同济大学高等数学(第七版)上册第一章函数
- 格式:ppt
- 大小:3.05 MB
- 文档页数:64
福建警察学院《高等数学一》课程教学大纲课程名称:高等数学一课程编号:学分:4适用对象:一、课程的地位、教学目标和基本要求(一)课程地位高等数学是各专业必修的一门重要的基础理论课程,它具有高度的抽象性、严密的逻辑性和应用的广泛性,对培养和提高学生的思维素质、创新能力、科学精神、治学态度以及用数学解决实际问题的能力都有着非常重要的作用。
高等数学课程不仅仅是学习后继课程必不可少的基础,也是培养理性思维的重要载体,在培养学生数学素养、创新意识、创新精神和能力方面将会发挥其独特作用。
(二)教学目标通过本课程的学习,逐步培养学生使其具有数学运算能力、抽象思维能力、空间想象能力、科学创新能力,尤其具有综合运用数学知识、数学方法结合所学专业知识去分析和解决实际问题的能力,一是为后继课程提供必需的基础数学知识;二是传授数学思想,培养学生的创新意识,逐步提高学生的数学素养、数学思维能力和应用数学的能力。
(三)基本要求1、基本知识、基本理论方面:掌握理解极限和连续的基本概念及其应用;熟悉导数与微分的基本公式与运算法则;掌握中值定理及导数的应用;掌握不定积分的概念和积分方法;掌握定积分的概念与性质;掌握定积分在几何上的应用。
2、能力、技能培养方面:掌握一元微积分的基本概念、基本理论、基本运算技能和常用的数学方法,培养学生利用微积分解决实际问题的能力。
二、教学内容与要求第一章函数与极限【教学目的】通过本章学习1、理解函数的概念,了解函数的几种特性(有界性),掌握复合函数的概念及其分解,掌握基本初等函数的性质及其图形,理解初等函数的概念。
2、理解数列极限的概念、掌握数列极限的证明方法、了解收敛数列的性质。
3、理解函数极限和单侧极限的概念,掌握函数极限的证明方法、理解极限存在与左、右极限之间的关系,了解函数极限的性质。
4、理解无穷小和无穷大的概念、掌握无穷大和无穷小的证明方法。
5、掌握极限运算法则。
6、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
高等数学(同济第七版)上册-知识点总结第一章函数与极限一. 函数的概念1.两个无穷小的比较设0)(lim ,0)(lim x g x f 且lx g x f )()(lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以 f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。
(2)l ≠ 0,称f (x)与g(x)是同阶无穷小。
(3)l = 1,称f (x)与g(x)是等价无穷小,记以 f (x) ~ g(x) 2.常见的等价无穷小当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x ,1-cos x ~ 2/2^x ,xe -1 ~ x ,)1ln(x ~ x ,1)1(x ~ x二.求极限的方法1.两个准则准则 1.单调有界数列极限一定存在准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤h (x )若A x h A x g )(lim ,)(lim ,则Ax f )(lim 2.两个重要公式公式11sin limx x x公式2ex xx /10)1(lim 3.用无穷小重要性质和等价无穷小代换4.用泰勒公式当x0时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332n n nnnxxo n xx x xxx o n x x x x e)(!2)1(...!4!21cos 2242nnnx o n xxxx )()1(...32)1ln(132nnn x o n xxxxx )(!))1()...(1(...!2)1(1)1(2nnx o xn n xx x )(12)1( (5)3arctan 1212153n n n xo n xxxxx 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0x f x x,0)(lim 0x F x x;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(x F ;(3))()(limx F x f xx 存在(或为无穷大),则这个定理说明:当)()(limx F x f xx 存在时,)()(limx F x f xx 也存在且等于)()(limx F x f xx ;当)()(limx F x f x x为无穷大时,)()(limx F x f xx 也是无穷大.这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L ospital )法则.型未定式定理2 设函数)(x f 、)(x F 满足下列条件:(1))(lim 0x f xx ,)(lim 0x F xx ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(x F ;(3))()(limx F x f xx 存在(或为无穷大),则注:上述关于0x x时未定式型的洛必达法则,对于x 时未定式型同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“”型的未定式,其它的未定式须先化简变形成“00”或“”型才能运用该法则;)()(lim)()(limx F x f x F x f x xx x)()(lim)()(lim 0x F x f x F x f x xxx(2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.6.利用导数定义求极限基本公式)()()(lim0'00x f xx f x x f x (如果存在)7.利用定积分定义求极限基本格式11)()(1limdx x f n kf nnk n(如果存在)三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f (x)的间断点。
高等数学(同济大学第七版)第一章函数与极限课后答案高等数学(同济大学第七版)第一章函数与极限课后答案1. 函数的概念1.1 什么是函数在数学中,函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
函数可以用各种形式表示,例如数学公式、图表或者一种操作规则。
1.2 函数的分类根据函数的性质和表达方式,函数可以分为代数函数、三角函数、指数函数、对数函数等等。
每种类型的函数都有其独特的性质和特点。
2. 极限的概念与性质2.1 极限的定义在数学中,当自变量趋近于某个特定值时,函数的值可能会趋近于一个常数或无限大。
这种趋近的过程被称为极限。
极限可以用数学符号进行表示。
2.2 极限的性质极限具有一些重要的性质,例如唯一性、局部性以及四则运算法则。
这些性质对于研究函数的性质和行为至关重要。
3. 函数的连续性与间断点3.1 函数的连续性连续性是函数的重要性质之一,它表示函数在某个区间内没有突变或间断。
一个函数可以是连续的,也可以是不连续的。
3.2 间断点的分类根据函数在某个点处的性质,间断点可以分为可去间断点、跳跃间断点和无穷间断点。
每种类型的间断点都有其特定的定义和判断条件。
4. 导数与微分4.1 导数的定义在数学中,导数表示函数在某一点处的变化率或斜率。
导数可以通过极限的概念来定义,并且具有一些重要的性质。
4.2 微分的概念与计算微分是导数的一个重要应用,它可以用于计算函数在某一点处的近似值。
微分也可以用于解决最优化问题和求解方程的近似解。
5. 函数的凸性与极值5.1 函数的凸性凸性是函数曲线的重要性质之一,它表示函数曲线在某个区间内的凸凹形态。
凸性可以通过函数的二阶导数来判断。
5.2 极值的概念与求解极值是函数在某个区间内取得的最大值或最小值。
求解极值可以通过函数的导数和二阶导数来进行,常用的方法包括 Fermat 定理和 Euler 判别法。
6. 函数的图形与曲线的绘制6.1 函数的图形与性质函数的图形是函数曲线在平面直角坐标系上的表示。
高等数学同济第七版上册课后习题答案高等数学作为大学理工科专业的重要基础课程,对于学生的逻辑思维和数学素养的培养起着至关重要的作用。
而《高等数学》同济第七版上册更是众多高校选用的经典教材。
课后习题作为巩固和深化知识的重要手段,其答案的准确性和完整性对于学生的学习效果有着直接的影响。
在学习高等数学的过程中,很多同学都会遇到各种各样的问题,尤其是在课后习题的解答上。
有时候,即使认真听讲、仔细阅读教材,也可能会在解题时感到困惑。
这时候,一份详细准确的课后习题答案就显得尤为重要。
首先,我们来看第一章函数与极限。
这一章的习题主要围绕函数的概念、性质以及极限的计算展开。
对于函数的定义域、值域、奇偶性等问题,需要同学们对函数的定义有清晰的理解。
而极限的计算则是这一章的重点和难点,包括利用极限的四则运算法则、两个重要极限、等价无穷小替换等方法求极限。
以习题 1-1 中的第 5 题为例:求函数\(f(x) =\sqrt{x^2 4}\)的定义域。
要解决这个问题,我们需要令\(x^2 4 \geq 0\),即\((x 2)(x + 2) \geq 0\)。
解得\(x \leq -2\)或\(x \geq2\),所以函数的定义域为\((\infty, -2 \cup 2, +\infty)\)。
再比如第一章的习题 1-5 中的第 2 题:计算\(\lim_{x \to 0}\frac{\sin 3x}{x}\)。
这道题可以利用重要极限\(\lim_{x \to 0} \frac{\sin x}{x} = 1\)来求解。
将原式变形为\(3 \times\lim_{x \to 0} \frac{\sin 3x}{3x}\),结果为\(3\)。
第二章导数与微分的习题则侧重于导数的定义、求导法则以及微分的计算。
对于复合函数的求导,需要同学们熟练掌握链式法则。
比如习题 2-2 中的第 7 题:设\(y =\ln \sqrt{\frac{1 x}{1+ x}}\),求\(y'\)。
...高等数学(同济第七版)上册-知识点总结第一章函数与极限一.函数的概念1.两个无穷小的比较f(x)设l imf(x)0,limg(x)0且llimg(x)(1)l=0,称f(x)是比g(x)高阶的无穷小,记以f(x)=0[g(x)],称g(x) 是比f(x)低阶的无穷小。
(2)l≠0,称f(x)与g(x)是同阶无穷小。
(3)l=1,称f(x)与g(x)是等价无穷小,记以f(x)~g(x)2.常见的等价无穷小当x→0时sinx~x,tanx~x,arcsinx~x,arccosx~x,1-cosx~x^2/2,xe-1~x,ln(1x)~x,(1x)1~x二.求极限的方法1.两个准则准则1.单调有界数列极限一定存在准则2.(夹逼定理)设g(x)≤f(x)≤h(x)若limg(x)A,limh(x)A,则l imf(x)A2.两个重要公式sinx公式11limx0x1/x公式2xelim(1)x03.用无穷小重要性质和等价无穷小代换4.用泰勒公式当x0时,有以下公式,可当做等价无穷小更深层次xe 1x2x2!3x3!...nxn!no(x )sinxx3x3!5x5!... (n1)(2nx2n11)!2no(x1)WORD格式可编辑版...cosx12x2!4x4!... (2nxnox2n1)(2n!)ln(1x)x2x23x3... (nxnox n11)(n)(1x)1x (1)2!2x n ox n(1)...((n1))x...(n!)arctanxx3x35x5... (2n1xnox2n11)(2n11)5.洛必达法则定理1设函数f(x)、F(x)满足下列条件:(1)lim()0fxxx0 ,limF(x)0xx;(2)f(x)与F(x)在x的某一去心邻域内可导,且F(x)0;(3)f(x)limxx0Fx)(f(x)f(x)存在(或为无穷大),则limlimxx0FFx(x)xx()这个定理说明:当f(x)limx0Fxx()存在时,f(x)limxx0Fx()也存在且等于f(x)limxx0F(x);当f(x) limxx()0Fx 为无穷大时,f(x)limx()x0Fx也是无穷大.这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(LHospital)法则.型未定式定理2设函数f(x)、F(x)满足下列条件:(1)lim()fxxx0 ,limF(x)xx;(2)f(x)与F(x)在x的某一去心邻域内可导,且F(x)0;(3)f(x)limx)x0F(x存在(或为无穷大),则f(x)f(x)limlimxx0F(x)x x F(x)注:上述关于x时未定式型的洛必达法则,对于x时未定式型x同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“0”和“”型的未定式,其它的未定式须先化简变形成“0”或“”型才能运用该法则;(2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.6.利用导数定义求极限WORD格式可编辑版...f(xx)f(x)00'基本公式()limfx0x0x(如果存在)3.利用定积分定义求极限基本格式1n1klimf()f(x)dxnnnk1(如果存在)三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设x是函数y=f(x)的间断点。
高等数学(同济第七版)上册-知识点汇总————————————————————————————————作者:————————————————————————————————日期:高等数学(同济第七版)上册-知识点总结第一章 函数与极限一. 函数的概念1.两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。
(2)l ≠ 0,称f (x)与g(x)是同阶无穷小。
(3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x)2.常见的等价无穷小当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x ,1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二.求极限的方法1.两个准则准则 1. 单调有界数列极限一定存在准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x )若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim 0=→xx x 公式2e x x x =+→/10)1(lim 3.用无穷小重要性质和等价无穷小代换4.用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o nx x x x x +-++-=++ )(!))1()...(1( (2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim 0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则.∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则; )()(lim )()(lim 00x F x f x F x f x x x x ''=→→)()(lim )()(lim 00x F x f x F x f x x x x ''=→→(2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.6.利用导数定义求极限 基本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在) 7.利用定积分定义求极限基本格式⎰∑==∞→101)()(1lim dx x f n k f n n k n (如果存在) 三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f (x )的间断点。