2014年春季新版新人教版七年级数学下学期8.4、三元一次方程组的解法教案5
- 格式:doc
- 大小:190.50 KB
- 文档页数:4
人教版七年级数学下册8.4《三元一次方程组的解法》教学设计一. 教材分析人教版七年级数学下册8.4《三元一次方程组的解法》是学生在学习了二元一次方程组的基础上进行学习的。
本节课主要让学生掌握三元一次方程组的解法,并能灵活运用解法解决实际问题。
教材通过丰富的情境和实例,引导学生探索三元一次方程组的解法,从而提高学生的数学思维能力和解决问题的能力。
二. 学情分析学生在进入七年级下册之前,已经学习了二元一次方程组的相关知识,对于解方程组的方法和技巧有一定的掌握。
但学生在解决三元一次方程组问题时,可能会感到困惑和不解。
因此,在教学过程中,教师需要关注学生的学习需求,通过引导和启发,帮助学生理解和掌握三元一次方程组的解法。
三. 教学目标1.知识与技能目标:让学生掌握三元一次方程组的解法,并能灵活运用解法解决实际问题。
2.过程与方法目标:通过探索和合作,培养学生解决问题的能力和团队协作精神。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心和坚持不懈的精神。
四. 教学重难点1.重点:三元一次方程组的解法。
2.难点:理解和掌握三元一次方程组的解法,并能灵活运用解决实际问题。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动参与课堂。
2.探索教学法:引导学生通过合作和讨论,探索三元一次方程组的解法。
3.实例教学法:通过具体的实例,让学生理解和掌握三元一次方程组的解法。
六. 教学准备1.教学课件:制作教学课件,包括教学内容的呈现、实例的展示等。
2.教学素材:准备相关的实际问题,作为课堂练习和巩固的内容。
3.教学板书:设计教学板书的结构,突出重点内容。
七. 教学过程1.导入(5分钟)教师通过引入实际问题,引发学生的思考,激发学生的学习兴趣。
2.呈现(10分钟)教师通过课件呈现三元一次方程组的解法,引导学生理解解法的过程和方法。
3.操练(10分钟)教师提出具体的实例,让学生分组进行讨论和解答,引导学生运用解法解决问题。
三元一次方程组的解法教学设计课题三元一次方程组的解法单元8 学科初中数学年级七下学习目标1.理解三元一次方程组的概念.2.会用代入法和加减消元法解简单的三元一次方程组.3.通过解三元一次方程组进一步体会消元思想.4.通过探究消元法解三元一次方程组的过程,提高学生逻辑思维能力、计算能力、解决实际问题的能力.重点使学生会解简单的三元一次方程组,进一步体会“消元”的基本思.难点针对方程组的特点,灵活使用代入法、加减法等重要方法.教学过程教学环节教师活动学生活动设计意图导入新课【创设情境】问题1:解二元一次方程组有哪几种方法?预设:学生分别说一说,并引导其说出代入法和加减法的求解过程及其注意事项.强调:不管是代入法还是加减法,其根本都是消元.问题2:解二元一次方程组的思路是什么?预设:把二元一次方程组通过代入和加减法进行消元,即“二元”化为“一元”.思考:若含有3个未知数的方程组如何求解?回顾、思考并回答.通过回忆二元一次方程组的概念和解法,引出三元一次方程组的学习,并为后边学习三元一次方程组及其相关知识做铺垫.讲授新课【合作探究】小明手头有12张面额分别为1元、2元、5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍.求1元、2元、5元的纸币各多少张?要想解决这个问题,引导学生让其带着如下三个问题进行思考:学生尝试用学过的知识思考,并回答.通过解决实际问题的情景引出三元一次方程组的学习,以此提高学生学习的兴趣(1)题目中有几个未知量?分别是什么?1元纸币的数量、2元纸币的数量、5元纸币的数量x张y张z张(2)题目中有哪些等量关系?①1元纸币的数量+2元纸币的数量+5元纸币的数量=12张②1元纸币金额+2元纸币金额+5元纸币金额=22元③1元纸币的数量=2元纸币的数量的4倍(3)如何用方程表示这些等量关系呢?先把问题(1)中的未知量设为不同的未知数,然后根据问题(2)中的等量关系列出三个方程分别为:x + y + z = 12,x + 2y + 5z = 22,x = 4y,组成一个方程组.观察得到的方程组,引导学生参照二元一次方程组的概念总结给出三元一次方程组的概念:方程组含有三个未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.强调组成三元一次方程组必须满足:方程组含有三个未知数、每个方程中含未知数的项的次数都是1、含有三个方程.【探究】怎样解这个得到的三元一次方程组呢?回忆一下二元一次方程组的求解过程,有代入法和加减法,我们根据二元一次方程组的求解过程探究一下三元一次方程组的解法吧!观察这个方程组,发现三个方程中x的系数都是一样的,因此可以用代入法和加减法进行消元计算,但是第三个方程的结构比较简单,可以直接代入第一个和第二个方程直接进行消元计算.解三元一次方程组:把③分别代入①②,得5y+z = 12,6y + 5z = 22.得到一个二元一次方程组解这个方程组,得学生小组交流,汇总并举手发言.自主进行探究、讨论,然后通过类比得到解三元一次方程组的思路.和动力.通过教师的引导,使学生能类比总结出三元一次方程组的概念.让学生在探究三元一次方程组的解法过程中,进一步体会类比的数学思把y = 2,z = 2代入①,得x=8.因此这个方程组的解是想一想,还有其它的解法吗?你可以根据自己的想法尝试一下哦!通过计算三元一次方程组,你能说一说解三元一次方程组的思路吗?总结:通过“代入”或“加减”进行消元,把“三元”化成“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程.思考并计算.【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例1解三元一次方程组:分析:方程①中只含有x,z,②③中未知数y的系数有倍数关系,因此可以由②③消去y,得到一个也只含有x,z的方程.将得到的有关x,z的二元一次方程与①组成一个二元一次方程组,求解得到x,z,进而可求出y.解:②×3+③,得11x + 10z = 35. ④①与④组成方程组解这个方程组,得把x = 5,z = –2代入②,解得因此这个三元一次方程组的解为你还有其他解法吗?试一试,并与这种解法进行比较!例2 在等式y = ax2+bx+c 中,当x= –1 时,y=0;当x=2 时,y = 3;当x=5 时,y=60.求a,b,c 的学生思考、计算并回答.通过练习,进一步巩固所学知识,加深理解.培养学生在具体情境中分析问题和解决问题的能力.值.分析:观察题目,你能得到什么信息?预设:可以把a,b,c看作三个未知数,分别把已知的三组x,y的值代入原等式,就可以得到 3 个三元一次方程.把这 3 个三元一次方程组成一个方程组,解这个方程组即可求出a,b,c.解:根据题意,得三元一次方程组(观察这个方程组,发现未知数c的系数都是1,因此先消去c.)②–①,得 a + b = 1;④③–①,得4a + b = 10;⑤④与⑤组成二元一次方程组解这个方程组,得把a =3,b = –2代入①,得c = –5.因此即a,b,c的值分别为3,–2,–5.【课堂练习】教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.解下列三元一次方程组:2.甲、乙、丙三个数的和是35,甲数的2倍比乙数大5,乙数的等于丙数的.求这三个数.答案:1.解:②×2+③,得x+2y = 53. ④④+①,得x = 22.把x = 22代入④,得y =把x = 22代入③,得z =所以原方程的解为①+②,得5x+2y=16. ④②+③,得3x+4y=18. ⑤⑤–④×2得,x = 2.把x = 2代入④,得y = 3.把x =2,y =3代入③,得z=1.所以原方程的解为2.解:设甲、乙、丙三数分别为x,y,z.根据题意,得解这个方程组,得∴甲数是10,乙数是15,丙数是10. 自主完成练习,然后集体交流评价.通过练习,进一步巩固所学知识,加深理解.培养学生在具体情境中分析问题和解决问题的能力.课堂小结以思维导图的形式呈现本节主要内容:回顾本节课所讲的内容通过小结让学生进一步熟悉巩固本节课所学的知识.板书 1.三元一次方程组的概念:方程组含有三个未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.2.解三元一次方程组的思路:通过“代入”或“加减”进行消元,把“三元”化成“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程.3.例题讲解。
人教版数学七年级下册 8.4三元一次方程组的解法教案第八章二元一次方程组8.4三元一次方程组的解法教学目标知识技能1.了解三元一次方程组的概念。
2.会用代入法或加减法解某个方程只有两元的简单的三元一次方程组。
3.掌握解三元一次方程组过程中化三元为二元或一元的思路。
过程与方法在学习解三元一次方程组的过程中,明确解三元一次方程组的主要思路是“消元”,从而促成未知向已知的转化,培养观察能力和体会化归的思想。
情感态度与价值观通过研究解决问题的方法,培养学生合作交流意识与探究精神。
教学重点灵活运用代入、加减法解三元一次方程组。
教学难点三元一次方程组的解法过程中的方法选择。
教学过程一、复习旧知,导入新课问题一:○1解二元一次方程组的基本思想是什么?○2解二元一次方程组的基本方法有哪几种?前面我们学习了二元一次方程组的解法.有些问题,可以设出两个未知数,列出二元一次方程组来求解.实际上,有不少问题中含有更多的未知数.大家看下面的问题.问题二:小明有12张面额分别为1元、2元、5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍.求1元、2元、5元纸币各多少张?分析:○1题目中有几个未知量?议一议: 如何解三元一次方程组⎪⎩⎪⎨⎧==++=++y x z y x z y x 4225212 问题:(1)你能把上面的方程组化成只含有两个未知数的方程组吗?(2)你能解出上面的二元一次方程组吗?(3)如何求方程组中第三个未知数的值?(4)总结解三元一次方程组的基本思路? (学生通过观察方程组特点,结合上面问题独立思考后写出消元方案,然后分组交流、互相讨论后归纳出三元一次方程组的解法步骤.)解法一: 把方程○3分别代入○1○2,得 ⎩⎨⎧=+=+2256125z y z y解这个方程组, 得⎩⎨⎧==22z y把⎩⎨⎧==22z y 代入○1,得x=8 因此, 三元一次方程组的解为 ⎪⎩⎪⎨⎧===228z y x解法二: ○1×5-○2, 得 4x+3y=38 ○4○3与○4组成方程组, 得 ⎩⎨⎧=+=38344y x y x解这个方程组, 得⎩⎨⎧==28y x 把⎩⎨⎧==28y x 代入①, 得z=2.因此,三元一次方程组的解为⎪⎩⎪⎨⎧===228z y x教师帮助学生并总结解三元一次方程组的基本思路:通过“代入”或“加减”进行消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一①②③次方程组,进而转化为解一元一次方程.即 三元一次方程组 消元 二元一次方程组 消元一元一次方程(三)例题讲解例:解三元一次方程组(让学生独立分析、解题,方法不唯一,可分别让学生板演后比较.) 解:(1) ○2×3+○2,得 11x+10z=35. ○4 ○1与○4组成方程组,得 ⎩⎨⎧=+=+351011743z x z x 解这个方程组,得⎩⎨⎧-==25z x把⎩⎨⎧-==25z x 代入○2,得 y=13. 因此,三元一次方程组的解为⎪⎪⎩⎪⎪⎨⎧-===2315z y x (思考题:你还有其它解法吗?试一试,并比较那一种解法简单?) 把①代入② ,得:7x+2z=10 ④ ○3与○4组成方程组,得 ⎩⎨⎧=+=-10271443z x z x解这个方程组,得 ⎩⎨⎧-==22z x 把 x=2代入①,得 y=-3注意: 解题时要认真观察各个方程的系数特点,选择最好的解法.但方程组中某个方程只含二元时,一般的,这个方程缺哪个元,就利用另两个方程用加减法消哪个元;如果这个二元方程系数较简单,也可以用代入法求解.(四)课堂练习①②③ ①②③ ①②③解三元一次方程组⎪⎩⎪⎨⎧-==+-=++402)1(x z z y x z y x ⎪⎩⎪⎨⎧=-=++=-0432272)2(z x z y x y x(五)课堂小结1.三元一次方程及三元一次方程组的概念是什么?三元一次方程的必备条件:①是整式方程;②含有三个未知数;③含未知数的项的次数都是1次。
人教版数学七年级下册8.4《三元一次方程解法举例》教案一. 教材分析人教版数学七年级下册8.4节选自《三元一次方程解法举例》,这部分内容是在学生已经掌握了二元一次方程组解法的基础上进行教学的。
三元一次方程组的解法与二元一次方程组解法有相似之处,也有不同之处。
本节课通过具体例子引导学生探究三元一次方程组的解法,让学生体会数学知识的广泛应用,提高学生解决实际问题的能力。
二. 学情分析七年级的学生已经掌握了二元一次方程组的解法,对解方程组有一定的认识和理解。
但面对三元一次方程组,学生可能会觉得抽象难懂,难以把握。
因此,在教学过程中,教师需要从学生的实际出发,引导学生通过合作、交流、探究等方式,理解并掌握三元一次方程组的解法。
三. 教学目标1.让学生理解三元一次方程组的含义,掌握三元一次方程组的解法。
2.培养学生运用数学知识解决实际问题的能力。
3.培养学生的合作、交流、探究能力,提高学生的逻辑思维能力。
四. 教学重难点1.重点:三元一次方程组的解法。
2.难点:三元一次方程组的解法在实际问题中的应用。
五. 教学方法采用问题驱动法、合作交流法、探究学习法等,引导学生主动参与教学过程,提高学生的学习兴趣和积极性。
六. 教学准备1.准备相关例题,用于引导学生探究三元一次方程组的解法。
2.准备实际问题,用于巩固学生对三元一次方程组解法的掌握。
3.准备多媒体教学设备,用于展示教学内容。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾二元一次方程组的解法,为新课的学习做好铺垫。
然后,教师给出一个三元一次方程组,让学生尝试解这个方程组,从而引出本节课的内容。
2.呈现(10分钟)教师呈现一个具体的三元一次方程组,引导学生进行分析。
教师通过提问方式,引导学生思考如何解决这个问题。
在学生思考的过程中,教师逐步给出解题思路,让学生理解并掌握三元一次方程组的解法。
3.操练(10分钟)教师给出几个类似的三元一次方程组,让学生独立解决。
人教版七年级下册8.4三元一次方程组的解法教学设计知识目标1.理解三元一次方程组的概念与解法2.学会使用代入法与消元法求解三元一次方程组3.能够把抽象的数学概念应用到实际问题中能力目标1.提高学生的数学思维能力,分析和解决实际问题2.培养学生的团队合作精神,增强沟通协调能力3.培养学生的自学能力,激发兴趣,探索知识教学过程导入(5分钟)介绍三元一次方程组的相关概念,如:未知数、系数、方程等,引导学生理解。
知识点讲解(15分钟)给学生讲解代入法和消元法的概念,并演示如何使用这两种方法解决三元一次方程组。
利用黑板和投影仪,让学生更好地理解。
当堂练习(25分钟)学生分成若干个小组,每个小组随机分到一个三元一次方程组实际问题,如:小王有5元和10元的硬币共两种,他一共有20枚硬币,这些硬币总的面值为90元。
请问小王有多少张5元硬币和10元硬币?学生需要分析问题,列出方程组并使用代入法或消元法来解决问题。
每组的解决方案需要在黑板上展示,并进行讨论和批评。
总结归纳(10分钟)回顾当堂练习,让学生总结代入法和消元法的特点,强调在实际问题中运用数学方法的重要性。
作业布置(5分钟)布置一些与三元一次方程组相关的作业题目,要求学生自主完成。
作业中需涉及到来自实际生活和工作的问题,这可以增加学生的兴趣,提高他们的自学能力。
教学特色1.场景化教学法通过把数学概念应用到实际问题中,让学生更加容易理解和记忆。
2.合作学习法学生分组进行当堂练习,强化了沟通和合作能力,同时激发了团队合作的精神。
3.自主学习法作业的设计涉及到实际问题,让学生自己分析问题并解决,可以提高自学能力和兴趣。
教学效果通过本课程的教学,学生能够掌握三元一次方程组的解法方法,并能够将抽象的数学概念应用到实际问题中。
学生的数学思维能力也得到了提高,同时培养了团队合作和自主学习的能力。
人教版数学七年级下册8.4《三元一次方程组解法》教案一. 教材分析《三元一次方程组解法》是初中数学人教版七年级下册的教学内容。
这部分内容是在学生已经掌握了二元一次方程组解法的基础上进行教学的,通过这部分的学习,使学生掌握三元一次方程组的概念和解法,培养学生解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了二元一次方程组的解法,但对三元一次方程组的解法还比较陌生。
因此,在教学过程中,需要引导学生通过已学的知识来探索和理解三元一次方程组的解法。
三. 教学目标1.让学生掌握三元一次方程组的概念和解法。
2.培养学生解决实际问题的能力。
3.培养学生的合作交流能力和思维能力。
四. 教学重难点1.教学重点:三元一次方程组的概念和解法。
2.教学难点:三元一次方程组的解法。
五. 教学方法采用问题驱动法、合作交流法、引导发现法等教学方法,引导学生通过已学的知识来探索和理解三元一次方程组的解法。
六. 教学准备1.教师准备课件和教学素材。
2.学生准备笔记本和笔。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入三元一次方程组的概念,引导学生思考如何解决这个问题。
2.呈现(10分钟)教师呈现三元一次方程组的解法,引导学生通过已学的知识来理解和掌握这个解法。
3.操练(10分钟)教师给出几个三元一次方程组,让学生独立解答,然后互相交流解题过程和方法。
4.巩固(5分钟)教师针对学生解答过程中出现的问题进行讲解和指导,帮助学生巩固三元一次方程组的解法。
5.拓展(5分钟)教师给出一个难度较大的三元一次方程组,让学生分组讨论和解答,培养学生的合作交流能力和思维能力。
6.小结(5分钟)教师引导学生总结三元一次方程组的解法,并强调解题过程中需要注意的问题。
7.家庭作业(5分钟)教师布置几个三元一次方程组的家庭作业,让学生巩固所学知识。
8.板书(5分钟)教师板书三元一次方程组的解法,方便学生复习和记忆。
在教学过程中,要注意引导学生通过已学的知识来探索和理解三元一次方程组的解法,注重学生合作交流能力的培养。