一、直线方程的定义
方向向量的定义:
如果一非零向量平行
于一条已知直线,这个
向量称为这条直线的方
向向量.
x
z
s
L
M
M0
o
y
二、直线方程的类型
1.空间直线的对称式方程与参数方程
M0( x0 , y0 , z0 ), M( x, y, z),
M L, M0M// s
s {m, n, p},
x
M0M {x x0 , y y0 , z z0 }
的图形
情形5
Ax By 0
特征 平面过 z 轴
左图为
x y 0 5
的图形
情形6
Ax Cz 0
特征 平面过 y 轴
左图为
x z 0 5
的图形
情形7 By Cz 0
特征 平面过 x 轴
左图为
y z 0 5
的图形
情形8 Ax By Cz 0
特征 平面过原点
左图为
2x y z 0 5
z y
1 0 3z 4
. 0
解 在直线上任取一点 ( x0 , y0 , z0 )
取
x0
1
y0 y0
z0 2 0 , 3z0 6 0
解得 y0 0, z0 2
点坐标(1,0,2),
因所求直线与两平面的法向量都垂直
取
s n1 n2 {4,1,3},
对称式方程 x 1 y 0 z 2 , 4 1 3
化简得 14x 9 y z 15 0.
例 2 求过点(1,1,1),且垂直于平面x y z 7 和
3 x 2 y 12z 5 0的平面方程.
解
n1 {1,1,1},