方向顺时针,受到总的安培力为()2212deab de abB B l vF B Il B Il R R -=-=+其中,,0.8cd ab B B kl k -== 由动量定理得()24122120k l vtm m v R R -=-++ 因此向下运动的距离为()()12212242m m m v R R s k l ++==此时cd 边的坐标为x =2.5m3.如图所示,竖直向上的匀强磁场垂直于水平面内的导轨,磁感应强度大小为B ,质量为M 的导体棒PQ 垂直放在间距为l 的平行导轨上,通过轻绳跨过定滑轮与质量为m 的物块A 连接。
接通电路,导体棒PQ 在安培力作用下从静止开始向左运动,最终以速度v 匀速运动,此过程中通过导体棒PQ 的电量为q ,A 上升的高度为h 。
已知电源的电动势为E ,重力加速度为g 。
不计一切摩擦和导轨电阻,求:(1)当导体棒PQ 匀速运动时,产生的感应电动势的大小E ’; (2)当导体棒PQ 匀速运动时,棒中电流大小I 及方向; (3)A 上升h 高度的过程中,回路中产生的焦耳热Q 。
【答案】(1) E Blv =;(2) mg I Bl =,方向为P 到Q ;(3)21()2qE mgh m M v --+ 【解析】 【分析】 【详解】(1)当导体棒PQ 最终以速度v 匀速运动,产生的感应电动势的大小E Blv =(2)当导体棒PQ 匀速运动时,安培力方向向左,对导体棒有T mg F ==安又因为F BIl =安联立得mgI Bl=根据左手定则判断I 的方向为P 到Q 。
(3) 根据能量守恒可知,A 上升h 高度的过程中,电源将其它形式的能量转化为电能,再将电能转化为其他形式能量,则有()212qE Q m M v mgh =+++ 则回路中的电热为()212Q qE mgh m M v =--+4.如图1所示,一个圆形线圈的匝数1000n =匝,线圈面积20.02S m =,线圈的电阻1r =Ω,线圈外接一个阻值4R =Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间的变化规律如图2所示.求()1在04s ~内穿过线圈的磁通量变化量; ()2前4s 内产生的感应电动势; () 36s 内通过电阻R 的电荷量q .【答案】(1)4×10﹣2Wb (2)1V (3)0.8C 【解析】试题分析:(1)依据图象,结合磁通量定义式BS Φ=,即可求解;(2)根据法拉第电磁感应定律,结合磁感应强度的变化率求出前4s 内感应电动势的大小.(3)根据感应电动势,结合闭合电路欧姆定律、电流的定义式求出通过R 的电荷量.(1)根据磁通量定义式BS Φ=,那么在0~4s 内穿过线圈的磁通量变化量为:()()3210.40.20.02410B B S Wb Wb -∆Φ=-=-⨯=⨯(2)由图象可知前4 s 内磁感应强度B 的变化率为:0.40.2/0.05?/4B T s T s t ∆-==∆ 4 s 内的平均感应电动势为:10000.020.05?1BE nSV V t∆==⨯⨯=∆ (3)电路中的平均感应电流为:E I R =总,又q It =,且E n t∆Φ=∆ 所以()0.020.40.210000.841q nC C R 总⨯-∆Φ==⨯=+ 【点睛】本题考查了法拉第电磁感应定律的应用,由法拉第电磁感应定律求出感应电动势,由欧姆定律求出感应电流,最后由电流定义式的变形公式求出感应电荷量.5.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1 m ,导轨平面与水平面成θ = 37°角,下端连接阻值为R =2Ω的电阻.磁场方向垂直导轨平面向上,磁感应强度为0.4T .质量为0.2kg 、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.金属棒沿导轨由静止开始下滑.(g=10m/s 2,sin37°=0.6,cos37°=0.8)(1)判断金属棒下滑过程中产生的感应电流方向; (2)求金属棒下滑速度达到5m/s 时的加速度大小; (3)当金属棒下滑速度达到稳定时,求电阻R 消耗的功率. 【答案】(1)由a 到b (2)22/a m s =(3)8P W = 【解析】 【分析】 【详解】(1)由右手定则判断金属棒中的感应电流方向为由a 到b .(2)金属棒下滑速度达到5/m s 时产生的感应电动势为0.4152E BLv V V ==⨯⨯= 感应电流为1EI A R==,金属棒受到的安培力为0.4110.4?F BIL N N ==⨯⨯= 由牛顿第二定律得:mgsin mgcos F ma θμθ--=,解得:22/a m s =. (3)设金属棒运动达到稳定时,所受安培力为F ',棒在沿导轨方向受力平衡mgsin mgcos F θμθ=+',解得:0.8F N '=,又:F BI L '=',0.820.41F I A A BL ''===⨯ 电阻R 消耗的功率:28P I R W ='=. 【点睛】该题考查右手定则的应用和导体棒沿着斜面切割磁感线的运动,该类题型综合考查电磁感应中的受力分析与法拉第电磁感应定律的应用,要求的解题的思路要规范,解题的能力要求较高.6.如图所示,MN 、PQ 为足够长的平行金属导轨.间距L=0.50m ,导轨平面与水平面间夹角θ=37°,N 、Q 间连接一个电阻R=5.0Ω,匀强磁场垂直于导轨平面向上,磁感应强度B=1.0T .将一根质量m=0.05kg 的金属棒放在导轨的ab 位置,金属棒及导轨的电阻不计.现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与导轨垂直,且与导轨接触良好.已知金属棒与导轨间的动摩擦因数0.50μ=,当金属棒滑至cd 处时,其速度大小开始保持不变,位置cd 与ab 之间的距离 2.0m s =.已知210m/s g =, sin370.60︒=,cos370.80︒=.求:(1)金属棒沿导轨开始下滑时的加速度大小; (2)金属棒达到cd 处的速度大小;(3)金属棒由位置ab 运动到cd 的过程中,电阻R 产生的热量. 【答案】(1)22.0/a m s = (2) 2.0/v m s = (3)0.10Q J = 【解析】 【分析】根据牛顿第二定律求加速度,根据平衡条件求金属棒速度大小,由能量守恒求电阻R 上产生的热量; 【详解】(1)设金属杆的加速度大小a ,则sin cos mg mg ma θμθ-= 解得22.0m/s a =(2)设金属棒达到cd 位置时速度大小为V ,电流为I ,金属棒受力平衡,有sin cos mg BIL mg θμθ=+BLvI R=解得: 2.0m/s V =.(3)设金属棒从ab 运动到cd 的过程中,电阻R 上产生的热量为Q ,由能量守恒,有21sin cos 2mgs mv mgs Q θμθ⋅=+⋅+ 解得:0.10J Q =7.如图所示,粗糙斜面的倾角37θ︒=,斜面上直径0.4m D =的圆形区域内存在着垂直于斜面向下的匀强磁场(图中只画出了磁场区域,未标明磁场方向),一个匝数为100n =的刚性正方形线框abcd ,边长为0.5m ,通过松弛的柔软导线与一个额定功率2W P =的小灯泡L 相连,圆形磁场的一条直径恰好过线框bc 边,已知线框质量2kg m =,总电阻02R =Ω,与斜面间的动摩擦因数0.5μ=,灯泡及柔软导线质量不计,从0t =时刻起,磁场的磁感应强度按21(T)B t π=-的规律变化,开始时线框静止在斜面上,T 在线框运动前,灯泡始终正常发光,设最大静摩擦力等于滑动摩擦力,210m/s g =,370.6sin ︒=, 370.8cos ︒=.(1)求线框静止时,回路中的电流I ;(2)求在线框保持不动的时间内,小灯泡产生的热量Q ;(3)若线框刚好开始运动时即保持磁场不再变化,求线框从开始运动到bc 边离开磁场的过程中通过小灯泡的电荷量q .(柔软导线及小灯泡对线框运动的影响可忽略,且斜面足够长)【答案】(1)1A (2)2.83J (3)0.16C 【解析】 【详解】(1)由法拉第电磁感应定律可得线框中产生的感应电动势大小为214V 22B D E n n t t π∆Φ∆⎛⎫==⨯⨯= ⎪∆∆⎝⎭设小灯泡电阻为R ,由220E P I R R R R ⎛⎫== ⎪+⎝⎭可得2R =Ω解得2A 1A 2P I R === (2)设线框保持不动的时间为t ,根据共点力的平衡条件可得2sin 1cos mg n t ID mg θμθπ⎛⎫=-+ ⎪⎝⎭解得0.45t s π=产生的热量为2.J 83Q Pt ==(3)线框刚好开始运动时210.45T 0.1T B ππ⎛⎫=-⨯= ⎪⎝⎭根据闭合电路的欧姆定律可得000BnsE t I R R R R -∆==++根据电荷量的计算公式可得0.16C nBSq I t R R =⋅∆==+8.如图所示,两平行光滑不计电阻的金属导轨竖直放置,导轨上端接一阻值为R 的定值电阻,两导轨之间的距离为d .矩形区域abdc 内存在磁感应强度大小为B 、方向垂直纸面向里的匀强磁场,ab 、cd 之间的距离为L .在cd 下方有一导体棒MN ,导体棒MN 与导轨垂直,与cd 之间的距离为H ,导体棒的质量为m ,电阻为r .给导体棒一竖直向上的恒力,导体棒在恒力F 作用下由静止开始竖直向上运动,进入磁场区域后做减速运动.若导体棒到达ab 处的速度为v 0,重力加速度大小为g .求:(1)导体棒到达cd 处时速度的大小; (2)导体棒刚进入磁场时加速度的大小;(3)导体棒通过磁场区域的过程中,通过电阻R 的电荷量和电阻R 产生的热量.【答案】(1)2()F mg Hv m-=(2)222()()B d F mg H F a g m R r m m -=+ (3)BLd q R r=+ 201[()()]2R R Q F mg H L mv R r =-+-+ 【解析】 【分析】导体棒从开始到运动到cd 处的过程,利用动能定理可求得导体棒到达cd 处时速度的大小; 求出导体棒刚进入磁场时所受的安培力大小,再由牛顿第二定律求得加速度的大小;导体棒通过磁场区域的过程中,根据电量与电流的关系以及法拉第电磁感应定律、欧姆定律结合求通过电阻R 的电荷量.由能量守恒求电阻R 产生的热量; 【详解】(1)根据动能定理:21()2F mg H mv -=解得导体棒到达cd 处时速度的大小:2()F mg Hv m-=(2)根据牛顿第二定律:A mg F F ma +-=安培力:A =F BIdE I R r=+ E Bdv =导体棒刚进入磁场时加速度的大小:F a g m=+ (3)导体棒通过磁场区域的过程中,通过电阻R 的电荷量:q I t =∆E I R r=+ ΔΔE tΦ=通过电阻R 的电荷量: Δq R rΦ=+ 解得: BLd q R r =+ 根据动能定理:2A 01()()=2F mg H L W mv -+- 电路中的总热量:Q =W A电阻R 中的热量:R R Q Q R r=+ 解得: 201[()()]2R R Q F mg H L mv R r =-+-+9.据英国2018年《每日邮报》5月2日报道,中国科学家一直在努力测试一种超高速列车——真空管道超高速列车,它将比现有高铁快3倍,速度达到1000km/h 。