单晶硅的生产过程
- 格式:doc
- 大小:52.50 KB
- 文档页数:8
单晶硅多晶硅的生产工艺以及性质特点培训1. 简介单晶硅和多晶硅是用于制造半导体器件的重要材料。
本文将介绍单晶硅和多晶硅的生产工艺以及它们的性质特点。
2. 单晶硅的生产工艺单晶硅是由纯度极高的硅原料制成的。
下面是单晶硅的生产工艺步骤:2.1 原料准备原料准备阶段是整个生产过程的第一步。
常用的硅源包括硅石、三氯化硅等。
在这个阶段,硅源会经过多次加热、冷却和化学处理,以提高其纯度。
2.2 硅棒生长在硅棒生长阶段,通过将高纯度的硅溶液注入到石英坩埚中,然后慢慢降低温度,硅原料会逐渐结晶并形成硅棒。
这个过程需要精确的温度控制和其他参数调节,以确保硅棒的质量。
2.3 硅棒加工硅棒生长完成后,需要将其进行加工。
这个过程包括将硅棒切割成小块、研磨和抛光。
最终得到的是一系列小块的单晶硅片,它们可以用于制造半导体器件。
3. 多晶硅的生产工艺多晶硅与单晶硅不同,它的结晶结构是无序的。
下面是多晶硅的生产工艺步骤:3.1 原料准备多晶硅的原料准备阶段与单晶硅类似,也需要对硅源进行加热、冷却和化学处理,以提高纯度。
3.2 硅片生长在硅片生长阶段,通过将高纯度的硅原料加热至熔化状态,并引入掺杂物,在特定的温度和压力下,硅原料会结晶并形成多晶硅。
这个过程需要精确的温度和压力控制,以确保多晶硅的质量。
3.3 硅片加工多晶硅生长完成后,需要将其进行加工。
与单晶硅类似,多晶硅需要经过切割、研磨和抛光等步骤,以得到最终的多晶硅片。
4. 单晶硅和多晶硅的性质特点单晶硅和多晶硅在性质特点上有一些区别:4.1 结晶结构单晶硅具有有序的结晶结构,原子排列有规律,这使得单晶硅具有较高的电子迁移率和较低的电阻率。
多晶硅的结晶结构是无序的,原子排列无规律,电子迁移率和电阻率相对较低。
4.2 成本由于生产工艺的复杂性,单晶硅的生产成本相对较高。
多晶硅的生产成本相对较低。
4.3 应用范围单晶硅通常用于制造高性能的半导体器件,如集成电路和太阳能电池等。
多晶硅由于成本较低,通常用于制造一些低成本的半导体器件,如显示器件和光电器件等。
单晶硅多晶硅的生产工艺以及性质特点培训1. 引言单晶硅和多晶硅是半导体行业中常见的材料,它们在太阳能电池、集成电路等领域得到广泛应用。
本文将为您介绍单晶硅和多晶硅的生产工艺以及它们的性质特点。
2. 单晶硅的生产工艺单晶硅是由高纯度硅材料制成的晶体,它具有较高的电子迁移率和较低的杂质浓度,适用于制造高性能的光电器件。
以下是单晶硅的主要生产工艺:2.1. Czochralski法生长单晶硅Czochralski法是目前最常用的单晶硅生长方法之一。
其基本过程如下:1.准备硅原料:将高纯度硅材料溶解在熔融的硅中,制备成硅锭。
2.调节温度和附加剂:控制硅锭的温度和加入适量的掺杂剂,以调节硅材料的电性能。
3.生长晶体:将铜制的拉杆浸入熔融硅中,形成硅锭的结晶核心,通过拉杆的旋转和上拉控制晶体的生长方向、速度和尺寸。
4.切割晶体:待晶体生长到一定程度后,将其从硅锭中切割成片,得到单晶硅片。
2.2. Float-zone法生长单晶硅Float-zone法是另一种单晶硅生长方法,它主要用于生产直径较小的单晶硅。
其生产过程相对复杂,但能够获得较高纯度的单晶硅。
3. 多晶硅的生产工艺多晶硅是由粉末状硅材料制成的,其晶体结构不规则,具有较高的电阻率和较高的杂质浓度。
以下是多晶硅的主要生产工艺:3.1. 气相淀积法制备多晶硅气相淀积法是最常用的多晶硅制备方法之一。
其基本过程如下:1.原料气体制备:将硅材料化为气态,如通过热解硅烷(SiH4)制备硅含氢气体。
2.沉积硅层:将硅含氢气体引入反应室,在衬底上沉积出一层硅薄膜。
3.重复沉积:重复沉积步骤,使硅薄膜逐渐增厚,形成多晶硅。
3.2. 其他多晶硅制备方法除了气相淀积法,还有一些其他的多晶硅制备方法,如溶液法、电化学沉积法等。
这些方法在特定的应用领域有其独特的优势和适用性。
4. 单晶硅和多晶硅的性质特点单晶硅和多晶硅在晶体结构、电子性能和应用方面存在一定的差异。
以下是它们的性质特点:4.1. 晶体结构单晶硅具有有序的晶体结构,晶界较少,晶粒较大。
单晶硅生产工艺技术哎呀,单晶硅这玩意儿,说起来可真是个技术活儿。
你知道的,这玩意儿是太阳能板和电子芯片的心脏,没有它,咱们的智能手机啊、电脑啊,都得歇菜。
先说说这单晶硅是怎么来的吧。
想象一下,你手里拿着一块糖,然后你把它放在火上烤,糖慢慢融化,最后变成了一滩糖浆。
单晶硅的生产过程,其实跟这个有点像,不过这“糖浆”可比糖贵多了,而且温度得高到你都不敢靠近。
首先,得有原材料,就是那种纯度贼高的硅矿石。
这玩意儿得经过高温冶炼,变成多晶硅。
多晶硅,听着挺高大上的,其实就是一堆乱七八糟排列的硅原子。
但这还不够,咱们要的是单晶硅,就是那些原子排列得整整齐齐的。
接下来,就是把多晶硅变成单晶硅的过程了。
这得用到一个叫“提拉法”的技术。
想象一下,你手里拿着一根棍子,棍子的顶端是多晶硅,然后你把它放在一个高温炉子里,慢慢地转动棍子,让硅熔化,然后慢慢地提起来。
这时候,神奇的事情发生了,那些乱七八糟的硅原子开始排成一列,形成了单晶硅。
这个过程得非常小心,因为温度得控制得刚刚好,太高了,硅就烧没了;太低了,硅原子又懒得动,排不成队。
而且,这棍子得转得均匀,不然单晶硅的形状就会歪歪扭扭的,那可就废了。
说到形状,单晶硅最后得切成一片片的,用来做太阳能板或者芯片。
这切割过程,也得小心翼翼的,因为单晶硅特别脆,一不小心就碎了。
切好了,还得打磨,把表面的瑕疵磨掉,这样做出来的太阳能板和芯片才能用。
你看,这单晶硅的生产过程,就跟咱们做蛋糕似的,得一步步来,不能急。
每一步都得精确控制,不然最后做出来的东西就废了。
不过,这玩意儿虽然难搞,但做出来的太阳能板和芯片,那可是能改变世界的好东西。
所以啊,下次你看到手机或者电脑的时候,别忘了,这里面可有单晶硅的一份功劳。
这小小的硅片,可是高科技的基石呢。
咱们虽然天天用,但背后的生产过程,还真是挺有意思的。
区熔单晶硅和直拉单晶硅区熔单晶硅和直拉单晶硅是两种常用的单晶硅生产工艺。
单晶硅是一种高纯度的硅材料,广泛应用于半导体行业。
在制备单晶硅时,区熔和直拉是两种常见的工艺路线。
本文将对这两种工艺进行比较和介绍。
一、区熔单晶硅区熔单晶硅是一种传统的生产工艺,也是最早被应用的工艺之一。
它的主要步骤包括:选材、熔炼、晶化、切割和修整等。
1. 选材:区熔单晶硅的选材是非常关键的一步。
选材要求硅原料的纯度高,杂质含量低,以确保生产出的单晶硅具有良好的电学性能。
2. 熔炼:在区熔工艺中,硅原料被放入石英坩埚中,在高温下进行熔炼。
通过控制熔炼条件和熔炼时间,使硅原料逐渐熔化并形成单晶硅。
3. 晶化:熔融的硅原料在逐渐冷却的过程中,通过特定的方法来形成单晶硅。
晶化过程需要严格控制温度和冷却速率,以保证单晶硅的晶体结构完整性和纯度。
4. 切割:晶化后的硅块需要经过切割处理,使其成为适合半导体器件制造的单晶硅片。
切割时要保证切割面的光洁度和平整度,以提高单晶硅片的质量。
5. 修整:切割后的单晶硅片需要进行修整处理,以去除切割过程中产生的缺陷和杂质。
修整过程通常包括化学腐蚀、机械研磨和抛光等步骤。
区熔单晶硅工艺的优点是工艺成熟、可控性好,生产成本相对较低。
但是,由于区熔工艺存在晶体生长速度慢、晶体纯度不易控制等问题,生产出的单晶硅片质量相对较差。
二、直拉单晶硅直拉单晶硅是一种相对较新的生产工艺,也是目前主流的单晶硅生产工艺之一。
它的主要步骤包括:选材、熔炼、晶化、拉丝和修整等。
1. 选材:直拉单晶硅的选材要求与区熔工艺相似,同样需要高纯度的硅原料。
选材的关键是减少杂质的含量,以确保生产出高质量的单晶硅。
2. 熔炼:直拉工艺中的熔炼过程与区熔工艺类似,硅原料被放入石英坩埚中,在高温下进行熔炼。
熔炼后的硅液通过特定的方法形成一根硅棒。
3. 晶化:在直拉工艺中,硅棒从熔液中被拉出,并在拉伸过程中逐渐冷却和凝固。
通过控制拉伸速度和温度等参数,使硅棒逐渐凝固并形成单晶硅。
单晶硅太阳能电池片生产工艺1.原料准备:首先准备硅原料,通常使用高纯度硅来制备单晶硅太阳能电池片。
高纯度硅通过多次冶炼和纯化过程,最终得到电解多晶硅。
这个多晶硅会通过单晶硅电炉再次熔炼,形成大型的单晶硅锭。
2.切割硅锭:单晶硅锭被切割成薄片。
通常采用线状金刚石磨料来切割锭,将锭切割成几毫米的薄片。
这些薄片被称为硅片。
3.荒杪抛光:硅片表面通常会有一些不规则的凸起和凹陷,这会降低电池片的光吸收效率。
为了提高光吸收效率,需要对硅片进行荒杪抛光处理。
这个过程会去除硅片表面的不规则部分,使其更加平整。
4.清洁处理:在单晶硅太阳能电池片的生产过程中,清洁处理至关重要。
因为一旦硅片表面有污染物,会影响电池片的性能。
常见的清洁方法是在氢氧化钠溶液中浸泡硅片,并用超声波清洗。
5.染色处理:为了提高单晶硅太阳能电池片的光吸收效率,通常会对硅片进行染色处理。
染色处理会增加硅片的表面粗糙度,并提高其光吸收能力。
6.扩散处理:在单晶硅太阳能电池片中,扩散处理是关键的工艺步骤之一、扩散处理会将硅片的表面剖分成P型和N型半导体区域。
这个过程中,通常使用磷或硼进行掺杂,形成P-N结构,从而使电池片能够产生电信号。
7.光刻:光刻是电池片加工过程中的重要步骤之一、通过使用光刻胶和掩膜,将具有特定图案的光照射到电池片上,使其形成P-N结构。
光刻完成后,利用腐蚀液进行刻蚀,移除没有被光刻液保护的区域。
8.金属喷涂:在单晶硅太阳能电池片的生产过程中,还需要喷涂适当的金属,比如银或铝。
这些金属将成为电池片的电极,用于收集电荷。
9.测量和分选:最后,需要对单晶硅太阳能电池片进行测量和分选。
只有符合规格的电池片才能用于太阳能电池板的生产。
在这个过程中,电池片的电性能将被测量,如开路电压、短路电流和填充因子等。
以上是单晶硅太阳能电池片的生产工艺。
通过这个工艺流程,可以制备出高效、可靠的单晶硅太阳能电池片,用于太阳能发电系统中。
单晶硅片制作流程生产工艺流程具体介绍如下:固定:将单晶硅棒固定在加工台上。
切片:将单晶硅棒切成具有精确几何尺寸的薄硅片。
此过程中产生的硅粉采用水淋,产生废水和硅渣。
退火:双工位热氧化炉经氮气吹扫后,用红外加热至300~500℃,硅片表面和氧气发生反应,使硅片表面形成二氧化硅保护层。
倒角:将退火的硅片进行修整成圆弧形,防止硅片边缘破裂及晶格缺陷产生,增加磊晶层及光阻层的平坦度。
此过程中产生的硅粉采用水淋,产生废水和硅渣。
分档检测:为保证硅片的规格和质量,对其进行检测。
此处会产生废品。
研磨:用磨片剂除去切片和轮磨所造的锯痕及表面损伤层,有效改善单晶硅片的曲度、平坦度与平行度,达到一个抛光过程可以处理的规格。
此过程产生废磨片剂。
清洗:通过有机溶剂的溶解作用,结合超声波清洗技术去除硅片表面的有机杂质。
此工序产生有机废气和废有机溶剂。
RCA清洗:通过多道清洗去除硅片表面的颗粒物质和金属离子。
SPM清洗:用H2SO4溶液和H2O2溶液按比例配成SPM溶液,SPM 溶液具有很强的氧化能力,可将金属氧化后溶于清洗液,并将有机污染物氧化成CO2和H2O。
用SPM清洗硅片可去除硅片表面的有机污物和部分金属。
此工序会产生硫酸雾和废硫酸。
DHF清洗:用一定浓度的氢氟酸去除硅片表面的自然氧化膜,而附着在自然氧化膜上的金属也被溶解到清洗液中,同时DHF抑制了氧化膜的形成。
此过程产生氟化氢和废氢氟酸。
APM清洗: APM溶液由一定比例的NH4OH溶液、H2O2溶液组成,硅片表面由于H2O2氧化作用生成氧化膜(约6nm呈亲水性),该氧化膜又被NH4OH腐蚀,腐蚀后立即又发生氧化,氧化和腐蚀反复进行,因此附着在硅片表面的颗粒和金属也随腐蚀层而落入清洗液内。
此处产生氨气和废氨水。
HPM清洗:由HCl溶液和H2O2溶液按一定比例组成的HPM,用于去除硅表面的钠、铁、镁和锌等金属污染物。
此工序产生氯化氢和废盐酸。
DHF清洗:去除上一道工序在硅表面产生的氧化膜。
半导体-硅片生产工艺流程及工艺注意要点一、引言半导体产业是当今高科技产业中不可或缺的一环,而硅片作为半导体制造的重要材料之一,其生产工艺流程及注意要点显得尤为重要。
本文将就半导体-硅片的生产工艺流程及工艺注意要点进行详细介绍。
二、硅片生产工艺流程硅片生产工艺流程可以分为几个主要步骤,包括原料准备、单晶硅生长、硅片切割、晶圆清洗等过程。
1.原料准备原料准备是硅片生产的第一步,通常以硅粉为主要原料。
硅粉需经过精细处理,确保其纯度和质量达到要求。
2.单晶硅生长单晶硅生长是硅片生产的核心环节,通过气相、液相或固相生长方法,使硅原料逐渐形成完整的单晶结构。
3.硅片切割硅片切割是将单晶硅切割为薄片的过程,以便后续的加工和制作。
切割精度和表面光滑度直接影响硅片的质量。
4.晶圆清洗晶圆清洗是为了去除硅片表面的杂质和污染物,保持硅片表面的洁净度,以确保后续工艺的顺利进行。
三、工艺注意要点在硅片生产过程中,有一些注意要点需要特别重视,以确保硅片的质量和性能。
1.纯度控制硅片的制备要求非常高,必须保证硅原料的纯度达到一定标准,以避免杂质对硅片性能的影响。
2.工艺参数控制在硅片生产过程中,各个工艺环节的参数控制十分关键,包括温度、压力、时间等因素,要严格控制以保证硅片的质量稳定性。
3.设备保养硅片生产设备的保养和维护也是非常重要的一环,保持设备的稳定性和运行效率,可以有效提高硅片生产效率和质量。
4.环境监控硅片生产场所的环境条件也需要严格监控,包括温度、湿度、洁净度等因素,以确保硅片生产过程的正常进行。
四、结论通过本文对半导体-硅片生产工艺流程及工艺要点的介绍,我们可以看到硅片生产是一个复杂而又精细的过程,需要严格控制各个环节的参数和质量要求。
只有做好每一个细节,才能确保硅片的质量和稳定性,为半导体产业的发展做出贡献。
因此,加强对硅片生产工艺流程及工艺要点的研究与总结,提高技术水平和生产水平,对于我国半导体产业的发展具有重要的意义。
单晶硅电池生产工艺单晶硅电池是一种常见的太阳能电池,它由纯度很高的单晶硅制成。
单晶硅电池的生产工艺可以分为以下几个主要步骤:1. 制备硅单晶体:首先需要制备高纯度的硅单晶体。
通常采用Czochralski法来制备纯度达到99.9999%以上的硅单晶体。
该方法是将高纯度的硅原料加热到液态,并通过旋转和拉升的过程,使硅单晶体逐渐形成。
形成的硅单晶体被称为硅锭。
2. 切割硅锭:硅锭经过一段时间的冷却和稳定后,可以进行切割。
切割硅锭的方法通常使用的是磨锯法,将硅锭切割成很薄的硅片,即硅片。
3. 清洗硅片:硅片切割完毕后,通常会在清洗液中进行清洗,去除表面的杂质和污渍。
清洗液一般使用酸性溶液,例如盐酸或硝酸等。
4. 表面处理:清洗过后的硅片进行表面处理,以去除可能对电池效率有影响的氧化层。
常用的表面处理方法有酸洗、碱洗和氢氟酸腐蚀等。
5. 去除硅片边角:硅片的边角较为尖锐,不利于后续的加工和组装。
因此需要通过切割或高温烧结的方法去除硅片的边角,使其变得光滑。
6. 电池片制备:经过上述步骤的硅片可以进行电池片的制备。
在电池片制备的过程中,需要在硅片上涂覆抗反射膜,以提高光吸收效率。
然后将导电网格层和金属背电极层刻蚀在硅片的正面和背面,以便收集和传导电流。
7. 检测和测试:制备完成的单晶硅电池需要进行各种测试和检测,以确保其质量和性能达到要求。
常用的测试参数包括开路电压、短路电流、填充因子和转换效率等。
8. 封装和组装:最后一步是将单晶硅电池进行封装和组装,以便将其用于太阳能电池板或其他应用中。
封装和组装的过程包括将电池片与透明材料和支撑材料粘合在一起,以保护电池片,并确保其正常工作。
以上是单晶硅电池的主要生产工艺。
随着技术的不断发展和改进,制备单晶硅电池的工艺也在不断优化,以提高电池的效率和质量。
单晶硅光伏组件碳足迹一、单晶硅光伏组件的定义和特点单晶硅光伏组件是指利用单晶硅材料制造的光伏电池板组成的太阳能电池板。
其特点是具有高转换效率、长寿命、稳定性好等优点,因此在太阳能发电领域得到广泛应用。
二、单晶硅光伏组件的制造过程1. 切割:将单晶硅棒切成薄片,厚度通常在0.2-0.4mm之间。
2. 清洗:将薄片进行清洗,去除表面杂质和污垢。
3. 拓扑结构形成:在薄片表面进行掺杂处理,形成p-n结构。
4. 金属化:在薄片表面涂上金属导线,以便接收和输出电能。
5. 烧结:将薄片进行高温烧结,形成太阳能电池板。
三、单晶硅光伏组件的碳足迹碳足迹是指一个产品或服务从生产到使用再到废弃所排放的温室气体总量。
对于单晶硅光伏组件来说,其碳足迹包括以下几个方面:1. 原材料采集:单晶硅的生产需要大量的电力和燃料,因此在采集原材料的过程中会产生大量的温室气体排放。
2. 制造过程:单晶硅光伏组件的制造需要耗费大量的能源和化学品,从而产生大量温室气体排放。
3. 运输和安装:单晶硅光伏组件需要运输到安装现场,这也会产生一定数量的温室气体排放。
4. 使用阶段:单晶硅光伏组件在使用阶段不会产生任何温室气体排放,反而能够减少化石燃料的使用,降低碳足迹。
5. 废弃处理:废弃单晶硅光伏组件需要进行回收和处理,这也会产生一定数量的温室气体排放。
四、减少单晶硅光伏组件碳足迹的措施为了减少单晶硅光伏组件的碳足迹,可以采取以下措施:1. 优化制造过程:通过改进制造工艺和技术,降低能源和化学品消耗,减少温室气体排放。
2. 采用可再生能源:在单晶硅生产和制造过程中采用可再生能源,如太阳能、风能等,可以降低碳足迹。
3. 优化运输和安装方式:通过优化运输和安装方式,减少碳排放。
4. 延长使用寿命:单晶硅光伏组件的使用寿命越长,其碳足迹就会越小。
因此需要加强维护和保养,延长使用寿命。
5. 加强回收利用:加强单晶硅光伏组件的回收利用,减少废弃处理过程中的温室气体排放。
单晶硅的生产过程 一、单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。
单晶硅棒是生产单晶硅片的原材料,随着国内和国际市场对单晶硅片需求量的快速增加,单晶硅棒的市场需求也呈快速增长的趋势。
单晶硅圆片按其直径分为6英寸、8英寸、12英寸(300毫米)及18英寸(450毫米)等。直径越大的圆片,所能刻制的集成电路越多,芯片的成本也就越低。但大尺寸晶片对材料和技术的要求也越高。单晶硅按晶体生长方法的不同,分为直拉法(CZ)、区熔法(FZ)和外延法。直拉法、区熔法生长单晶硅棒材,外延法生长单晶硅薄膜。直拉法生长的单晶硅主要用于半导体集成电路、二极管、外延片衬底、太阳能电池。目前晶体直径可控制在Φ3~8英寸。区熔法单晶主要用于高压大功率可控整流器件领域,广泛用于大功率输变电、电力机车、整流、变频、机电一体化、节能灯、电视机等系列产品。目前晶体直径可控制在Φ3~6英寸。外延片主要用于集成电路领域。
由于成本和性能的原因,直拉法(CZ)单晶硅材料应用最广。在IC工业中所用的材料主要是CZ抛光片和外延片。存储器电路通常使用CZ抛光片,因成本较低。逻辑电路一般使用价格较高的外延片,因其在IC制造中有更好的适用性并具有消除Latch-up的能力。
单晶硅也称硅单晶,是电子信息材料中最基础性材料,属半导体材料类。单晶硅已渗透到国民经济和国防科技中各个领域,当今全球超过2000亿美元的电子通信半导体市场中95%以上的半导体器件及99%以上的集成电路用硅。
二、硅片直径越大,技术要求越高,越有市场前景,价值也就越高。 日本、美国和德国是主要的硅材料生产国。中国硅材料工业与日本同时起步,但总体而言,生产技术水平仍然相对较低,而且大部分为2.5、3、4、5英寸硅锭和小直径硅片。中国消耗的大部分集成电路及其硅片仍然依赖进口。但我国科技人员正迎头赶上,于1998年成功地制造出了12英寸单晶硅,标志着我国单晶硅生产进入了新的发展时期。
目前,全世界单晶硅的产能为1万吨/年,年消耗量约为6000吨~7000吨。未来几年中,世界单晶硅材料发展将呈现以下发展趋势。
单晶硅产品向300mm过渡,大直径化趋势明显: 随着半导体材料技术的发展,对硅片的规格和质量也提出更高的要求,适合微细加工的大直径硅片在市场中的需求比例将日益加大。目前,硅片主流产品是200mm,逐渐向300mm过渡,研制水平达到400mm~450mm。据统计,200mm硅片的全球用量占60%左右,150mm占20%左右,其余占20%左右。根据最新的《国际半导体技术指南(ITRS)》,300mm硅片之后下一代产品的直径为450mm;450mm硅片是未来22纳米线宽64G集成电路的衬底材料,将直接影响计算机的速度、成本,并决定计算机中央处理单元的集成度。 Gartner发布的对硅片需求的5年预测表明,全球300mm硅片将从2000年的1.3%增加到2006年的21.1%。日、美、韩等国家都已经在1999年开始逐步扩大300mm硅片产量。据不完全统计,全球目前已建、在建和计划建的300mm硅器件生产线约有40余条,主要分布在美国和我国台湾等,仅我国台湾就有20多条生产线,其次是日、韩、新及欧洲。
世界半导体设备及材料协会(SEMI)的调查显示,2004年和2005年,在所有的硅片生产设备中,投资在300mm生产线上的比例将分别为55%和62%,投资额也分别达到130.3亿美元和184.1亿美元,发展十分迅猛。而在1996年时,这一比重还仅仅是零
2、硅材料工业发展日趋国际化,集团化,生产高度集中: 研发及建厂成本的日渐增高,加上现有行销与品牌的优势,使得硅材料产业形成“大者恒大”的局面,少数集约化的大型集团公司垄断材料市场。上世纪90年代末,日本、德国和韩国(主要是日、德两国)资本控制的8大硅片公司的销量占世界硅片销量的90%以上。根据SEMI提供的2002年世界硅材料生产商的市场份额显示,Shinetsu、SUMCO、Wacker、MEMC、Komatsu等5家公司占市场总额的比重达到89%,垄断地位已经形成。
3、硅基材料成为硅材料工业发展的重要方向: 随着光电子和通信产业的发展,硅基材料成为硅材料工业发展的重要方向。硅基材料是在常规硅材料上制作的,是常规硅材料的发展和延续,其器件工艺与硅工艺相容。主要的硅基材料包括SOI(绝缘体上硅)、GeSi和应力硅。目前SOI技术已开始在世界上被广泛使用,SOI材料约占整个半导体材料市场的30%左右,预计到2010年将占到50%左右的市场。Soitec公司(世界最大的SOI生产商)的2000年~2010年SOI市场预测以及2005年各尺寸SOI硅片比重预测了产业的发展前景。
4、硅片制造技术进一步升级: 目前世界普遍采用先进的切、磨、抛和洁净封装工艺,使制片技术取得明显进展。在日本,Φ200mm硅片已有50%采用线切割机进行切片,不但能提高硅片质量,而且可使切割损失减少10%。日本大型半导体厂家已经向300mm硅片转型,并向0.13μm以下的微细化发展。另外,最新尖端技术的导入,SOI等高功能晶片的试制开发也进入批量生产阶段。对此,硅片生产厂家也增加了对300mm硅片的设备投资,针对设计规则的进一步微细化,还开发了高平坦度硅片和无缺陷硅片等,并对设备进行了改进。
三、硅是地壳中赋存最高的固态元素,其含量为地壳的四分之一,但在自然界不存在单体硅,多呈氧化物或硅酸盐状态。硅的原子价主要为4价,其次为2价;在常温下它的化学性质稳定,不溶于单一的强酸,易溶于碱;在高温下化学性质活泼,能与许多元素化合。
由于硅的禁带宽度和电子迁移率适中,硅器件的最高工作温度能达250℃,其制作的微波功率器件的工作频率可以达到C波段(5GHZ)。在硅的表面能形成牢固致密的SiO2膜,此膜能充当电容的电介质、扩散的隔离层、器件表面的保护层,随着平面工艺与光刻技术的问世而促进了硅的超大规模集成电路的发展。硅材料资源丰富,又是无毒的单质半导体材料,较易制作大直径无位错低微缺陷单晶。晶体力学性能优越,易于实现产业化,从而导致半导体硅材料成为电子材料中的第一大主体功能材料,并在今后较长时间内仍将成为半导体的主体材料。
多晶硅材料是以工业硅为原料经一系列的物理化学反应提纯后达到一定纯度的电子材料,是硅产品产业链中的一个极为重要的中间产品,是制造硅抛光片、太阳能电池及高纯硅制品的主要原料,是信息产业和新能源产业最基础的原材料。
多晶硅产品分类: 多晶硅按纯度分类可以分为冶金级(工业硅)、太阳能级、电子级。 1、冶金级硅(MG):是硅的氧化物在电弧炉中被碳还原而成。一般含Si为90-95%以上,高达99.8%以上。
2、太阳级硅(SG):纯度介于冶金级硅与电子级硅之间,至今未有明确界定。一般认为含Si在99.99%–99.9999%(4~6个9)。
3、电子级硅(EG):一般要求含Si>99.9999%以上,超高纯达到99.9999999%~99.999999999%(9~11个9)。其导电性介于10-4–1010欧厘米。
多晶硅应用领域: 多晶硅是半导体工业、电子信息产业、太阳能光伏电池产业的最主要、最基础的功能性材料。主要用做半导体的原料,是制做单晶硅的主要原料,可作各种晶体管、整流二极管、可控硅、太阳能电池、集成电路、电子计算机芯片以及红外探测器等。
多晶硅是制备单晶硅的唯一原料和生产太阳能电池的原料。随着近几年我国单晶硅产量以年均26%的速度增长,多晶硅的需求量与日俱增,目前供应日趋紧张。我国2000年产单晶硅459吨,2003年增加到1191吨,预计2005年产量将达1700吨,消耗多晶硅2720吨。从单晶硅产品结构看,太阳电池用单晶硅产量增长最快,2000年产量207吨,2003年为696吨。预计2005年将达到1000吨,约需多晶硅1590吨,而国内2004年仅生产多晶硅57.7吨,绝大部分需要进口。
我国主要的太阳能电池厂有5~6家,最大的无锡尚德太阳能电力有限公司2004年产量约为50MW,2005年计划生产100MW,如果完成计划,则约需多晶硅1300吨以上。仅此一家企业,就要2家千吨级多晶硅厂为其供货,才能满足生产需要。
从国际市场看,国际市场多晶硅需求量在以每年10-12%的速度增长,按此增长速度预测,2005年全球多晶硅需求量将达27000吨,2010年将达60000吨,缺口很大。亚太地区特别是日本、台湾、新加坡、韩国等地,都是多晶硅的主要需求地。
多晶硅生产技术: 多晶硅生产技术主要有:改良西门子法、硅烷法和流化床法。正在研发的还有冶金法、气液沉积法、重掺硅废料法等制造低成本多晶硅的新工艺。
世界上85%的多晶硅是采用改良西门子法生产的,其余方法生产的多晶硅仅占15%。以下仅介绍改良西门子法生产工艺。
西门子法(三氯氢硅还原法)是以HCl(或Cl2、H2)和冶金级工业硅为原料,将粗硅(工业硅)粉与HCl在高温下合成为SiHCl3,然后对SiHCl3进行化学精制提纯,接着对SiHCL3进行多级精馏,使其纯度达到9个9以上,其中金属杂质总含量应降到0.1ppba以下,最后在还原炉中在1050℃的硅芯上用超高纯的氢气对SiHCL3进行还原而长成高纯多晶硅棒。
多晶硅副产品: 多晶硅生产过程中将有大量的废水、废液排出,如:生产1000吨多晶硅将有三氯氢硅3500吨、四氯化硅4500吨废液产生,未经处理回收的三氯氢硅和四氯化硅是一种有毒有害液体。对多晶硅副产物三氯氢硅、四氯化硅经过多级精馏提纯等化学处理,可生成白炭黑、氯化钙以及用于光纤预制棒的高纯(6N)四氯化硅。
四、硅锭的拉制,目前主要有以下几种方法: *直拉法 即切克老斯基法(Czochralski:Cz),直拉法是用的最多的一种晶体生长技术。直拉法基本原理和基本过程如下:
1.引晶:通过电阻加热,将装在石英坩埚中的多晶硅熔化,并保持略高于硅熔点的温度,将籽晶浸入熔体,然后以一定速度向上提拉籽晶并同时旋转引出晶体;
2.缩颈:生长一定长度的缩小的细长颈的晶体,以防止籽晶中的位错延伸到晶体中; 放肩:将晶体控制到所需直径; 3.等径生长:根据熔体和单晶炉情况,控制晶体等径生长到所需长度; 4.收尾:直径逐渐缩小,离开熔体; 5.降温:降级温度,取出晶体,待后续加工 6.最大生长速度:晶体生长最大速度与晶体中的纵向温度梯度、晶体的热导率、晶体密度等有关。提高晶体中的温度梯度,可以提高晶体生长速度;但温度梯度太大,将在晶体中产生较大的热应力,会导致位错等晶体缺陷的形成,甚至会使晶体产生裂纹。为了降低位错密度,晶体实际生长速度往往低于最大生长速度。