21.4(1)无理方程
- 格式:doc
- 大小:94.00 KB
- 文档页数:2
沪教版数学八年级下册21.4《二元二次方程组》教学设计一. 教材分析《二元二次方程组》是沪教版数学八年级下册第21章的内容,本节内容是在学生学习了二元一次方程组的基础上进行的。
二元二次方程组是实际问题中常见的数学模型,对于学生来说,掌握二元二次方程组的知识,不仅可以帮助他们解决实际问题,还可以培养他们的逻辑思维能力和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经学习了二元一次方程组,对解方程组有一定的了解。
但二元二次方程组与二元一次方程组在形式和求解方法上都有很大的不同,所以学生可能需要一定的时间来适应和理解。
同时,学生对于解决实际问题的能力也各不相同,需要老师在教学中进行因材施教。
三. 教学目标1.知识与技能:使学生掌握二元二次方程组的定义,了解二元二次方程组的解法,能够运用二元二次方程组解决实际问题。
2.过程与方法:通过小组合作,培养学生解决问题的能力,提高学生的逻辑思维能力。
3.情感态度价值观:激发学生学习数学的兴趣,培养学生积极面对困难,勇于挑战的精神。
四. 教学重难点1.重点:二元二次方程组的定义,二元二次方程组的解法。
2.难点:如何将实际问题转化为二元二次方程组,以及如何运用二元二次方程组解决实际问题。
五. 教学方法1.情境教学法:通过设置实际问题,激发学生的学习兴趣,引导学生主动探索。
2.小组合作教学法:通过小组讨论,培养学生的团队协作能力,提高学生解决问题的能力。
3.案例教学法:通过分析具体案例,使学生更好地理解二元二次方程组的应用。
六. 教学准备1.准备相关的实际问题,用于导入和巩固环节。
2.准备PPT,用于呈现和讲解二元二次方程组的相关知识。
3.准备练习题,用于课后巩固和拓展。
七. 教学过程1.导入(5分钟)老师通过设置一个实际问题,引出二元二次方程组的概念。
例如,某商店同时销售两种商品A和B,售价分别为每件100元和80元,顾客购买商品A和B的数量分别为a和b,已知该商店一天的总销售额为1500元,请问顾客购买了这两种商品的数量分别是多少?2.呈现(10分钟)老师通过PPT呈现二元二次方程组的定义和解法,让学生了解二元二次方程组的形式和求解方法。
(一) 二元二次方程的定义:仅含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,叫做二元二次方程。
关于x 、y 的二元二次方程的一般形式是:220ax bxy cy dx ey f +++++=(a 、b 、c 、d 、f 都是常数,且a 、b 、c 中至少有一个不是零;当b 为零时,a 与d 以及c 与e 分别不全为零)。
(二) 解二元二次方程组的基本方法:把一个未知数用另一个未知数的代数式表示,代入消元,解一元方程,回代,写出原方程组的解。
【例题1】 【基础、提高】关于x ,y 的方程2ax y xy +=的两组解是13x y =⎧⎨=⎩和2x ky =⎧⎨=⎩,则2k a -+的值是_______。
【尖子】方程组2224510x y xy x ⎧+-=⎨=⎩的解是( )。
.A 20x y =⎧⎨=⎩ .B 24x y =⎧⎨=⎩ .C 1120x y =⎧⎨=⎩,2224x y =⎧⎨=⎩ .D 1122x y =⎧⎨=⎩,2224x y =⎧⎨=⎩【例题2】 【基础】解方程组:221870x y y x -=⎧⎨-+=⎩。
第四讲 二元二次方程组【提高、尖子】解方程组:23010x y x y --=⎧⎨++=⎩。
【例题3】【基础】方程组22520x y x xy y +=⎧⎨+-=⎩可化为两个方程组50x y x y +=⎧⎨-=⎩或5_______x y +=⎧⎨⎩。
【提高】解方程组:22210230x y x xy y --=⎧⎨++=⎩。
【尖子】二元二次方程组2221020x y x x y ⎧--+=⎨-=⎩的解是_______。
【例题4】【基础】解方程组712x y xy +=⎧⎨=⎩①②有两种方法:第一种方法是方程①化为_______y =(或_______x =),代入②转化为一元二次方程解之;第二种方法是根据一元二次方程根与系数的关系,把x 、y 看成是方程_____________的两个根,通过解这个方程得到原方程的解。
两点间距离公式沪科版是八年级上册1. 如果直角坐标平面内有两点11(,)A x y 、22(,)B x y ,那么A 、B 两点的距离AB =2. 八年级知识点总结第十六章 二次根式第一节 二次根式的概念和性质16.1 二次根式1. 二次根式的概念: 式子)0(≥a a 叫做二次根式.注意被开方数只能是正数或0。
2. 二次根式的性质 ①⎩⎨⎧≤-≥==)0()0(2a a a a a a ; ②)0()(2≥=a a a ③)0,0(≥≥⋅=b a b a ab ; ④)0,0(>≥=b a ba b a 16.2 最简二次根式与同类二次根式1. (1)被开方数中因式的指数都为1;(2)被开方数不含有分母。
被开方数同时符合上述两个条件的二次根式,叫作最简二次根式。
2.化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式16.3 二次根式的运算1.二次根式的加减:先把各个二次根式化成最简二次根式,再把同类二次根式分别合并.2.二次根式的乘法:两个二次根式相乘,被开方数相乘,根指数不变。
即 ).0,0(≥≥=⋅b a ab b a3.二次根式的除法:两个二次根式相除,被开方数相除,根指数不变。
4.二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化.二次根式的运算法则:≥0)).0,0(≥≥=⋅b a ab b a=a ≥0,b>0)n =≥0)5.混合运算:两个含有二次根式的非零代数式相乘,如果它们的积不含有有二次根式,我们就说这两个含有二次根式的非零代数式互为有理化因式。
第十七章 一元二次方程17.1 一元二次方程的概念1.只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程。
2.一般形式y=ax ²+bx+c (a ≠0),称为一元二次方程的一般式,ax 2叫做二次项,a 是二次项系数;bx 叫做一次项,b 是一次项系数;c 叫做常数项17.2 一元二次方程的解法1.特殊的一元二次方程的解法:开平方法,分解因式法2.一般的一元二次方程的解法:配方法、求根公式法3.求根公式x =:12x x ==; △=24b ac -≥017.3 一元二次方程的判别式1.一元二次方程20(0)ax bx c a ++=≠:△>0时,方程有两个不相等的实数根△=0时,方程有两个相等的实数根△<0时,方程没有实数根2.反过来说也是成立的17.4 一元二次方程的应用1.一般来说,如果二次三项式2ax bx c ++(0a ≠)通过因式分解得2ax bx c ++=12()()a x x x x --;1x 、2x 是一元二次方程20(0)ax bx c a ++=≠的根2.把二次三项式分解因式时;如果24b ac -≥0,那么先用公式法求出方程的两个实数根,再写出分解式如果24b ac -<0,那么方程没有实数根,那此二次三项式在实数范围内不能分解因式3. 实际问题:设,列,解,答 第十八章 正比例函数和反比例函数18.1.函数的概念1.在问题研究过程中,可以取不同数值的量叫做变量;保持数值不变的量叫做常量2.在某个变化过程中有两个变量,设为x 和y ,如果在变量x 的允许取之范围内,变量y 随变量x 的变化而变化,他们之间存在确定的依赖关系,那么变量y 叫做变量x 的函数,x 叫做自变量3.表达两个变量之间依赖关系的数学式子称为函数解析式()y f x =4.函数的自变量允许取值的范围,叫做这个函数的定义域;如果变量y 是自变量x 的函数,那么对于x 在定义域内取定的一个值a ,变量y 的对应值叫做当x=a 时的函数值。
六年级上册第一章数的整除第1节整数和整除1.1 整数和整除的意义1.2 因数和倍数1.3 能被2,5整除的数第2节分解素因数1.4 素数、合数与分解素因数1.5 公因数与最大公因数1.6 倍数与最小公倍数拓展求三个整数的最小公倍数第二章分数第1节分数的意义和性质2.1 分数与除法2.2 分数的基本性质2.3 分数的大小比较第2节分数的运算2.4 分数的加减法2.5 分数的乘法2.6 分数的除法2.7 分数与小数的互化拓展无限循环小数与分数的互化2.8 分数、小数的四则混合运算2.9 分数运算的应用第三章比和比例第1节比和比例3.1 比的意义3.2 比的基本性质3.3 比例第2节百分比3.4 百分比的意义3.5 百分比的应用3.6 等可能事件第四章圆和扇形第1节圆的周长和弧长4.1 圆的周长4.2 弧长第2节圆和扇形的面积4.3 圆的面积4.4 扇形的面积六年级下册第五章有理数第1节有理数5.1 有理数的意义5.2 数轴5.3 绝对值第2节有理数的运算5.4 有理数的加法5.5 有理数的减法5.6 有理数的乘法5.7 有理数的除法5.8 有理数的乘方5.9 有理数的混合运算5.10 科学计数法第六章一次方程(组)和一次不等式(组)第1节方程与方程的解6.1 列方程6.2 方程的解第2节一元一次方程6.3 一元一次方程及其解法6.4 一元一次方程的应用第3节一元一次不等式(组)6.5 不等式及其性质6.6 一元一次不等式的解法6.7 一元一次不等式组第4节一次方程组6.8 二元一次方程6.9 二元一次方程组及其解法6.10 三元一次方程组及其解法6.11 一次方程组的应用第七章线段与角的画法第1节线段的相等与和、差、倍7.1 线段的大小比较7.2 画线段的和、差、倍第2节角7.3 角的概念与表示7.4 角的大小比较、画相等的角7.5 画角的和、差、倍7.6 余角、补角第八章长方体的再认识第1节长方体的元素第2节长方体直观图的画法第3节长方体的棱与棱位置关系的认识第4节长方体中棱与平面位置关系的认识第5节长方体中平面与平面位置关系的认识七年级上册第九章整式第1节整式的概念9.1 字母表示数9.2 代数式9.3 代数式的值9.4 整式第2节整式的加减9.5 合并同类项9.6 整式的加减第3节整式的乘法9.7 同底数幂的乘法9.8 幂的乘方9.9 积的乘方9.10 整式的乘法第4节乘法公式9.11 平方差公式9.12 完全平方公式第5节因式分解9.13 提取公因式法9.14 公式法9.15 十字相乘法9.16 分组分解法第6节整式的除法9.17 同底数幂的除法9.18 单项式除以单项式9.19 多项式除以单项式第十章分式第1节分式10.1 分式的意义10.2 分式的基本性质第2节分式的运算10.3 分式的乘除10.4 分式的加减10.5 可化为一元一次方程的分式方程10.6 整数指数幂及其运算第十一章图形的运动第1节图形的运动11.1 图形的平移第2节图形的旋转11.2 旋转11.3 旋转对称图形与中心对称图形11.4 中心对称第3节图形的翻折11.5 翻折与轴对称图形11.6 轴对称七年级下册第十二章实数第1节实数的概念12.1 实数的概念第2节数的开方12.2 平方根和开平方12.3 立方根和开立方12.4 n次方第3节实数的运算12.5 用数轴上的点表示实数12.6 实数的运算第4节分数指数幂12.7 分数指数幂第十三章相交线平行线第1节相交线13.1 邻补角、对顶角13.2 垂线13.3 同位角、内错角、同旁内角第2节平行线13.4 平行线的判定13.5 平行线的性质第十四章三角形第1节三角形的有关概念与性质14.1 三角形的有关概念14.2 三角形的内角和第2节全等三角形14.3 全等三角形的概念与性质14.4 全等三角形的判定第3节等腰三角形14.5 等腰三角形的性质14.6 等腰三角形的判定14.7 等边三角形第十五章平面直角坐标系第1节平面直角坐标系15.1 平面直角坐标系第2节直角坐标平面内点的运动15.2 直角坐标平面内的运动八年级上册第十六章二次根式第1节二次根式的概念和性质16.1 二次根式16.2 最简二次根式和同类二次根式第2节二次根式的运算16.3 二次根式的运算第十七章一元二次方程第1节一元二次方程的概念17.1 一元二次方程的概念第2节一元二次方程的解法17.2 一元二次方程的解法17.3 一元二次方程根的判别式第3节一元二次方程的应用17.4 一元二次方程的应用第十八章正比例函数和反比例函数第1节正比例函数18.1 函数的概念18.2 正比例函数第2节反比例函数18.3 反比例函数第3节函数的表示法18.4 函数的表示法第十九章几何证明第1节几何证明19.1 命题和证明19.2 证明举例第2节线段的垂直平分与角的平分线19.3 逆命题和逆定理19.4 线段的垂直平分线19.5 角的平分线19.6 轨迹第3节直角三角形19.7 直角三角形全等的判定19.8 直角三角形的性质19.9 勾股定理19.10 两点的距离公式八年级下册第二十章一次函数第1节一次函数的概念20.1 一次函数的概念第2节一次函数的图像与性质20.2 一次函数的图像20.3 一次函数的性质第3节一次函数的应用20.4 一次函数的应用第二十一章代数方程第1节整式方程21.1 一元整式方程21.2 特殊的高次方程的解法第2节分式方程21.3 可化为一元二次方程的分式方程第3节无理方程21.4 无理方程第4节二元二次方程组21.5 二元二次方程和方程组21.6 二元二次方程组的解法第5节列方程(组)解应用题21.7 列方程(组)解应用题第二十二章四边形第1节多边形22.1 多边形第2节平行四边形22.2 平行四边形22.3 特殊的平行四边形第3节梯形22.4 梯形22.5 等腰梯形22.6 三角形、梯形的中位线第4节平面向量及其加减运算22.7 平面向量22.8 平面向量的加法22.9 平面向量的减法第二十三章概率初步第1节事件及其发生的可能性23.1 确定事件和随机事件23.2 事件发生的可能性第2节事件的概率23.3 事件的概率23.4 概率计算举例九年级上册第二十四章相似三角形第1节相似形24.1 放缩与相似形第2节比例线段24.2 比例线段24.3 三角形一边的平行线第3节相似三角形24.4 相似三角形的判定24.5 相似三角形的性质第4节平面向量的线性运算24.6 实数与向量相乘24.7 向量的线性运算第二十五章锐角的三角比第1节锐角的三角比25.1 锐角的三角比的意义25.2 求锐角的三角比的值第2节解直角三角形25.3 解直角三角形25.4 解直角三角形的应用第二十六章二次函数第1节二次函数的概念26.1 二次函数的概念第2节二次函数的图像26.2 特殊二次函数的图像26.3 二次函数的图像九年级下册第二十七章圆与多边形第1节圆的基本性质27.1 圆的确定27.2 圆心角、弧、弦、弦心距之间的关系27.3 垂径定理第2节直线与圆、圆与圆的位置关系27.4 直线与圆的位置关系27.5 圆与圆的位置关系第3节正多边形与圆27.6 正多边形与圆第二十八章统计初步第1节统计的意义28.1 数据整理与表示28.2 统计的意义第2节基本的统计量28.3 表示一组数据平均水平的量28.4 表示一组数据波动程度的量28.5 表示一组数据分布的量28.6 统计实习九年级拓展第一章一元二次方程与二次函数第1节一元二次方程的根与系数关系1.1 一元二次方程的根与系数关系第2节二次函数的解析式1.2 二次函数与一元二次方程1.3 二次函数解析式的确定第二章直线与圆第1节圆的切线2.1 圆的切线第2节与圆有关的角及线段2.2 与圆有关的角2.3 与圆有关的线段第3节圆内接四边形2.4 圆内接四边形。
沪教版数学八年级下册21.4《二元二次方程组》教学设计一. 教材分析《二元二次方程组》是沪教版数学八年级下册第21章“方程与不等式”的第四节内容。
本节课的主要内容是让学生掌握二元二次方程组的定义、解法及应用。
通过学习,学生能理解二元二次方程组的概念,掌握用代入法、消元法求解二元二次方程组的方法,并能够解决实际问题。
教材中安排了丰富的例题和练习题,有助于学生巩固所学知识。
二. 学情分析学生在八年级上册已经学习了二元一次方程组的相关知识,对解方程组有一定的基础。
但二元二次方程组与二元一次方程组在形式和求解方法上有较大的区别,需要学生重新建立认知结构。
此外,学生需要进一步培养抽象思维能力、问题解决能力和合作交流能力。
三. 教学目标1.知识与技能目标:理解二元二次方程组的定义,掌握用代入法、消元法求解二元二次方程组的方法,并能够解决实际问题。
2.过程与方法目标:通过自主学习、合作交流,培养学生抽象思维能力和问题解决能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:二元二次方程组的定义,代入法、消元法求解二元二次方程组。
2.难点:理解二元二次方程组的解法及应用。
五. 教学方法1.情境教学法:通过生活实例引入二元二次方程组,激发学生学习兴趣。
2.启发式教学法:引导学生主动探究二元二次方程组的解法,培养学生的抽象思维能力。
3.合作学习法:学生进行小组讨论,共同解决问题,提高学生的合作交流能力。
4.反馈评价法:及时给予学生反馈,鼓励学生积极参与课堂活动。
六. 教学准备1.教学课件:制作课件,展示二元二次方程组的相关概念、解法及应用。
2.练习题:准备适量的练习题,巩固所学知识。
3.教学工具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)利用生活实例引入二元二次方程组,激发学生学习兴趣。
如:某商店同时销售两种商品A和B,售价分别为每件100元和80元。
六年级上册第一章数的整除第 1 节整数和整除1.1 整数和整除的意义1.2 因数和倍数1.3 能被 2,5 整除的数第 2 节分解素因数1.4 素数、合数与分解素因数1.5 公因数与最大公因数1.6 倍数与最小公倍数拓展求三个整数的最小公倍数第二章分数第 1 节分数的意义和性质2.1 分数与除法2.2 分数的基天性质2.3 分数的大小比较第 2 节分数的运算2.4 分数的加减法2.5 分数的乘法2.6 分数的除法2.7 分数与小数的互化拓展无穷循环小数与分数的互化2.8 分数、小数的四则混淆运算2.9 分数运算的应用第三章比和比率第1节比和比率3.1 比的意义3.2 比的基天性质3.3 比率3.4 百分比的意义3.5 百分比的应用3.6 等可能事件第四章圆和扇形第 1 节圆的周长和弧长4.1 圆的周长4.2 弧长第 2 节圆和扇形的面积4.3 圆的面积4.4 扇形的面积六年级下册第五章有理数第1节有理数5.1 有理数的意义5.2 数轴5.3 绝对值第 2 节有理数的运算5.4 有理数的加法5.5 有理数的减法5.6 有理数的乘法5.7 有理数的除法5.8 有理数的乘方5.9 有理数的混淆运算5.10 科学计数法第六章一次方程(组)和一次不等式(组)第 1 节方程与方程的解6.1 列方程第 2 节一元一次方程6.3 一元一次方程及其解法6.4 一元一次方程的应用第 3 节一元一次不等式(组)6.5 不等式及其性质6.6 一元一次不等式的解法6.7 一元一次不等式组第 4 节一次方程组6.8 二元一次方程6.9 二元一次方程组及其解法6.10 三元一次方程组及其解法6.11 一次方程组的应用第七章线段与角的画法第 1 节线段的相等与和、差、倍7.1 线段的大小比较7.2 画线段的和、差、倍第2节角7.3 角的观点与表示7.4 角的大小比较、画相等的角7.5 画角的和、差、倍7.6 余角、补角第八章长方体的再认识第 1 节长方体的元素第 2 节长方体直观图的画法第 3 节长方体的棱与棱地点关系的认识第 4 节长方体中棱与平面地点关系的认识第 5 节长方体中平面与平面地点关系的认识七年级上册第九章整式第 1 节整式的观点9.1 字母表示数9.2 代数式9.3 代数式的值9.4 整式第 2 节整式的加减9.5 归并同类项9.6 整式的加减第 3 节整式的乘法9.7 同底数幂的乘法9.8 幂的乘方9.9 积的乘方9.10 整式的乘法第4节乘法公式9.11 平方差公式9.12 完整平方公式第5节因式分解9.13 提取公因式法9.14 公式法9.15 十字相乘法9.16 分组分解法第 6 节整式的除法9.17 同底数幂的除法9.18 单项式除以单项式9.19 多项式除以单项式第十章分式第1节分式10.1 分式的意义10.2 分式的基天性质第 2 节分式的运算10.3 分式的乘除10.4 分式的加减10.5 可化为一元一次方程的分式方程10.6 整数指数幂及其运算第十一章图形的运动第 1 节图形的运动11.1 图形的平移第 2 节图形的旋转11.2 旋转11.3 旋转对称图形与中心对称图形11.4 中心对称第 3 节图形的翻折11.5 翻折与轴对称图形11.6 轴对称七年级下册第十二章实数第 1 节实数的观点12.1 实数的观点第2节数的开方12.2 平方根和开平方12.3 立方根和开立方12.4 n 次方第 3 节实数的运算12.5 用数轴上的点表示实数12.6 实数的运算第 4 节分数指数幂12.7 分数指数幂第十三章订交线平行线第1节订交线13.1 邻补角、对顶角13.2 垂线13.3 同位角、内错角、同旁内角第2节平行线13.4 平行线的判断13.5 平行线的性质第十四章三角形第 1 节三角形的相关观点与性质14.1 三角形的相关观点14.2 三角形的内角和第 2 节全等三角形14.3 全等三角形的观点与性质14.4 全等三角形的判断第 3 节等腰三角形14.5 等腰三角形的性质14.6 等腰三角形的判断14.7 等边三角形第十五章平面直角坐标系第 1 节平面直角坐标系15.1 平面直角坐标系第 2 节直角坐标平面内点的运动15.2 直角坐标平面内的运动八年级上册第十六章二次根式第 1 节二次根式的观点和性质16.1 二次根式16.2 最简二次根式和同类二次根式第 2 节二次根式的运算16.3 二次根式的运算第十七章一元二次方程第 1 节一元二次方程的观点17.1 一元二次方程的观点第 2 节一元二次方程的解法17.2 一元二次方程的解法17.3 一元二次方程根的鉴别式第 3 节一元二次方程的应用17.4 一元二次方程的应用第十八章正比率函数和反比率函数第 1 节正比率函数18.1 函数的观点18.2 正比率函数第 2 节反比率函数18.3 反比率函数第 3 节函数的表示法18.4 函数的表示法第十九章几何证明第1节几何证明19.1 命题和证明19.2 证明举例第 2 节线段的垂直均分与角的均分线19.3 抗命题和逆定理19.4 线段的垂直均分线19.5 角的均分线19.6 轨迹第 3 节直角三角形19.7 直角三角形全等的判断19.8 直角三角形的性质19.9 勾股定理19.10 两点的距离公式八年级下册第二十章一次函数第 1 节一次函数的观点20.1 一次函数的观点第 2 节一次函数的图像与性质20.2 一次函数的图像20.3 一次函数的性质第 3 节一次函数的应用20.4 一次函数的应用第二十一章代数方程第1节整式方程21.1 一元整式方程21.2 特别的高次方程的解法第2节分式方程21.3 可化为一元二次方程的分式方程第3节无理方程21.4 无理方程第 4 节二元二次方程组21.5 二元二次方程和方程组21.6 二元二次方程组的解法第 5 节列方程(组)解应用题21.7 列方程(组)解应用题第二十二章四边形第1节多边形22.1 多边形第 2 节平行四边形22.2 平行四边形22.3 特别的平行四边形第3节梯形22.4 梯形22.5 等腰梯形22.6 三角形、梯形的中位线第 4 节平面向量及其加减运算22.7 平面向量22.8 平面向量的加法22.9 平面向量的减法第二十三章概率初步第 1 节事件及其发生的可能性23.1 确立事件和随机事件23.2 事件发生的可能性第 2 节事件的概率23.3 事件的概率23.4 概率计算举例九年级上册第二十四章相像三角形第1节相像形24.1 放缩与相像形第2节比率线段24.2 比率线段24.3 三角形一边的平行线第 3 节相像三角形24.4 相像三角形的判断24.5 相像三角形的性质第 4 节平面向量的线性运算24.6 实数与向量相乘24.7 向量的线性运算第二十五章锐角的三角比第 1 节锐角的三角比25.1 锐角的三角比的意义25.2 求锐角的三角比的值第 2 节解直角三角形25.3 解直角三角形25.4 解直角三角形的应用第二十六章二次函数第 1 节二次函数的观点26.1 二次函数的观点第 2 节二次函数的图像26.2 特别二次函数的图像26.3 二次函数 y = ??(??+ ??)2 + ??的图像九年级下册第二十七章圆与多边形第 1 节圆的基天性质27.1 圆确实定27.2 圆心角、弧、弦、弦心距之间的关系27.3 垂径定理第 2 节直线与圆、圆与圆的地点关系(沪教版)初中数学教材目录27.4 直线与圆的地点关系27.5 圆与圆的地点关系第 3 节正多边形与圆27.6 正多边形与圆第二十八章统计初步第 1 节统计的意义28.1 数据整理与表示28.2 统计的意义第 2 节基本的统计量28.3 表示一组数据均匀水平的量28.4 表示一组数据颠簸程度的量28.5 表示一组数据散布的量28.6 统计实习九年级拓展第一章一元二次方程与二次函数第 1 节一元二次方程的根与系数关系1.1 一元二次方程的根与系数关系第 2 节二次函数的分析式1.2 二次函数与一元二次方程1.3 二次函数分析式确实定第二章直线与圆第1节圆的切线2.1 圆的切线第 2 节与圆相关的角及线段2.2 与圆相关的角2.3 与圆相关的线段第 3 节圆内接四边形2.4 圆内接四边形11 / 11。
上海市沪教版八年级数学上册知识点梳理第十六章 二次根式第一节 二次根式的概念和性质16.1 二次根式1. 二次根式的概念: 式子)0(≥a a 叫做二次根式.注意被开方数只能是正数或0。
2. 二次根式的性质 ①⎩⎨⎧≤-≥==)0()0(2a a a a a a ; ②)0()(2≥=a a a ③)0,0(≥≥⋅=b a b a ab ; ④)0,0(>≥=b a b a b a 16.2 最简二次根式与同类二次根式1. 被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.2.化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式16.3 二次根式的运算1.二次根式的加减:先把各个二次根式化成最简二次根式,再把同类三次根式分别合并.2.二次根式的乘法:等于各个因式的被开方数的积的算术平方根,即 ).0,0(≥≥=⋅b a ab b a3.二次根式的和相乘,可参照多项式的乘法进行.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个三次根式互为有理化因式.4.二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化.二次根式的运算法则:≥0) ).0,0(≥≥=⋅b a ab b a=a ≥0,b>0) n ≥0)第十七章 一元二次方程17.1 一元二次方程的概念1.只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程2.一般形式y=ax ²+bx+c (a ≠0),称为一元二次方程的一般式,ax 叫做二次项,a 是二次项系数;bx 叫做一次项,b 是一次项系数;c 叫做常数项17.2 一元二次方程的解法1.特殊的一元二次方程的解法:开平方法,分解因式法2.一般的一元二次方程的解法:配方法、求根公式法3.求根公式2b x a -±=:1222b b x x a a---= , = ;△=24b ac -≥0 17.3 一元二次方程的判别式1.一元二次方程20(0)ax bx c a ++=≠:△>0时,方程有两个不相等的实数根△=0时,方程有两个相等的实数根△<0时,方程没有实数根2.反过来说也是成立的17.4 一元二次方程的应用1.一般来说,如果二次三项式2ax bx c ++(0a ≠)通过因式分解得2ax bx c ++=12()()a x x x x --;1x 、2x 是一元二次方程20(0)ax bx c a ++=≠的根2.把二次三项式分解因式时;如果24b ac -≥0,那么先用公式法求出方程的两个实数根,再写出分解式如果24b ac -<0,那么方程没有实数根,那此二次三项式在实数范围内不能分解因式3. 实际问题:设,列,解,答第十八章 正比例函数和反比例函数18.1.函数的概念1.在问题研究过程中,可以取不同数值的量叫做变量;保持数值不变的量叫做常量2.在某个变化过程中有两个变量,设为x 和y ,如果在变量x 的允许取之范围内,变量y 随变量x 的变化而变化,他们之间存在确定的依赖关系,那么变量y 叫做变量x 的函数,x 叫做自变量3.表达两个变量之间依赖关系的数学是自称为函数解析式()y f x =4.函数的自变量允许取之的范围,叫做这个函数的定义域;如果变量y 是自变量x 的函数,那么对于x 在定义域内去顶的一个值a ,变量y 的对应值叫做当x=a 时的函数值18.2 正比例函数1. 如果两个变量每一组对应值的比是一个不等于零的常数,那么就说这两个变量成正比例2.正比例函数:解析式形如y=kx (k 是不等于零的常数)的函数叫做正比例函数,气质常数k 叫做比例系数;正比例函数的定义域是一切实数3.对于一个函数()y f x =,如果一个图形上任意一点的坐标都满足关系式()y f x =,同时以这个函数解析式所确定的x 与y 的任意一组对应值为坐标的点都在图形上,那么这个图形叫做函数()y f x =的图像4.一般地,正比例函数y kx =(0)k k ≠是常数且的图像时经过原点O (0,0)和点(1,k )的一条直线,我们把正比例函数y kx =的图像叫做直线y kx =5. 正比例函数y kx =(0)k k ≠是常数且有如下性质:(1)当k <0时,正比例函数的图像经过一、三象限,自变量x 的值逐渐增大时,y 的值也随着逐渐增大(2)当k <0时 ,正比例函数的图像经过二、四象限,自变量x 的值逐渐增大时,y 的值则随着逐渐减小18.3 反比例函数1.如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例2.解析式形如(0)k y k k x=≠是常数,的函数叫做反比例函数,其中k 也叫做反比例系数 反比例函数的定义域是不等于零的一切实数 3.反比例函数(0)k y k k x =≠是常数,有如下性质: (1)当k >0时,函数图像的两支分别在第一、三象限,在每一个象限内,当自变量x 的值逐渐增大时,y 的值则随着逐渐减小(2)当k <0时 ,函数图像的两支分别在第二、四象限,在每一个象限内。
上海教育出版社六-九年级数学目录六年级上册第一章数的整除第一节整数和整除1.1整数和整除的意义1.2因数和倍数1.3能被2、5整除的数第二节分解质因数1.4素数、合数与分解质因数1.5公因数与最大公因数1.6公倍数与最小公倍数第二章分数第一节分数的意义和性质2.1分数与除法2.2分数的基本性质2.3分数的大小比较第二节分数的运算2.4分数的加减法2.5分数的乘法2.6分数的除法2.7分数与小数的互化第三章比和比例第一节比和比例3.1比的意义3.2比的基本性质3.3比例第二节百分比3.4百分比的意义3.5百分比的应用3.6等可能事件第四章圆和扇形第一节圆的周长和弧长4.1圆的周长4.2弧长第二节圆和扇形的面积4.3圆的面积4.4扇形的面积六年级下册第五章有理数第一节有理数5.1有理数的意义5.2数轴5.3绝对值第二节有理数的运算5.4有理数的加法5.5有理数的减法5.6有理数的乘法5.7有理数的除法5.8有理数的乘方5.9有理数的混合运算5.10科学记数法第六章一次方程(组)和一次不等式第一节方程与方程的解6.1列方程6.2方程的解第二节一元一次方程6.3一元一次方程及其解法6.4一元一次方程的应用第三节一元一次不等式(组)6.5不等式及其性质6.6一元一次不等式的解法6.7一元一次不等式组第四节一次方程组6.8二元一次方程6.9二元一次方程组及其解法6.10三元一次方程组及其解法6.11一次方程组的应用第七章线段与角的画法第一节线段的相等与和、差、倍7.1线段的大小的比较7.2画线段的和、差、倍第二节角7.3角的概念与表示7.4角的大小的比较、画相等的角7.5画角的和、差、倍7.6余角、补角第八章长方体的再认识第一节长方体的元素第二节长方体直观图的画法第三节长方体中棱与棱的位置关系第四节长方体中棱与平面的位置关系第五节长方体中平面与平面的位置关系第九章整式第一节整式的概念9.1字母表示数9.2代数式9.3代数式的值9.4整式第二节整式的加减9.5合并同类项9.6整式的加减第三节整式的乘法9.7同底数幂的乘法9.8积的乘方9.9幂的乘方9.10整式的乘法第四节乘法公式9.11平方差公式9.12完全平方七年级上册公式第五节因式分解9.13提取公因式法9.14公式法9.15十字相乘法9.16分组分解法第六节整式的除法9.17单项式除以单项式9.18同底数幂的除法9.19多项式除以单项式第十章分式第一节分式10.1分式的意义10.2分式的基本性质第二节分式的运算10.3分式的乘除10.4分式的加减10.5可化为一元一次方程的分式方程10.6整数指数幂及其运算第十一章图形的运动第一节图形的平移11.1 平移第二节图形的旋转11.2旋转11.3旋转对称图形与中心对称图形11.4中心对称第三节图形的翻折11.5翻折与轴对称图形11.6轴对称七年级下册第十二章实数第一节实数的概念12.1 实数的概念第二节数的开方12.2平方根和开平方12.3立方根和开立方12.4n次方根第三节实数的运算12.5用数轴上的点表示数12.6实数的运算第四节分数指数幂12.7 分数指数幂第十三章相交线平行线第一节相交线13.1邻补角、对顶角13.2垂线13.3同位角、内错角、同旁内角第二节平行线13.4平行线的判定13.5平行线的性质第十四章三角形第一节三角形的有关概念与性质14.1三角形的有关概念14.2三角形的内角和第二节全等三角形14.3全等三角形的概念与性质14.4全等三角形的判定第三节等腰三角形14.5等腰三角形的性质14.6等腰三角形的判定14.7等边三角形第十五章平面直角坐标系第一节平面直角坐标系15.1 平面直角坐标系第二节直角坐标平面内点运动直角坐标平面内点运动八年级上册第十六章二次根式第一节二次根式的概念和性质16.1二次根式16.2最简二次根式和同类二次根式第二节二次根式的运算16.3 二次根式的运算第十七章一元二次方程第一节一元二次方程的概念17.1 一元二次方程的概念第二节一元二次方程的解法17.2一元二次方程的解法17.3一元二次方程的判别式第三节一元二次方程的应用17.4 一元二次方程的应用第十八章正比例函数和反比例函数第一节正比例函数18.1函数的概念18.2正比例函数第二节反比例函数18.3 反比例函数第三节函数的表示法18.4 函数的表示法第十九章几何证明第一节几何证明19.1命题和证明19.2证明举例第二节线段的垂直平分线与角的平分线19.3逆命题和逆定理19.4线段的垂直平分线19.5角的平分线19.6轨迹第三节直角三角形19.7直角三角形全等的判定19.8直角三角形的性质19.9勾股定理19.10两点的距离公式八年级下册第二十章一次函数第一节一次函数的概念20.1 一次函数的概念第二节一次函数的图像与性质20.2 一次函数的图像20.3 一次函数的性质第三节一次函数的应用20.4一次函数的应用阅读材料直线型经验公式第二十一章代数方程第一节整式方程21.1一元整式方程21.2二项方程第二节分式方程21.3 可化为一元二次方程的分式方程第三节无理方程21.4 无理方程第四节二元二次方程组21.5二元二次方程和方程组21.6二元二次方程组的解法第五节列方程(组)解应用题21.7 列方程(组)解应用题阅读材料一些特殊的一元高次方程的解法第二十二章四边形第一节多边形22.1 多边形第二节平行四边形22.2平行四边形22.3特殊的平行四边形第三节梯形22.4梯形22.5等腰梯形22.6三角形、梯形的中位线第四节平面向量及其加减运算22.7平面向量22.8平面向量的加法22.9平面向量的减法阅读材料用向量方法证明几何问题第二十三章概率初步第一节事件及其发生的可能性23.1确定事件和随机事件23.2事件发生的可能性第二节事件的概率23.3事件的概率23.4概率计算举例探究活动杨辉三角与路径问题九年级上册第二十四章相似三角形第一节相似形24.1 放缩与相似形第二节比例线段24.2比例线段24.3三角形一边的平行线第三节相似三角形24.4相似三角形的判定24.5相似三角形的性质第四节平面向量的线性运算24.6实数与向量相乘24.7平面向量的分解第二十五章锐角的三角比第一节锐角的三角比25.1锐角的三角比的意义25.2求锐角的三角比的值第二节解直角三角形25.3解直角三角形25.4解直角三角形的应用第二十六章二次函数第一节二次函数的概念26.1 二次函数的概念第二节二次函数的图像26.2特殊二次函数的图像26.3二次函数2()y a x m k=++的图像九年级下册第二十七章圆27.1圆的确定27.2(1)圆心角、弧、弦、弦心距之间的关系27.2(2)弦与圆心角的关系27.3(1)垂径定理及其推论27.3(2)垂径定理的应用27.4直线与圆的位置关系27.5(1)圆与圆的五个位置关系27.5(2)圆与圆位置关系中的两解问题27.5(3)两圆的连心线27.6正多边形与圆第二十八章统计初步28.1数据的整理与表示28.2统计的意义28.3(1)表示一组数据平均水平的量(平均数)28.3(2)截尾平均数、中位数和众数28.4表示一组数据波动程度的量28.5表示一组数据分布的量28.6统计实习。
第7讲 无理方程模块一:无理方程的概念和解法知识精讲1.无理方程的概念方程中含有根式,且被开方数是含有未知数的代数式,这样的方程叫做无理方程.2.解无理方程的方法通过平方把无理方程转化为整式方程,再求解.3.解无理方程的一般步骤(1)方程两边平方,化成整式方程;(2)解这个整式方程,求出整式方程的根;(3)检验.直接代入原方程中,看其是否成立.如果成立,则这个根为原方程的根,从而解出原方程的解;如果不成立,则这个根为增根,方程无解.例题解析例1.下列方程是哪些是关于x 的无理方程?(1)49=;(2)26250-=;(3)1211x -=;(41=;(5)27-=;(6)21x -=.【难度】★【答案】(1)、(2)、(3)、(4)、(6)是无理方程.【解析】根据无理方程的概念,方程中含有根式,并且被开方数是含有未知数的代数式的方程叫做无理方程,可知(1)、(2)、(4)、(6)都是无理方程,12x =,可知(3)也是无理方程.【总结】考查无理方程的概念,方程中根号内含有未知数即可.例2.下列哪个方程有实数解()A 0=B 30+=C 2=D x=-【难度】★【答案】D【解析】根据二次根式的双重非负性,对A 选项,1x ³³无实数解;对B 330+³¹,可知方程无实数解;对C 选项,1040x x -³ìí--³î,x 无解,即方程无实数解;故选D .【总结】考查对无理方程解的判断,根据二次根式双重非负性即可进行简单判定.例3.若方程1k +=有解,则k 的取值范围是________.【难度】★【答案】1k ³.【解析】移项得1k =-,方程有解,根据二次根式的非负性,可得10k -³,得1k ³.【总结】考查无理方程有解的应用,根据二次根式的非负性即可进行判断.例4.不解方程,说明下列方程是否有实数根:(10=;(2)2(()()a b a b a b -=-£.【难度】★【答案】(1)有唯一实数根12x =;(2)当a b <时,方程无实数根;当a b =时,方程有无数个实数根.【解析】(1)根据二次根式的非负性,可得:120120x x -³ìí-³î,即得x 的定义域为12x =,0==,即得方程有唯一实数根12x =;(2)当a b <0a b =-<,根据二次根式非负性,可知方程无实数根; 当a b =时,等式恒成立,可知方程有无数实数根,满足240x x -³即可.【总结】考查对无理方程解的判断,对部分方程根据二次根式双重非负性即可进行判定.例5.用换元法解方程231x x --=y =.则该方程转换整式方程是____________.【难度】★【答案】260y y --=.y =,可得2235x x y -=-,原方程即为251y y --=, 整理即为260y y --=.【总结】考查用“换元法”对无理方程进行变形转化,注意最终要化成整式形式.例6.解下列方程:(1x =;(23x =.【难度】★★【答案】(1)3x =;(2)5x =.【解析】(1)两边平方,得:223x x +=,整理得:2230x x --=,解得:13x =,21x =-,经检验,21x =-是原方程的增根,即原方程的根为3x =;(23x =+,两边平方得:()()()21263x x x -+=+,因式分解整理得:()()530x x -+=,解得:15x =,23x =-,经检验,23x =-是原方程的增根,即原方程的根为5x =.【总结】考查无理方程的解法,注意方程增根的检验.例7.解下列方程:(1)10x =-;(2)()30x +=;【难度】★★【答案】(1)20x =;(2)1x =.【解析】(1)两边平方,得:()()24510x x +=-,整理得:224800x x -+=,解得:14x =,220x =,经检验,14x =是原方程的增根,即原方程的根为20x =; (2)由原式得:30x +=或10x -=,解得:11x =,23x =-, 经检验,23x =-是原方程的增根,即原方程的根为1x =.【总结】考查无理方程的解法,注意无理方程的验根.例8.解下列方程:(11=+;(2)5x =.【难度】★★【答案】(1)x =;(2)4x =.【解析】(1)两边平方得:22721x x +=-+,整理得:260x --=,配方法解得:1x =2x =,经检验,2x =是原方程的增根,即原方程的根为x =(25x =-,两边平方得()24155x x -=-,整理得214400x x -+=, 解得:14x =,210x =,经检验,210x =是原方程的增根,即原方程的根为4x =.例9.133=.【难度】★★【答案】154x =-,254x =.a =1a =,原方程即为1133a a +=,解得:13a =,213a =,3=13=,解得:154x =-,254x =,经检验,154x =-,254x =都是原方程的根.【总结】考查利用“换元法”解无理方程,注意观察无理方程含未知数的根式之间的联系.例10.解方程:(1)2233x x +-=-; (2)3(5)2x x ++=.【难度】★★【答案】(1)192x =-,23x =;(2)15x =-,20x =.【解析】(1()0y y =³,得22239x x y +=-,原方程即2953y y --=-,整理得2560y y --=,解得:11y =-(舍),26y =,6=,平方整理得223270x x +-=,解得:192x =-,23x =,经检验,192x =-,23x =都是原方程的根;(2()0y y =³,得2251x x y +=-,原方程即()22312y y +-=,整理得23250y y +-=,解得:153y =-(舍),21y =,1=,平方整理得250x x +=,解得:15x =-,20x =,经检验,15x =-,20x =都是原方程的根.【总结】考查用“换元法”解无理方程,注意根据元的取值范围舍去增根.例11.解下列方程:(17=;(21=+.【难度】★★【答案】(1)12x =;(2)9x =+.【解析】(17=-,两边平方得4349x x +=-+-移项得42=,两边平方得39x -=,解得:12x =,经检验,12x =是原方程的根;(2)两边平方得2151x x -=+++7x =-,两边平方整理得218290x x -+=,配方法解得:19x =+,29x =-,经检验,29x =-是原方程的增根,即原方程的根是9x =+【总结】考查含有多个二次根式的无理方程的解法,两边多次平方即可.例12.=.【难度】★★★【答案】5x =.【解析】平方得2116x x x -+--=-24x =-,两边平方整理得2213150x x -+=,解得:132x =,25x =,经检验,132x =是原方程的增根,即原方程的根是5x =.【总结】考查含有多个二次根式的无理方程的解法,两边多次平方即可.例13.解下列方程:2660x x ---=.【答案】x =()0y y =³,则有2222x x y --=,由此原方程可变形得:2236620x x x ----=,整理即为22320y xy x --=,因式分解法解得:123y x =-,2y x =23x =-x =,由23x =-,整理得2518180x x --=,解得:1x =,2x =经检验,1x =x =,可解得:1x =-,经检验,1x =-是原方程的增根,综上所述,原方程的根是x =【总结】考查较复杂的换元法的转化解无理方程,注意方程增根的检验.模块二:无理方程的根的讨论知识精讲3.增根的概念无理方程在化整式方程求解过程中,整式方程的解如果使得无理方程左右两边不相等,那么这个解就是方程的增根.例题解析例1.关于x 1=有一个增根x =4,求:(1)a 的值;(2)方程的根.【难度】★★【答案】(1)5a =;(2)20x =【解析】(1)移项,两边平方得:241x x a -=+++,移项得5x a =--,两边平方得:()()()224525x a x a x a +=---+,将4x =代入有()24412a a a +=++, 整理得22150a a --=,解得:13a =-,25a =,当25a =时,4x =是方程增根,当13a =-时,4x =不是方程增根,由此即得5a =;(2)将5a =代入上述平方整理的方程即有()()()245510525x x x +=---+,移项整理得224800x x -+=,解得:14x =,220x =,由题意可得14x =是原方程的增根,即得原方程的根是20x =.【总结】考查含有多个二次根式的无理方程的解法,两边多次平方即可.例2.2x m =-有一个根是1x =,求实数m 的值.【难度】★★【答案】0m =.【解析】因为方程有一个根是1x =,12m =-,平方整理得2240m m -=, 解得:10m =,22m =,经检验,22m =是方程的增根,应舍去,即得0m =.【总结】考查无理方程根的意义,代入转化为其它未知数的求值即可.例3.若关于x 20kx -+=有实数根,求k 的取值范围. 【难度】★★★【答案】1k ³或0k <.()0a a =³,则有242a x -=,原方程即为24202a a k --×+=,整理即为22440ka a k ++-=,当0k =时,则有2a =-是增根,应舍去;当0k ¹时,分解因式得()()2220ka k a +-+=,解得:12a =-(舍),222k a k-=,因为方程有实数根,则应有2220k a k-=³,分类讨论得1k ³或0k <,即得k 的取值范围为1k ³或0k <.【总结】考查无理方程根的判定,利用换元法根据二次根式的非负性进行求解计算.例4.若关于x 20x m ++=只有一个实数根,求m 的取值范围.【难度】★★★【答案】6m £.()0a a =³,则有23x a =-,原方程即为()2230a a m +-+=,整理即为2260a a m ++-=,因为方程只有一个实数根,则方程有且仅有一根满足0a ³,则另一根必满足0a <,根据韦达定理可得:12602m a a -=£,得m 的取值范围是6m £.【总结】考查无理方程根的判定,利用换元法根据二次根式的非负性进行求解计算.模块三:无理方程的应用知识精讲4.应用寻找题目中的等量关系,列方程,求解,根据实际情况进行取舍.例题解析例1.用一根56厘米的细铁丝弯折成一个直角三角形,使它的一条直角边长为7厘米,求这个直角三角形的另两条边的长度.【难度】★★【答案】24cm 和25cm .【解析】设另外一条直角边长为xcm ,依题意可得756x ++=,解得:24x =,经检验,24x =是原方程的根且符合25cm =,即另两边长分别为24cm 和25cm .【总结】考查直角三角形勾股定理的应用,用周长列式解题,注意应用题也要验根.例2.建一块场地,用600块正方形的砖头铺成,如果把场地的面积扩大到原来面积的2倍还多0.6平方米,且正方形的砖头的边长增加10厘米,则需要铺540块方砖,求原场地的面积.【难度】★★【答案】224m .【解析】设原场地的边长为xm ,100.1cm m =,则扩大后场边长为()0.1x m +, 依题意得()225400.126000.6x x +=´+,整理得22754520x x --=,解得:115x =,2255x =-(舍),由此得原场地面积为2221600600245x m æö=´=ç÷èø.【总结】考查根据题意找准等量关系列方程解应用题,注意单位的统一.例3.若Q 点在直线21y x =+上,且Q 到点P (0,2),求Q 点的坐标.【难度】★★【答案】1355Q æö-ç÷èø,或()13Q ,【解析】设点()21Q x x +,=平方整理,得:25410x x --=,解得:115x =-,21x =,经检验,115x =-,21x =都是原方程的根,由此代入即得1355Q æö-ç÷èø,或()13Q ,.【总结】考查利用两点间距离公式的应用列方程,注意设出点的坐标.例4.1l 与2l 为两条互相垂直的大路,小李和老王从十字路口O 点同时出发,分别沿着图示的方向以1千米/小时和2千米/小时的速度前进,到达A 与B 地,一座学校座落于距1l 8千米,距2l 5千米的P 处,问:经过多少时间,两人距离学校的路程刚好相等?是几千米?【难度】★★【答案】经过43h 两人距离学校路程相等.【解析】设经过th 两人距离学校距离相等,即AP BP =, 则有OA t =,8AM t =-,5=,平方整理得2340t t -=,解得:143t =,20t =,经检验,143t =,20t =都是原方程的根,但20t =不符合题意,应舍去,即经过43h 两人距离学校路程相等.【总结】考查利用勾股定理列方程,注意找准等量关系.例5.有一群蜜蜂,一部分飞进了枸杞里,其个数等于总数的一半的平方根,还有全体的89遗留在后面,此外,这群里还有一个小蜜蜂在莲花旁徘徊着,它被一个坠入香花陷阱的同伴的呻吟声所吸引.试问:这群蜜蜂共有多少个?【难度】★★★【答案】这群小蜜蜂共有72个.【解析】设这群蜜蜂共有x 个,根据蜂群总数,依题意可得8119x x +++=,平方整理得221536480x x -+=,解得:192x =,272x =,经检验,192x =是原方程的增根,即得这群小蜜蜂共有72个.【总结】考查根据题意列方程解应用题,注意计算不要遗漏.例6.m 、n 为两段互相垂直的笔直的公路,工厂A 在公路n 上,距离公路m 为1千米.工厂B 距离公路m 为2千米,且距离公路n 为3千米,现在要在公路m 上选一个地址造一个车站P ,使它与A 、B 两厂的距离和为P 的位置?【难度】★★★【答案】车站P 在两公路交点上方211km 或2km 处.【解析】以直线n 为x 轴,以直线m 为y 轴,两直线交点为坐标原点,建立平面直角坐标系,依题意有()10A ,,()23B ,,设点()0P x ,,=二次平方后,整理得:2112440x x -+=,解得:1211x =,22x =,经检验,1211x =,22x =都是原方程的根,即车站P 在两公路交点上方211km 或2km 处.【总结】考查利用建立平面直角坐标系确定点的位置问题.随堂检测1.下列方程是无理方程的是().A .20x -+=B 9x+=C 2=-D 45x =【难度】★【答案】D【解析】根据无理方程的概念,方程中含有根式,并且被开方数是含有未知数的代数式的方 程叫做无理方程,可知D 是无理方程,故选D .【总结】考查无理方程的概念,方程中根号内含有未知数即可.2.根据平方根的意义,直接判断下列方程是否有解,并简述理由:(130+=;(20x +=;(34x =-;(4x +=.【难度】★【答案】(2)有解,(1)、(3)、(4)无解.【解析】根据二次根式的双重非负性,对(1)330+³¹,故方程无实数解;对(2),由20x +³,即有2x ³-0x =-³,可知方程有实数解;对(3),6040x x -³ìí-³î,x 无解,即方程无实数解;对(4),3020x x -³ìí-³î,x 无解,即方程无实数解.【总结】考查对无理方程解的判断,根据二次根式双重非负性即可进行初步判定.3.4x =-的实数解为().A .4x =B .4x <C .4x £D .0x =【难度】★【答案】C44x x ==-=-,可知40x -£,得4x £,故选C .4.用换元法解方程23640x x --+=时,y =.则该方程可转换成整式方程是_________.【难度】★【答案】23280y y --=.y =,可得:2224x x y -=-,原方程即为()234240y y --+=, 整理即为23280y y --=.【总结】考查用“换元法”对无理方程进行变形转化,注意最终要化成整式方程.5.解方程:(12x =;(2)2(3x =.【难度】★【答案】(1)1x =;(2)4x =.【解析】(1)移项两边平方得:()22272x x x +=+,整理得:2340x x +-=, 因式分解法解得14x =-,21x =,经检验,14x =-是原方程的增根, 即原方程的根为1x =;(2)移项得6x =-,两边平方得()()2436x x -=-,整理得:216480x x -+=, 解得:14x =,212x =,经检验,212x =是原方程的增根,即原方程的根为4x =.【总结】考查无理方程的解法,注意方程增根的检验.6.(奉贤2018期末2)下列判断中,错误的是( )A. 方程是一元二次方程B. 方程是二元二次方程C. 方程3233x x x +-=+是分式方程D. 20x -=是无理方程【答案】D ;【解析】解:A 、方程x (x-1)=0是一元二次方程,不符合题意;B 、方程xy+5x=0是二元二次方程,不符合题意;C 、方程3233x x x +-=+是分式方程,不符合题意;D 20x -=是一元二次方程,符合题意,故选:D .7.(闵行期末3)下列说法正确的是(A 4=的根是16x =±;(B x =的根是13x =,21x =-;(C 1x =+变形所得的有理方程是2211x x -=+;(D 10+=没有实数解.【答案】D ;【解析】A 、方程4=的根是16x =,故A 错误;B 、解方程x =得13x =,21x =-,经检验,得21x =-是增根,故原方程的根是3x =,故B 错误;C1x =+变形所得的有理方程是22121x x x -=++,故C 错误;D10+=没有实数解,所以D 正确;故答案选D.8.(崇明2018期中2)下列关于x 的方程一定有实数根的是( )A.2220x x ++=;B.111xx x =--;30+=;x =-.【答案】D ;【解析】A 、根的判别式小于零,故无实数根;B 、x=1是增根,故B 无实数根;C、330+³¹,故原方程无实数根;D 、可解得方程的根为1x =-,故有实数根;因此答案选D.9.(金山2019期末100=的解是_________________【答案】1x =;【解析】依题得10101010x x x x -=+=ìï-³íï+³î或,所以111x x x ==-ìí³î或,所以1x =.10.(松江2018期中20)解方程:3x =.【答案】2x =;【解析】解:原方程化为:3x -=,两边平方,得2(3)23x x -=-,整理,得28120x x -+=,解得122,6x x ==,经检验:12x =是原方程的根,26x =是增根. 所以原方程的根是2x =.11.7+=.【答案】16x =;【解析】解:移项,7=-,两边平方,得749x x -=-+,整理,4=,解得16x =,经检验16x =是原方程的根,故原方程的根是16x =.12.解方程:(110-=;(22-=.【难度】★★【答案】(1)11x =;(2)13x =,211x =.【解析】(11=,两边平方得2351x x +=+++,移项得3x =-,两边平方整理得210110x x --=,解得:111x =,21x =-,经检验,21x =-是原方程的增根,即原方程的根为11x =;(2)移项两边平方得2324x x +=-++,移项得1x =+,两边平方整理得214330x x -+=,解得:13x =,211x =, 经检验,13x =,211x =都是原方程的根.【总结】考查含有多个二次根式的无理方程的解法,两边多次平方即可.13.解方程:(1)241017x x -=;(2)22330x x +-=.【难度】★★【答案】(1)172x =,21x =-;(2)192x =-,23x =.【解析】(1()0y y =³,得22252x x y -=-,方程即()22217y y -+=,整理得22210y y +-=,解得:172y =-(舍),23y =,3=,平方整理得22570x x --=,解得:172x =,21x =-,经检验,172x =,21x =-都是原方程的根;(2()0y y =³,得22239x x y +=-,原方程即29530y y --+=,解得:11y =-(舍),26y =6=,平方整理得223270x x +-=,解得:192x =-,23x =,经检验,192x =-,23x =都是原方程的根.【总结】考查用“换元法”解无理方程,注意根据二次根式的非负性舍去相应增根.14.有两块正方形木板,其中大的一块木板面积比小的木板面积大45平方米,小的木 板的边长比大的木板的边长短3分米,求这块小木板的面积.【难度】★★【答案】小木板面积为25602.5225m .【解析】设小木板面积为2xm ,则大木板面积为()245x m +,由30.3dm m =,依题意可得0.3-=,移项整理得74.85=,即得:274.855602.5225x ==,经检验,5602.5225x =是原方程的根,即小木板面积为25602.5225m .【总结】考查根据题意列方程解应用题,注意题目中的单位换算.15.如果y 轴上一点P 到两点A (3,5)、B (-1,-2)的距离相等,求P 点的坐标.【难度】★★【答案】29014P æöç÷èø,.【解析】设点()0P x ,=, 平方得22103445x x x x -+=++,解得:2914x =,经检验,2914x =是原方程的根, 即29014P æöç÷èø,.【总结】考查利用两点间距离公式确定点的位置问题.16.1-=.【难度】★★【答案】5x =.【解析】23x =-,根据题意,1=,23x +=-,1x =-,平方整理得250x x -=,解得:10x =,25x =,经检验,10x =是原方程的增根,即原方程的根是5x =.【总结】考查有特殊形式的无理方程的解法,注意观察好含未知数的根式之间的关联.17.712=.【难度】★★★【答案】7x =.()0a a =³1a =,原方程即为1712a a -=,解得:143a =,234a =-(舍)43=,解得:7x =,经检验,7x =是原方程的根.【总结】考查利用“换元法”解无理方程,注意观察两个无理式之间的关联.18.已知a 为非负整数,若关于x 的方程240x a -+=至少有一个整数根, 求a 的值.【难度】★★★【答案】2a =或6a =.()0m m =³,则有21x m =-,原方程即为()22140m am a ---+=,得26201m a m -=³+,由0m ³,可得2620m -³,则有203m ££,因为x 为整数,则2m 为整数,同时a 为整数,则m 必为有理数,由此可得:0m =或1m =,当0m =时,得6a =;当1m =时,得2a =;综上,2a =或6.【总结】考查无理方程根的判定,利用换元法根据二次根式的非负性和题目要求求解计算19.A 地在M 地的正北方向12千米处,B 地在M 地的正东方向12千米处,某人从B 地出发向正西方向行至C 地,再沿CA 方向到达A 地,这样比由B 地到M 地再到A 地的路程少4千米,求M 地与C 地之间的距离.【难度】★★★【答案】5MC km =.【解析】如图建立平面平面直角坐标系,点M 为原点,则有()012A ,,()120B ,,设()0C a ,,根据两点间距离公式AC =,1241212a +-+=+8a =+,解得:5a =,经检验,5a =是原方程的根,即得5MC km =.【总结】考查根据构造平面直角坐标系解方程问题.。
1
整式方程
有理方程
代数方程
分式方程
无理方程
21.4无理方程(1)
教学目标:
1.理解无理方程的概念,会识别无理方程,知道有理方程及代数方程的概念.
2.经历探索无理方程解法的过程,领会无理方程“有理化”的化归思想.
3.知道解无理方程的一般步骤,知道解无理方程必须验根,并掌握验根的方法.
教学重点及难点:无理方程的解法.
教学过程:
一、问题引入
已知平面直角坐标系内的A、B两点,其中点A坐标1,3,点B是x轴上的点,
且A、B两点间的距离等于5,求点B的坐标.
问:方程2195x有什么特点?与前面所学的方程有什么不同?
(如果学生未说完整,用一个例子让学生加以区别,如:532x.)
二、新课学习
1、无理方程
方程中含有根式,且被开方数是含有未知数的代数式,这样的方程叫做无理方程.
例如:62x、3221xx、1353xx等都是无理方程.
无理方程也叫根式方程.
练习:判断下列关于x的方程是不是无理方程.
2
(1)510xx
;2(2)510xx;3(3)170x;(4)127ax;
1
(5)2xx
;1(6)332xxx;2(7)130xx;2(8)71x.
2、代数方程
整式方程和分式方程统称为有理方程.
有理方程和无理方程统称为初等代数方程,简称代数方程.
代数方程可以这样分类:
3、无理方程的解法
知道了无理方程的概念,接下来我们一起来探究如何解无理方程.
怎样解方程34xx? ①
问1:这个方程是今天刚刚学习的无理方程,我们还不会求解.回忆一下之前我
们是如何解分式方程的,是将分式方程转化为什么方程?如何转化?
问2:是不是可以将无理方程转化已学习过的方程来求解呢,转化为什么方程?
问3:如何转化?
根据等式性质,若pq,则22pq以及2()aa(0)a的性质.通过方程两边
2
同时平方,将方程转化为有理方程.
解:两边同时平方,得 234xx. ②即 2340xx.
解得 14x,21x.
问4:两个根都是原方程的根吗?
问5:为什么会产生这样的情况?
方程①中未知数的允许取值范围是什么?
方程②中未知数的允许取值范围又是什么?
无理方程在转化成有理方程的过程中,可能扩大未知数的允许取值范围,这样就
可能产生增根,因此需要“验根”.
问6:如何“验根”?能像分式方程那样检验吗?
把解依次代入原方程的左右两边,加以检验.如果左边=右边,解是原方程的解;
否则,解是原方程的增根,要舍去.
(教师板书)
检验:把4x分别代入原方程两边,左边=4,右边= 344164,左边
=右边,可知4x是原方程的根.
把1x分别代入原方程两边,左边=1,右边不可能是负数,可知1x是增
根,应舍去.
∴ 原方程的根是4x.
【小结】
1、解简单的无理方程的方法:
无理方程 有理方程
2、解简单的无理方程的一般步骤,用流程图可表述为:
三、巩固练习
1、课后练习3
2、解方程:2xx.
3、将方程2120xx化成有理方程.
强调解形如这样的无理方程的关键是使二次根式单独在等式一边.
四、课堂小结
本节课主要学习了什么,有何收获?
五、布置作业
去根号(两边平方)