呼和浩特市中考数学试卷及答案
- 格式:doc
- 大小:1.58 MB
- 文档页数:15
2022年内蒙古呼和浩特中考数学试题及答案详解(试题部分)一、选择题(每小题3分,共30分,下列各小题均有四个选项,其中只有一个是正确的)1. 计算-3-2的结果是( )A.-1B.1C.-5D.5 2. 据2022年5月26日央视新闻报道,今年我国农发行安排夏粮收购准备金1 100亿元。
数据“1 100亿”用科学记数法表示为( ) A.1.1×1012 B.1.1×1011 C.11×1010 D.0.11×10123. 不透明袋中装有除颜色外完全相同的a 个白球、b 个红球,则任意摸出一个球是红球的概率是( ) A.b a+b B.b a C.a a+b D.a b4. 图中几何体的三视图是( )A B C D 5. 学校开展“书香校园,师生共读”活动,某学习小组五名同学一周的课外阅读时间(单位:h)分别为4,5,5,6,10。
这组数据的平均数、方差是( ) A.6,4.4 B.5,6 C.6,4.2 D.6,56. 下列运算正确的是 ( )A.√12×√8=±2B.(m +n )2=m 2+n 2C.1x−1-2x =-1xD.3xy ÷−2y 23x =-9x 22y 7. 如图,△ABC 中,∠ACB =90°,将△ABC 绕点C 顺时针旋转得到△EDC ,使点B 的对应点D 恰好落在AB 边上,AC 、ED 交于点F 。
若∠BCD =α,则∠EFC 的度数是(用含α的代数式表示) ( )A.90°+12αB.90°-12αC.180°-32αD.32α 8. 已知x 1,x 2是方程x 2-x -2 022=0的两个实数根,则代数式x 13-2 022x 1+x 22的值是( )A.4 045B.4 044C.2 022D.1 9. 如图,四边形ABCD 是菱形,∠DAB =60°,点E 是DA 中点,F 是对角线AC 上一点,且∠DEF =45°,则AF ∶FC 的值是 ( )A.3B.√5+1C.2√2+1D.2+√310. 以下命题:①面包店某种面包售价a 元/个,因原材料涨价,面包价格上涨10%,会员优惠从打八五折调整为打九折,则会员购买一个面包比涨价前多花了0.14a 元;②等边三角形ABC 中,D 是BC 边上一点,E 是AC 边上一点,若AD =AE ,则∠BAD =3∠EDC ;③两边及第三边上的中线对应相等的两个三角形全等;④一列自然数0,1,2,3,…,55,依次将该列数中的每一个数平方后除以100,得到一列新数,则原数与对应新数的差,随着原数的增大而增大。
2022年内蒙古呼和浩特市中考数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30分)1.计算−3−2的结果是( )A. −1B. 1C. −5D. 52.据2022年5月26日央视新闻报道,今年我国农发行安排夏粮收购准备金1100亿元.数据“1100亿”用科学记数法表示为( )A. 1.1×1012B. 1.1×1011C. 11×1010D. 0.11×10123.不透明袋中装有除颜色外完全相同的a个白球、b个红球,则任意摸出一个球是红球的概率是( )A. ba+b B. baC. aa+bD. ab4.图中几何体的三视图是( )A.B.C.D.5.学校开展“书香校园,师生共读”活动,某学习小组五名同学一周的课外阅读时间(单位:ℎ),分别为:4,5,5,6,10.这组数据的平均数、方差是( )A. 6,4.4B. 5,6C. 6,4.2D. 6,56.下列运算正确的是( )A. √12×√8=±2 B. (m+n)2=m2+n2C. 1x−1−2x=−1xD. 3xy÷−2y23x=−9x22y7.如图.△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△EDC,使点B的对应点D恰好落在AB边上,AC、ED交于点F.若∠BCD=α,则∠EFC的度数是(用含α的代数式表示)( )A. 90°+12α B. 90°−12α C. 180°−32α D. 32α8.已知x1,x2是方程x2−x−2022=0的两个实数根,则代数式x13−2022x1+x22的值是( )A. 4045B. 4044C. 2022D. 19.如图,四边形ABCD是菱形,∠DAB=60°,点E是DA中点,F是对角线AC上一点,且∠DEF=45°,则AF:FC的值是( )A. 3B. √5+1C. 2√2+1D. 2+√310.以下命题:①面包店某种面包售价a元/个,因原材料涨价,面包价格上涨10%,会员优惠从打八五折调整为打九折,则会员购买一个面包比涨价前多花了0.14a元;②等边三角形ABC中,D是BC边上一点,E是AC边上一点,若AD=AE,则∠BAD=3∠EDC;③两边及第三边上的中线对应相等的两个三角形全等;④一列自然数0,1,2,3,…,55,依次将该列数中的每一个数平方后除以100,得到一列新数,则原数与对应新数的差,随着原数的增大而增大.其中真命题的个数有( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18分)11.因式分解:x3−9x=______.(k>0)的图象上,若0<y1<y2,则a的12.点(2a−1,y1)、(a,y2)在反比例函数y=kx取值范围是______.13.如图,从一个边长是a的正五边形纸片上剪出一个扇形,这个扇形的面积为______(用含π的代数式表示);如果将剪下来的扇形围成一个圆锥,圆锥的底面圆直径为______.14.某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了______千克糯米;设某人的付款金额为x 元,购买量为y 千克,则购买量y 关于付款金额x(x >10)的函数解析式为______.15. 已知AB 为⊙O 的直径且AB =2,点C 是⊙O 上一点(不与A 、B 重合),点D 在半径OB上,且AD =AC ,AE 与过点C 的⊙O 的切线垂直,垂足为E.若∠EAC =36°,则CD =______,OD =______.16. 在平面直角坐标系中,点C 和点D 的坐标分别为(−1,−1)和(4,−1),抛物线y =mx 2−2mx +2(m ≠0)与线段CD 只有一个公共点,则m 的取值范围是______.三、解答题(本大题共8小题,共72分) 17. 计算求解18. (1)计算2sin45°−|2−√2|+(−13)−1; 19. (2)解方程组:{4x +y =5x−12+y 3=2.20. “一去紫台连朔漠,独留青冢向黄昏”,美丽的昭君博物院作为著名景区现已成为外地游客到呼和浩特市旅游的打卡地.如图,为测量景区中一座雕像AB 的高度,某数学兴趣小组在D 处用测角仪测得雕像顶部A 的仰角为30°,测得底部B 的俯角为10°.已知测角仪CD 与水平地面垂直且高度为1米,求雕像AB 的高.(用非特殊角的三角函数及根式表示即可)21. 某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下: 22. 17 18 16 13 24 15 27 26 18 19 23. 22 17 16 19 32 30 16 15 16 28 24. 15 32 23 17 14 15 27 27 16 1925. 对这30个数据按组距3进行分组,并整理和分析如下26.频数分布表组别一二三四五六七销售额/万元13≤x<1616≤x<1919≤x<2222≤x<2525≤x<2828≤x<3131≤x<34频数61033a b2数据分析表平均数众数中位数20.3c d请根据以上信息解答下列问题:(1)上表中a=______,b=______,c=______,d=______;(2)若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由;(3)若从第六组和第七组内随机选取两名营业员在表彰会上作为代表发言,请你直接写出这两名营业员在同一组内的概率.27.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交线段CA的延长线于点E,连接BE.28.(1)求证:BD=CD;29.(2)若tanC=12,BD=4,求AE.30.如图,在平面直角坐标系中,一次函数y1=kx+b的图象与反比例函数y2=mx的图象交于A、B两点,且A点的横坐标为1,过点B作BE//x轴,AD⊥BE于点D,点C(72,−12)是直线BE上一点,且AC=√2CD.31.(1)求一次函数与反比例函数的解析式;32.(2)根据图象,请直接写出不等式kx+b−mx<0的解集.33.今年我市某公司分两次采购了一批土豆,第一次花费30万元,第二次花费50万元,已知第一次采购时每吨土豆的价格比去年的平均价格上涨了200元,第二次采购时每吨土豆的价格比去年的平均价格下降了200元,第二次的采购数量是第一次采购数量的2倍.34.(1)问去年每吨土豆的平均价格是多少元?35.(2)该公司可将土豆加工成薯片或淀粉,因设备原因,两种产品不能同时加工,若单独加工成薯片,每天可加工5吨土豆,每吨土豆获利700元;若单独加工成淀粉,每天可加工8吨土豆,每吨土豆获利400元,由于出口需要,所有采购的土豆必须全部加工完且用时不超过60天,其中加工成薯片的土豆数量不少于加工成淀粉的土,为获得最大利润,应将多少吨土豆加工成薯片?最大利润是多少?豆数量的2336.下面图片是八年级教科书中的一道题.37.如图,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.求证AE=EF.(提示:取AB的中点G,连接EG.)38.39.(1)请你思考题中“提示”,这样添加辅助线的意图是得到条件:______;40.(2)如图1,若点E是BC边上任意一点(不与B、C重合),其他条件不变.求证:AE=EF;41.(3)在(2)的条件下,连接AC,过点E作EP⊥AC,垂足为P.=k,当k为何值时,四边形ECFP是平行四边形,并给予证明.42.设BEBC43.x2+bx+c经过点B(4,0)和点C(0,2),与x轴的另一个交点为A,44.如图,抛物线y=−12连接AC、BC.45.(1)求抛物线的解析式及点A的坐标;46.(2)如图1,若点D是线段AC的中点,连接BD,在y轴上是否存在点E,使得△BDE是以BD为斜边的直角三角形?若存在,请求出点E的坐标;若不存在,请说明理由.47.(3)如图2,点P是第一象限内抛物线上的动点,过点P作PQ//y轴,分别交BC、x轴于点M、N,当△PMC中有某个角的度数等于∠OBC度数的2倍时,请求出满足条件的点P的横坐标.48.答案和解析1.【答案】C【解析】解:−3−2=−5.故选:C.运用有理数的减法运算法则计算.本题考查有理数的运算,熟练掌握运算法则是解题的关键.2.【答案】B【解析】解:1100亿=110000000000=1.1×1011.故选:B.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n 比原来的整数位数少1,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.【答案】A【解析】解:不透明袋中装有除颜色外完全相同的a个白球、b个红球,则任意摸出一个球是红球的概率是b.a+b故选:A.根据概率的计算公式直接计算即可.一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=m.n本题考查了用列举法求概率,解题的关键是熟练掌握概率公式,必然事件的概率为1,不可能事件的概率为0,如果A为随机事件,那么0<P(A)<1.4.【答案】C【解析】解:根据题意可得,图中几何体的三视图如图,.故选:C .应用简单几何体的三视图判断方法进行判定即可得出答案.本题主要考查了简单几何体的三视图,熟练掌握简单几何体的三视图的判定方法进行求解是解决本题的关键.5.【答案】A【解析】解:∵x −=15×(4+5+5+6+10)=6,∴S 2=15×[(4−6)2+2×(5−6)2+(6−6)2+(10−6)2]=4.4, 故选:A .先计算出这组数据的平均数,再根据方差的计算公式计算可得.本题主要考查平均数、方差,解题的关键是掌握平均数、方差的计算公式.6.【答案】D【解析】解:A 、√12×√8=2,故A 不符合题意;B 、(m +n)2=m 2+2mn +n 2,故B 不符合题意;C 、1x−1−2x=2−xx 2−x,故C 不符合题意;D 、3xy ÷−2y 23x=−9x 22y,故D 符合题意;故选:D .利用二次根式的乘法的法则,完全平方公式,分式的减法的法则,分式的除法的法则对各项进行运算即可.本题主要考查二次根式的乘法,完全平方公式,分式的混合运算,解答的关键是对相应的运算法则的掌握.7.【答案】C【解析】解:由旋转的性质可知,BC =CD ,∠B =∠EDC ,∠A =∠E ,∠ACE =∠BCD , ∵∠BCD =α,∴∠B=∠BDC=180°−α2=90°−α2,∠ACE=α,∵∠ACB=90°,∴∠A=90°−∠B=α2.∴∠E=α2.∴∠EFC=180°−∠ECF−∠E=180°−32α.故选:C.由旋转的性质可知,BC=CD,∠B=∠EDC,∠A=∠E,∠ACE=∠BCD,因为∠BCD=α,所以∠B=∠BDC=180°−α2=90°−α2,∠ACE=α,由三角形内角和可得,∠A=90°−∠B=α2.所以∠E=α2.再由三角形内角和定理可知,∠EFC=180°−∠ECF−∠E=180°−32α.本题主要考查旋转的性质,三角形内角和等相关内容,由旋转的性质得出∠E和∠ECF的角度是解题关键.8.【答案】A【解析】解:把x=x1代入方程得:x12−x1−2022=0,即x12−2022=x1,∵x1,x2是方程x2−x−2022=0的两个实数根,∴x1+x2=1,x1x2=−2022,则原式=x1(x12−2022)+x22=x12+x22=(x1+x2)2−2x1x2=1+4044=4045.故选:A.把x=x1代入方程表示出x12−2022=x1,代入原式利用完全平方公式化简,再根据根与系数的关系求出所求即可.此题考查了根与系数的关系,熟练掌握一元二次方程根与系数的关系是解本题的关键.9.【答案】D【解析】解:连接DB,交AC于点O,连接OE,∵四边形ABCD是菱形,∴∠DAC=12∠DAB=30°,AC⊥BD,OD=12BD,AC=2AO,AB=AD,∵∠DAB=60°,∴△ABD是等边三角形,∴DB=AD,∵∠AOD=90°,点E是DA中点,∴OE=AE=DE=12AD,∴设OE=AE=DE=a,∴AD=BD=2a,∴OD=12BD=a,在Rt△AOD中,AO=√AD2−DO2=√(2a)2−a2=√3a,∴AC=2AO=2√3a,∵EA=EO,∴∠EAO=∠EOA=30°,∴∠DEO=∠EAO+∠EOA=60°,∵∠DEF=45°,∴∠OEF=∠DEO−∠DEF=15°,∴∠EFO=∠EOA−∠OEF=15°,∴∠OEF=∠EFO=15°,∴OE=OF=a,∴AF=AO+OF=√3a+a,∴CF=AC−AF=√3a−a,∴AFCF =√3a+a√3a−a=√3+1√3−1=2+√3,故选:D.∠DAB=30°,AC⊥BD,连接DB,交AC于点O,连接OE,根据菱形的性质可得∠DAC=12BD,AC=2AO,AB=AD,从而可得△ABD是等边三角形,进而可得DB=AD,OD=12AD,然后设OE=AE=DE=再根据直角三角形斜边上的中线可得OE=AE=DE=12a,则AD=BD=2a,在Rt△AOD中,利用勾股定理求出AO的长,从而求出AC的长,最后利用等腰三角形的性质,以及三角形的外角求出∠OEF=∠EFO=15°,从而可得OE=OF=a,即可求出AF,CF的长,进行计算即可解答.本题考查了菱形的性质,等边三角形的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.10.【答案】B【解析】解:(1)根据题意得:0.9×1.1a−0.85a=0.14a,故①是正确的;(2)如图:设∠EDC=x;则∠AED=x+60°,∵AD=AE∴∠ADE=∠AED,∴∠DAC=180°−2∠AED=180°−2x−120°=60−2x.∴∠BAD=60°−∠DAC=2x=2∠EDC.故②是错误的.(3)如图:D为BC的中点,两边为AB,AC;把AD中线延长加倍,得△ACD≌△EBD,所以AC =BE ,所以△ABE 与对应三角形全等,得∠BAE 与对应角相等,再根据两边及夹角相等,两个三角形全等, 故③是正确的.(4)设该列自然数为a ,则新数为a 2100,则a −a 2100=−a 2+100a100=−(a−50)2+2500100,∵0≤a ≤55,∴原数与对应新数的差是先变大,再变小. 故④是错误的. 故选:B . (1)列代数式求解;(2)利用三角形内角和及外交关系定理求解; (3)利用三角形全等进行判断; (4)利用作差比较代数式的大小.主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定理及正确计算.11.【答案】x(x +3)(x −3)【解析】解:x 3−9x=x(x 2−9)=x(x +3)(x −3). 故答案为x(x +3)(x −3).先提取公因式x ,再利用平方差公式进行分解.本题主要考查提公因式法分解因式和利用平方差公式分解因式,本题要进行二次分解,注意分解因式要彻底.12.【答案】a >1【解析】解:∵k >0,∴反比例函数y =kx (k >0)的图象在一、三象限,在每个象限,y 随x 的增大而减小, ∵0<y 1<y 2,∴点(2a −1,y 1)、(a,y 2)都在第一象限, ∴2a −1>a , 解得:a >1,故答案为:a>1.先确定反比例函数y=kx(k>0)的图象在一、三象限,由0<y1<y2可知点(2a−1,y1)、(a,y2)都在第一象限,根据反比例函数的性质即可得到2a−1>a,求解即可.此题主要考查了反比例函数图象上点的坐标特征,熟知反比例函数的性质是解题的关键.13.【答案】3πa2103a 5【解析】解:∵五边形ABCDE是正五边形,∴∠BCD=(5−2)×180°5=108°,∴S扇形=108π×a2360=3πa210;又∵弧BD的长为108πa180=3πa5,即圆锥底面周长为3πa5,∴圆锥底面直径为3a5,故答案为:3πa210;3a5.先求出正五边形的内角的度数,根据扇形面积的计算方法进行计算即可;扇形的弧长等于圆锥的底面周长,可求出底面直径.本题考查正多边形与圆,扇形面积,弧长及圆周长,掌握扇形面积、弧长、圆周长的计算方法是正确解决问题的关键.14.【答案】34x+2【解析】解:当x>2时,y=5×2+5×0.8(x−2)=4x+2;∵14>10,∴x>2,∴4x+2=14,即:x=3.故答案为:3;y=4x+2.根据糯米的价格为5元/千克,如果一次购买2千克以上种子,超过2千克的部分的种子的价格打8折,分别即可得出解析式;再把y=14代入即可.本题考查一次函数的应用,解答本题的关键是明确题意,写出相应的函数解析式.15.【答案】1−1+√52【解析】解:如图:连接OC,设OD=x,∵直径AB=2,∴OA=OC=1,∴AD=AC=1+x,∵EC与⊙O相切于点C,∴OC⊥EC,∵AE⊥EC,∴∠AEC=90°,∴AE//OC,∴∠EAC=∠ACO=36°,∵OA=OC,∴∠ACO=∠OAC=36°,∵AC=AD,∴∠ADC=∠ACD=72°,∴∠OCD=∠ACD−∠ACO=36°,∵∠COD=2∠CAD=72°,∴∠COD=∠ADC=72°,∴OC=DC=1,∴∠OCD=∠CAD,∠ADC=∠ODC,∴△DOC∽△DCA,∴DODC =DCDA,∴x1=11+x,解得:x=−1±√52,经检验:x=−1±√52是原方程的根,∵x>0,∴OD=−1+√5,2.故答案为:1,−1+√52连接OC,设OD=x,则AC=AD=1+x,利用切线的性质可得OC⊥EC,从而可得AE/ /OC,然后利用平行线和等腰三角形的性质可得∠EAC=∠ACO=∠OAC=36°,从而可得∠ADC=∠ACD=72°,进而可得∠OCD=36°,∠COD=∠ADC=72°,即可得出OC= DC=1,最后证明△DOC∽△DCA,从而利用相似三角形的性质进行计算即可解答.本题考查了切线的性质,圆周角定理,相似三角形的判定与性质,熟练掌握切线的性质,以及相似三角形的判定与性质是解题的关键.16.【答案】m=3或−1<m<−38=1,【解析】解:抛物线的对称轴为:x=−−2m2m当x=0时,y=2,∴抛物线与y轴的交点坐标为(0,2),顶点坐标为(1,2−m),直线CD的表达式y=−1,当m>0时,且抛物线过点D(4,−1)时,16m−8m+2=−1,(不符合题意,舍去),解得:m=−38当抛物线经过点(−1,−1)时,m+2m+2=−1,解得:m=−1(不符合题意,舍去),当m>0且抛物线的顶点在线段CD上时,2−m=−1,解得:m=3,当m<0时,且抛物线过点D(4,−1)时,16m−8m+2=−1,,解得:m=−38当抛物线经过点(−1,−1)时,m+2m+2=−1,解得:m=−1,,综上,m的取值范围为m=3或−1<m<−38故答案为:m =3或−1<m <−38.根据抛物线求出对称轴x =1,y 轴的交点坐标为(0,2),顶点坐标为(1,2−m),直线CD 的表达式y =−1,分两种情况讨论:m >0时或m <0时,利用抛物线的性质分析求解. 本题考查了二次函数的性质,理解对称轴的含义,熟练掌握二次函数的性质,巧妙运用分类讨论思想解决问题是解题的关键.17.【答案】解:(1)原式=2×√22−2+√2−3 =√2−2+√2−3 =2√2−5; (2)方程组整理得{4x +y =5①3x +2y =15②,②−①×2得:−5x =5, 解得:x =−1,把x =−1代入①得:−4+y =5, 解得:y =9,则方程组的解为{x =−1y =9.【解析】(1)原式利用负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值;(2)方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,以及实数的运算,熟练掌握运算法则是解本题的关键.18.【答案】解:过点C 作CE ⊥AB ,垂足为E ,则CD =BE =1米,在Rt △CBE 中,∠BCE =10°, ∴CE =BEtan10∘=1tan10∘(米),在Rt△ACE中,∠ACE=30°,∴AE=CE⋅tan30°=1tan10∘⋅√33=√33tan10°(米),∴AB=AE+BE=(1+√33tan10°)米,∴雕像AB的高为(1+√33tan10°)米.【解析】过点C作CE⊥AB,垂足为E,则CD=BE=1米,然后在Rt△CBE中,利用锐角三角函数的定义求出CE的长,再在Rt△ACE中,利用锐角三角函数的定义求出AE的长,进行计算即可解答.本题考查了解直角三角形的应用−仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.19.【答案】421618【解析】解:(1)a=4,b=2;c=16,d=18;故答案为4,2,16,18;(2)月销售额定为18万元合适.理由如下:想让一半左右的营业员都能达到销售目标,月销售额定为中位数,因为低于中位数和高于中位数的人数相同,所以月销售额定为18万元合适;(3)画树状图为:共有12种等可能的结果,其中这两名营业员在同一组内的结果数为4,所以这两名营业员在同一组内的概率=412=13.(1)利用唱票的形式可得到a、b的值,然后根据众数和中位数的定义确定数据的众数与中位数;(2)根据中位数的意义确定月销售额定;(3)画树状图展示所有12种等可能的结果,找出这两名营业员在同一组内的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求出事件A或B的概率.也考查了统计图、众数和中位数.20.【答案】(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴BD=DC;(2)解:∵BD=DC=4,∴BC=DB+DC=8,在Rt△ADC中,tanC=12,∴AD=CD⋅tanC=4×12=2,∴AC=√AD2+CD2=√22+42=2√5,∵AB是⊙O的直径,∴∠AEB=90°,∵∠AEB=∠ADC=90°,∠C=∠C,∴△CDA∽△CEB,∴CECD =CBCA,∴CE4=2√5,∴CE=165√5,∴AE=CE−AC=65√5,∴AE的长为65√5.【解析】(1)连接AD,利用直径所对的圆周角是直角可得∠ADB=90°,然后利用等腰三角形的三线合一性质即可解答;(2)利用(1)的结论可得BD =DC =4,BC =8,然后在Rt △ADC 中,利用锐角三角函数的定义求出AD 的长,从而利用勾股定理求出AC 的长,最后证明△CDA∽△CEB ,利用相似三角形的性质求出CE 的长,进行计算即可解答.本题考查了圆周角定理,相似三角形的判定与性质,解直角三角形,等腰三角形的性质,熟练掌握圆周角定理,以及解直角三角形是解题的关键.21.【答案】解:(1)∵AD ⊥BE 于点D ,AC =√2CD .∴cos∠ACD =CDAC =√22, ∴∠ACD =45°,∴△ADC 是等腰直角三角形, ∴AD =CD ,∵A 点的横坐标为1,点C(72,−12), ∴CD =72−1=52,∴A(1,52−12),即A(1,2), ∵反比例函数y 2=mx 的图象过A 、B 两点, ∴m =1×2=2,∴反比例函数的表达式为y 2=2x , ∵BE//x 轴,∴B 点的纵坐标为−12, ∴B(−4,−12),把A 、B 的坐标代入y 1=kx +b 得{k +b =2−4k +b =−12,解得{k =12b =32,∴一次函数的表达式为y 1=12x +32;(2)从图象可以看出,不等式kx +b −m x<0的解集是x <−4或0<x <1.【解析】(1)根据题意求得A 点的坐标,用待定系数法即可求得反比例函数的解析式,进而求得B 的坐标,代入y 1=kx +b ,即可解得一次函数的解析式;(2)观察函数图象即可求解.本题是反比例函数与一次函数的交点问题,考查了待定系数法求函数的解析式,解直角三角形,等腰直角三角形的性质,反比例函数图象上点的坐标特征,利用形数结合是解题的关键.22.【答案】解:(1)设去年每吨土豆的平均价格是x 元,则今年第一次采购每吨土豆的平均价格为(x +200)元,第二次采购每吨土豆的平均价格为(x −200)元, 由题意得:300000x+200×2=500000x−200,解得:x =2200,经检验,x =2200是原分式方程的解,且符合题意,答:去年每吨土豆的平均价格是2200元;(2)由(1)得:今年采购的土豆数为:3000002200+200×3=375(吨),设应将m 吨土豆加工成薯片,则应将(375−m)吨加工成淀粉,由题意得:{m ≥23(375−m)m 5+375−m 8≤60, 解得:150≤m ≤175,设总利润为y 元,则y =700m +400(375−m)=300m +150000,∵300>0,∴y 随m 的增大而增大,∴当m =175时,y 的值最大=300×175+150000=202500,答:为获得最大利润,应将175吨土豆加工成薯片,最大利润是202500元.【解析】(1)设去年每吨土豆的平均价格是x 元,则第一次采购每吨土豆的平均价格为(x +200)元,第二次采购每吨土豆的平均价格为(x −500)元,根据第二次的采购数量是第一次采购数量的两倍,据此列出分式方程求解即可;(2)先求出今年采购的土豆数,根据采购的土豆需不超过60天加工完毕,加工成薯片的土豆数量不少于加工成淀粉的土豆数量的23,据此列出不等式组并求解,然后由一次函数的性质求出最大利润即可.本题考查分式方程的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准数量关系,正确列出分式方程;(2)找出数量关系,正确列出一元一次不等式组.23.【答案】AG=CE【解析】(1)解:∵点E为BC的中点,∴BE=CE,∵点G为AB的中点,∴BG=AG,∴AG=CE,故答案为:AG=CE;(2)证明:取AG=EC,连接EG,∵四边形ABCD是正方形,∴AB=BC,∠B=90°,∵AG=CE,∴BG=BE,∴△BGE是等腰直角三角形,∴∠BGE=∠BEG=45°,∴∠AGE=∠ECF=135°,∵AE⊥EF,∴∠AEB+∠FEC=90°,∵∠BAE+∠AEB=90°,∴∠FEC=∠BAE,∴△GAE≌△CEF(ASA),∴AE=EF;(3)解:k=1时,四边形PECF是平行四边形,如图,3由(2)知,△GAE≌△CEF ,∴CF =EG ,设BC =x ,则BE =kx ,∴GE =√2kx ,EC =(1−k)x ,∵EP ⊥AC ,∴△PEC 是等腰直角三角形,∴∠PEC =45°,∴∠PEC +∠ECF =180°,∴PE//CF ,∴PE =√22(1−k)x ,当PE =CF 时,四边形PECF 是平行四边形,∴√22(1−k)x =√2kx ,解得k =13.(1)根据点E 为BC 的中点,可得答案;(2)取AG =EC ,连接EG ,首先说明△BGE 是等腰直角三角形,再证明△GAE≌△CEF ,可得答案;(3)设BC =x ,则BE =kx ,则GE =√2kx ,EC =(1−k)x ,再利用等腰直角三角形的性质表示EP 的长,利用平行四边形的判定可得只要EP =FC ,即可解决问题.本题是四边形的综合题,主要考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,平行四边形的判定等知识,取AG =CE ,证明△GAE≌△CEF 是解题的关键.24.【答案】解:(1)将点B(4,0)和点C(0,2)代入抛物线y =−12x 2+bx +c 中, 则{−12×42+4b +c =0c =2, 解得:{b =32c =2,∴抛物线的解析式为y=−12x2+32x+2,在y=−12x2+32x+2中,令y=0得−12x2+32x+2=0,解得:x1=−1,x2=4,∴A(−1,0);(2)存在y轴上一点E,使得△BDE是以BD为斜边的直角三角形,理由如下:如图:∵点D是线段AC的中点,A(−1,0),C(0,2),∴D(−12,1),设E(0,t),又B(4,0),∵∠BED=90°,∴BE2+DE2=BD2,即[(4−0)2+(0−t)2]+[(−12−0)2+(1−t)2]=(4+12)2+(0−1)2,化简得:t2−t−2=0,解得:t1=−1,t2=2,∴E的坐标为(0,−1)或(0,2);(3)∵B(4,0)、C(0,2),∴设直线BC的解析式为y=kx+2(k≠0),把点B(4,0)代入解析式得,4k+2=0,解得:k=−12,∴直线BC的解析式为y=−12x+2,设点P(m,−12m2+32m+2),则M(m,−12m+2),①当∠PCM=2∠OBC时,过点C作CF⊥PM于点F,如图,∵CF⊥PM,PM//y轴,∴CF//OB,∴∠FCM=∠OBC,F(m,2),又∵∠PCM=2∠OBC,∴∠PCF=FCM=∠OBC,∴F是线段PM的中点,∴−12m2+32m+2+(−12m+2)2=2,整理得:m2−2m=0,解得:m=2或m=0,∵点P是第一象限内抛物线上的动点,∴m=2;②∠CMP=2∠OBC时,∵∠CMP=∠BMN,∴∠BMN=2∠OBC,即∠BMN=2∠NBM,∵PN⊥x轴,∴∠BMN+∠NBM=90°,即3∠NBM=90°,∴∠NBM=30°,∴OC=12BC,∵BC=√OC2+OB2=√4+16=2√5≠4,∴此种情况不存在;③当∠CPM=2∠OBC时,∵∠CMP=∠NMB=90°−∠OBC,∴∠PCM=180°−∠CPM−∠CMP=180°−2∠OBC−(90°−∠OBC)=90°−∠OBC,∴∠PCM=∠CMP,∴PC=PM,∴(m−0)2+(−12m2+32m+2−2)2=[(−12m2+32m+2)−(−12m+2)]2,整理得:m2+14m4−32m3+94m2=14m4−2m3+4m2,解得:m=32;综上所述,满足条件的点P的横坐标为2或32.【解析】(1)用待定系数法可得抛物线的解析式为y=−12x2+32x+2,令y=0得A(−1,0);(2)由A(−1,0),C(0,2),知线段AC的中点D(−12,1),设E(0,t),根据∠BED=90°,得[(4−0)2+(0−t)2]+[(−12−0)2+(1−t)2]=(4+12)2+(0−1)2,即可解得E的坐标为(0,−1)或(0,2);(3)分当∠PCM=2∠OBC时,∠CMP=2∠OBC时,当∠CPM=2∠OBC时三种情况,利用二次函数的性质和等腰三角形,勾股定理等性质进行计算即可.本题考查二次函数综合应用,涉及待定系数法、等腰三角形性质、直角三角形性质及应用,利用分类讨论的思想是解题的关键.。
2021年呼和浩特市中考试卷数学注意事项:本试卷满分120分.考试时间120分钟.一、选择题(本题包括10个小题,每题3分,共30分.在每小题给出的四个选项中,只有一项符合题意,请把该选项的序号填入题后面的括号内)1.2-的倒数是()A.12-B.12C.2D.2-2.已知ABC△的一个外角为50°则ABC△一定是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角三角形或锐角三角形3.有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字是偶数的概率为()A.13B.16C.12D.144.如图,AB是O⊙的直径,点C在圆上,CD AB DE BC⊥,∥,则图中与ABC△相似的三角形的个数有()A.4个B.3个C.2个D.1个5.用配方法解方程23610x x-+=,则方程可变形为()A.21(3)3x-=B.213(1)3x-=C.2(31)1x-=D.22(1)3x-=6.为了了解我市参加中考的15000名学生的视力情况,抽查了1000名学生的视力进行统计分析.下面四个判断正确的是()A.15000名学生是总体B.1000名学生的视力是总体的一个样本C.每名学生是总体的一个个体D.上述调查是普查7.半径为R的圆内接正三角形的面积是()A.232R B.2πR C.2332R D.2334R8.在等腰ABC△中,AB AC=,一边上的中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7 B.11 C.7或11 D.7或109.右图哪个是左面正方体的展开图()CBDOAEA.B.C.D.10.下列命题中,正确命题的个数为( )(1)若样本数据3、6、a 、4、2的平均数是4,则其方差为2 (2)“相等的角是对顶角”的逆命题 (3)对角线互相垂直的四边形是菱形(4)若二次函数23(1)y x k =-+图象上有三个点1)y ,(22y ,),1()y ,则321y y y >>A .1个B .3个C .2个D .4个二、填空题(本题包括6个小题,每题3分,共18分.本题要求把正确结果填在每题横线上,不需要解答过程)11.某种生物孢子的直径为0。
内蒙古呼和浩特市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣2的倒数是()A.2B.﹣2 C.D.2.如图,已知a∥b,∠1=65°,则∠2的度数为()A.65°B.125°C.115°D.25°3.在一个不透明的口袋中,装有3个红球,2个白球,除颜色不同外,其余都相同,则随机从口袋中摸出一个球为红色的概率是()A.B.C.D.4.下列各因式分解正确的是()A.﹣x2+(﹣2)2=(x﹣2)(x+2)B.x2+2x﹣1=(x﹣1)2C.4x2﹣4x+1=(2x﹣1)2D.x2﹣4x=x(x+2)(x﹣2)5.已知:x1,x2是一元二次方程x2+2ax+b=0的两根,且x1+x2=3,x1x2=1,则a、b的值分别是()A.a=﹣3,b=1 B.a=3,b=1 C.,b=﹣1 D.,b=16.如图,在一长方形内有对角线长分别为2和3的菱形,边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是()A.落在菱形内B.落在圆内C.落在正六边形内D.一样大7.下面四条直线,其中直线上每个点的坐标都是二元一次方程x﹣2y=2的解是()A.B.C.D.8.已知:在等腰梯形ABCD中,AD∥BC,AC⊥BD,AD=3,BC=7,则梯形的面积是()A.25 B.50 C.D.9.已知:M,N两点关于y轴对称,且点M在双曲线上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=﹣abx2+(a+b)x()A.有最大值,最大值为B.有最大值,最大值为C.有最小值,最小值为D.有最小值,最小值为10.下列命题中,真命题的个数有()①一个图形无论经过平移还是旋转,变换后的图形与原来图形的对应线段一定平行②函数图象上的点P(x,y)一定在第二象限③正投影的投影线彼此平行且垂直于投影面④使得|x|﹣y=3和y+x2=0同时成立的x的取值为.A.3个B.1个C.4个D.2个二、填空题(本大题共6个小题,每小题3分,共18分,本题要求把正确结果填在答题纸规定的横线上,不需要解答过程)11.函数y=中,自变量x的取值范围是_________.12.太阳的半径约为696 000千米,用科学记数法表示为_________千米.13.如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=_________.14.实数a,b在数轴上的位置如图所示,则的化简结果为_________.15.一组数据﹣1,0,2,3,x,其中这组数据的极差是5,那么这组数据的平均数是_________.16.如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为_________cm.三、解答题(本大题包括9个小题,共72分,解答应写出必要的演算步骤、证明过程或文字说明)17.(1)计算:.(2)先化简,再求值:,其中.18.(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;(2)若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.19.如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(n,3)两点.(1)求一次函数的解析式;(2)根据图象直接写出时x的取值范围.20.如图,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG于E,BF∥DE,交AG于F.(1)求证:AF﹣BF=EF;(2)将△ABF绕点A逆时针旋转,使得AB与AD重合,记此时点F的对应点为点F′,若正方形边长为3,求点F′与旋转前的图中点E之间的距离.21.如图是交警在一个路口统计的某个时段来往车辆的车速情况(单位:千米/时)(1)找出该样本数据的众数和中位数;(2)计算这些车的平均速度;(结果精确到0.1)(3)若某车以50.5千米/时的速度经过该路口,能否说该车的速度要比一半以上车的速度快?并说明判断理由.22.如图,线段AB,DC分别表示甲、乙两建筑物的高.某初三课外兴趣活动小组为了测量两建筑物的高,用自制测角仪在B外测得D点的仰角为α,在A处测得D点的仰角为β.已知甲、乙两建筑物之间的距离BC为m.请你通过计算用含α、β、m的式子分别表示出甲、乙两建筑物的高度.23.如图,某化工厂与A,B两地有公路和铁路相连,这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(吨•千米),铁路运价为1.2元/(吨•千米),这两次运输共支出公路运费15 000元,铁路运费97 200元,请计算这批产品的销售款比原料费和运输费的和多多少元?(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:乙:根据甲,乙两名同学所列方程组,请你分别指出未知数x,y表示的意义,然后在等式右边的方框内补全甲、乙两名同学所列方程组.甲:x表示_________,y表示_________乙:x表示_________,y表示_________(2)甲同学根据他所列方程组解得x=300,请你帮他解出y的值,并解决该实际问题.24.如图,已知AB为⊙O的直径,PA与⊙O相切于点A,线段OP与弦AC垂直并相交于点D,OP与弧AC相交于点E,连接BC.(1)求证:∠PAC=∠B,且PA•BC=AB•CD;(2)若PA=10,sinP=,求PE的长.25.如图,抛物线y=ax2+bx+c(a<0)与双曲线相交于点A,B,且抛物线经过坐标原点,点A的坐标为(﹣2,2),点B在第四象限内,过点B作直线BC∥x轴,点C为直线BC与抛物线的另一交点,已知直线BC与x轴之间的距离是点B到y轴的距离的4倍,记抛物线顶点为E.(1)求双曲线和抛物线的解析式;(2)计算△ABC与△ABE的面积;(3)在抛物线上是否存在点D,使△ABD的面积等于△ABE的面积的8倍?若存在,请求出点D的坐标;若不存在,请说明理由.内蒙古呼和浩特市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣2的倒数是()A.2B.﹣2 C.D.考点:倒数。
2022年内蒙古呼和浩特市中考数学试卷和答案一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算﹣3﹣2的结果是()A.﹣1B.1C.﹣5D.52.(3分)据2022年5月26日央视新闻报道,今年我国农发行安排夏粮收购准备金1100亿元.数据“1100亿”用科学记数法表示为()A.1.1×1012B.1.1×1011C.11×1010D.0.11×1012 3.(3分)不透明袋中装有除颜色外完全相同的a个白球、b个红球,则任意摸出一个球是红球的概率是()A.B.C.D.4.(3分)图中几何体的三视图是()A.B.C.D.5.(3分)学校开展“书香校园,师生共读”活动,某学习小组五名同学一周的课外阅读时间(单位:h),分别为:4,5,5,6,10.这组数据的平均数、方差是()A.6,4.4B.5,6C.6,4.2D.6,5 6.(3分)下列运算正确的是()A.×=±2B.(m+n)2=m2+n2C.﹣=﹣D.3xy÷=﹣7.(3分)如图.△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△EDC,使点B的对应点D恰好落在AB边上,AC、ED交于点F.若∠BCD=α,则∠EFC的度数是(用含α的代数式表示)()A.90°+αB.90°﹣αC.180°﹣αD.α8.(3分)已知x1,x2是方程x2﹣x﹣2022=0的两个实数根,则代数式x13﹣2022x1+x22的值是()A.4045B.4044C.2022D.19.(3分)如图,四边形ABCD是菱形,∠DAB=60°,点E是DA 中点,F是对角线AC上一点,且∠DEF=45°,则AF:FC的值是()A.3B.+1C.2+1D.2+ 10.(3分)以下命题:①面包店某种面包售价a元/个,因原材料涨价,面包价格上涨10%,会员优惠从打八五折调整为打九折,则会员购买一个面包比涨价前多花了0.14a元;②等边三角形ABC 中,D是BC边上一点,E是AC边上一点,若AD=AE,则∠BAD=3∠EDC;③两边及第三边上的中线对应相等的两个三角形全等;④一列自然数0,1,2,3,…,55,依次将该列数中的每一个数平方后除以100,得到一列新数,则原数与对应新数的差,随着原数的增大而增大.其中真命题的个数有()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,共18分•本题要求把正确结果填在答题卡规定的横线上,不需要答案过程)11.(3分)因式分解:x3﹣9x=.12.(3分)点(2a﹣1,y1)、(a,y2)在反比例函数y=(k>0)的图象上,若0<y1<y2,则a的取值范围是.13.(3分)如图,从一个边长是a的正五边形纸片上剪出一个扇形,这个扇形的面积为(用含π的代数式表示);如果将剪下来的扇形围成一个圆锥,圆锥的底面圆直径为.14.(3分)某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了千克糯米;设某人的付款金额为x元,购买量为y千克,则购买量y 关于付款金额x(x>10)的函数解析式为.15.(3分)已知AB为⊙O的直径且AB=2,点C是⊙O上一点(不与A、B重合),点D在半径OB上,且AD=AC,AE与过点C 的⊙O的切线垂直,垂足为E.若∠EAC=36°,则CD=,OD=.16.(3分)在平面直角坐标系中,点C和点D的坐标分别为(﹣1,﹣1)和(4,﹣1),抛物线y=mx2﹣2mx+2(m≠0)与线段CD 只有一个公共点,则m的取值范围是.三、答案题(本大题共8小题,满分72分。
考前须知:内蒙古2021年中考数学真题试题5.某学习小组做“用频率估计概率〞的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,那么符合这一结果的实验最有可能的是A.袋中装有大小和质地都一样的3 个红球和2 个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面1.所有考生必须将本人的姓名、准考证号填涂在试卷和答题卡的规定的指定正确位置。
2.考生要将答案写在答题卡上,在试卷上答题一律无效。
在在考试完毕之后以后,本套试卷和答D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7 或者超过9 6.假设以二元一次方程x +2 y-b=0 的解为坐标的点〔x,y〕都在直线y =1x +b -1 上,2题卡一起交回。
3.本套试卷满分是120 分。
考试时间是是120 分钟。
那么常数b=A.12B.2 C.-1 D.1一、选择题〔本大题一一共10 小题,每一小题3 分,一共30 分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的〕1.-3-〔-2〕的值是A.-1 B.1 C.5 D.-52.二十四节气是中国古代劳动人民长期经历积累的结晶,它与白昼时长亲密相关.当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长.根据以下图,在以下选项里面指出白昼时长低于11 小时的节气A.惊蛰B.小满C.立秋D.大寒3.一个多边形的内角和为1080°,那么这个多边形是A.九边形B.八边形C.七边形D.六边形4.下面是几个一样的小正方体摆出的立体图形的三视图,由三视图可知小正方体的个数为A.6 个7.随着“三农〞问题的解决,某农民近两年的年收入发生了明显变化,前年和去年的年收入分别是60000 元和80000 元,下面是根据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.根据统计图得出的以下四个结论正确的是A.①的收入去年和前年一样B.③的收入所占比例前年的比去年的大C.去年②的收入为2.8 万元前年去年D.前年年收入不止①②③三种农作物的收入8.顺次连接平面上A、B、C、D四点得到一个四边形,从①AB∥C D②BC=AD ③∠A=∠C ④∠B=∠D 四个条件中任取其中两个,可以得出“四边形ABCD 是平行四边形〞这一结论的情况一共有A.5 种B.4 种C.3 种D.1 种9.以下运算及判断正确的选项是A.-5×1 ÷〔-1 〕×5=15 5B.5 个C.4 个6姓名 准考证号D .3 个B .方程〔x 2 + x -1〕x +3=1 有四个整数解C .假设 a ×5673=103,a ÷103=b ,那么 a ×b = 105673D .有序数对〔m 2+1,|m |〕在平面直角坐标系中对应的点一定在第一象限10.假设满足1< x≤1 的任意实数x,都能使不等式2 x3–x 2 –m x >2成立,那么实数m 的取值2范围是A.m<-1 B.m≥-5 C.m<-4 D.m≤-4二、填空题〔本大题一一共6 小题,每一小题3 分,一共18 分.此题要求把正确结果填在答题卡规定的横线上,不需要解答过程〕11.分解因式a 2b -9b =.12.同一个圆的内接正方形和正三角形的边心距的比为.13.文具店销售某种笔袋,每个18 元,小华去购置这种笔袋,结账时店员说:“假如你再多买一个就可以打九折,价钱比如今廉价36 元〞,小华说:“那就多买一个吧,谢谢.〞根据两人的对话可知,小华结账时实际付款元.14.函数y =〔2k-1〕x +4〔k 为常数〕,假设从-3≤k≤3 中任取k 值,那么得到的函数是具有性质“y 随x 增加而增加〞的一次函数的概率为.⎧2x +a > 0⎪ 18.〔6 分〕如图,A、F、C、D 四点在同一条直线上,AF= CD,AB∥DE,且AB= DE.〔1〕求证:△ABC≌△DEF;〔2〕假设EF = 3,DE= 4,∠DEF= 90°,请直接写出使四边形EFBC 为菱形时AF 的长度.19.〔8 分〕下表是随机抽取的某公司局部员工的月收入资料.月收入/元45000 18000 10000 5500 5000 3400 3000 2000人数 1 1 1 3 6 1 11 2 〔1〕请计算以上样本的平均数和中位数;〔2〕甲乙两人分别用样本平均数和中位数来估计推断公司全体员工月收入程度,请15 .假设不等式组⎨1x >-a+1⎩2 4的解集中的任意x,都能使不等式x-5>0 成立,那么a的你写出甲乙两人的推断结论;取值范围是.16.如图,正方形ABCD,点M 是边BA 延长线上的动点〔不与点A 重合〕,且AM<AB,△CBE 由△DAM 平移得到.假设过点E 作EH⊥AC,H 为垂足,那么有以下结论:①点M 位置变化,使得∠DHC=60°时,2BE=DM 〔3〕指出谁的推断比拟科学合理,能真实地反映公司全体员工月收入程度,并说出另一个人的推断根据不能真实反映公司全体员工月收入程度的原因.②无论点M 运动到何处,都有D M = 2H M ③无论点M20.〔8 分〕如图,A〔6,0〕,B〔8,5〕,将线段OA 平移至CB,点D 在x 轴正半运动到何处,∠CHM 一定大于135°.其中正确结论的序号为.三、解答题〔本大题一一共9 小题,满分是72 分.解容许写出文字说明、证明过程或者演算步骤〕17.〔10 分〕计算轴上〔不与点A 重合〕,连接OC,AB,CD,BD.〔1〕求对角线AC 的长;〔2〕设点D 的坐标为〔x,0〕,△ODC 与△ABD 的面积分别记为S1,S2.设S = S1-S2,写出S 关于x 的函〔1〕〔5 分〕计算:〔2〕〔5 分〕解方程:2-2 + (3 27 -14x - 3+1=3x - 2 2 -x6) ÷ 6 - 3sin 45数解析式,并探究是否存在点D使S与△DBC 的面积相等,假如存在,用坐标形式写出点D 的位置,假如不存在,说明理由.x…- 4 -3 -2 -1 1 2 3 4 …y (1)2231 2 -2-1 -2-1…21.〔7 分〕如图,一座山的一段斜坡BD 的长度为600 米,且这段斜坡的坡度i = 1:3〔沿斜坡从B 到D 时,其升高的高度与程度前进的间隔之比〕.在地面B 处测得山顶A 的仰角为33°,在斜坡D处测得山顶A 的仰角为45°.求山顶A 到地面BC 的高度AC 是多少米?〔结果用含非特殊角的三角函数和根式表示即可〕22.〔6 分〕变量x 、y 对应关系如下表值呈现的对应规律.24.〔10 分〕如图,BC⊥AC,圆心O 在AC 上,点M 与点C 分别是AC 与⊙O 的交点,点D 是MB 与⊙O 的交点,点P 是AD 延长线与BC 的交点,且AD =AMAP AO 〔1〕求证:PD 是⊙O 的切线;〔2〕假设AD = 12,AM= MC,求BP 的值.MD25.〔10 分〕某方案在十二年内通过公租房建立,解决低收入人群的住房问题.前7 年,每年开工投入使用的公租房面积y〔单位:百万平方米〕,与时间是x〔第x 年〕的关系构成一次函数,〔1≤x≤7 且x 为整数〕,且第一和第三年开工投入使用23 7的公租房面积分别为和百万平方米;后5 年每年开工投入使用的公租房面积y6 2〔单位:百万平方米〕,与时间是x〔第x 年〕的关系是y =-1 x +15 〔7 <x≤12 且x 为8 4〔1〕根据表中给出的对应关系写出函数解析式,并在给出的坐标系中画出大致图象;〔2〕在这个函数图象上有一点P〔x,y〕〔x<0〕,过点P 分别作x 轴和y 轴的垂线,并延长与直线y =x -2交于A、B 两点,假设△P AB 的面积等于25 ,求出2P 点坐标.23.〔7 分〕关于x 的一元二次方程ax2 +bx +c = 0(a ≠ 0) 有两个实数根x ,x ,请12你用配方法探究有实数根的条件,并推导出求根公式,证明x ⋅x =c .1 2 a整数〕.〔1〕第6 年开工投入使用的公租房面积可解决20 万人的住房问题,假如人均住房面积,最后一年要比第6 年进步20%,那么最后一年开工投入使用的公租房面积可解决多少万人的住房问题?〔2〕受物价上涨等因素的影响,这12 年中,每年开工投入使用的公租房的租金各不一样,且第一年,一年38 元/m2,第二年,一年40 元/m2,第三年,一年42 元/m2,第四年,一年44 元/m2……以此类推.分析说明每平方米的年租金和时间能否构成函数,假如能,直接写出函数解析式;〔3〕在〔2〕的条件下,假设每年的公租房当年全部出租完,写出这12 年中每年竣工投入使用的公租房的年租金W 关于时间是x 的函数解析式,并求出W 的最大值〔单位:亿元〕.假如在W 获得最大值的这一年,老张租用了58m2 的房子,计算老张这一年应交付的租金.励志赠言经典语录精选句;挥动**,放飞梦想。
2017年内蒙古呼和浩特市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)我市冬季里某一天的最低气温是﹣10℃,最高气温是5℃,这一天的温差为()A.﹣5℃B.5℃C.10℃D.15℃2.(3分)中国的陆地面积约为9600000km2,将这个数用科学记数法可表示为()A.0.96×107km2B.960×104km2C.9.6×106km2 D.9.6×105km2 3.(3分)图中序号(1)(2)(3)(4)对应的四个三角形,都是△ABC这个图形进行了一次变换之后得到的,其中是通过轴对称得到的是()A.(1)B.(2)C.(3)D.(4)4.(3分)如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是()A.2010年至2014年间工业生产总值逐年增加B.2014年的工业生产总值比前一年增加了40亿元C.2012年与2013年每一年与前一年比,其增长额相同D.从2011年至2014年,每一年与前一年比,2014年的增长率最大5.(3分)关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为()A .2B .0C .1D .2或06.(3分)一次函数y=kx +b 满足kb >0,且y 随x 的增大而减小,则此函数的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限7.(3分)如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为M ,若AB=12,OM :MD=5:8,则⊙O 的周长为( )A .26πB .13πC .96π5D .39√10π58.(3分)下列运算正确的是( )A .(a 2+2b 2)﹣2(﹣a 2+b 2)=3a 2+b 2B .a 2+1a−1﹣a ﹣1=2a a−1C .(﹣a )3m ÷a m =(﹣1)m a 2mD .6x 2﹣5x ﹣1=(2x ﹣1)(3x ﹣1) 9.(3分)如图,四边形ABCD 是边长为1的正方形,E ,F 为BD 所在直线上的两点,若AE=√5,∠EAF=135°,则下列结论正确的是( )A .DE=1B .tan ∠AFO=13C .AF=√102D .四边形AFCE 的面积为9410.(3分)函数y=x 2+1|x|的大致图象是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)若式子√1−2x有意义,则x 的取值范围是 . 12.(3分)如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=48°,则∠AED 为 °.13.(3分)如图是某几何体的三视图,根据图中数据,求得该几何体的表面积为 .14.(3分)下面三个命题:①若{x =a y =b 是方程组{|x|=22x −y =3的解,则a +b=1或a +b=0;②函数y=﹣2x2+4x+1通过配方可化为y=﹣2(x﹣1)2+3;③最小角等于50°的三角形是锐角三角形,其中正确命题的序号为.15.(3分)如图,在▱ABCD中,∠B=30°,AB=AC,O是两条对角线的交点,过点O作AC的垂线分别交边AD,BC于点E,F,点M是边AB的一个三等分点,则△AOE与△BMF的面积比为.16.(3分)我国魏晋时期数学家刘徽首创“割圆术”计算圆周率.随着时代发展,现在人们依据频率估计概率这一原理,常用随机模拟的方法对圆周率π进行估计,用计算机随机产生m个有序数对(x,y)(x,y是实数,且0≤x≤1,0≤y≤1),它们对应的点在平面直角坐标系中全部在某一个正方形的边界及其内部.如果统计出这些点中到原点的距离小于或等于1的点有n个,则据此可估计π的值为.(用含m,n的式子表示)三、解答题(本大题共9小题,共72分)17.(10分)(1)计算:|2﹣√5|﹣√2(√18﹣√102)+32;(2)先化简,再求值:x−2x2+2x÷x2−4x+4x2−4+12x,其中x=﹣65.18.(6分)如图,等腰三角形ABC中,BD,CE分别是两腰上的中线.(1)求证:BD=CE;(2)设BD与CE相交于点O,点M,N分别为线段BO和CO的中点,当△ABC 的重心到顶点A的距离与底边长相等时,判断四边形DEMN的形状,无需说明理由.19.(10分)为了解某地某个季度的气温情况,用适当的抽样方法从该地这个季度中抽取30天,对每天的最高气温x (单位:℃)进行调查,并将所得的数据按照12≤x <16,16≤x <20,20≤x <24,24≤x <28,28≤x <32分成五组,得到如图频数分布直方图.(1)求这30天最高气温的平均数和中位数(各组的实际数据用该组的组中值代表);(2)每月按30天计算,各组的实际数据用该组的组中值代表,估计该地这个季度中最高气温超过(1)中平均数的天数;(3)如果从最高气温不低于24℃的两组内随机选取两天,请你直接写出这两天都在气温最高一组内的概率.20.(7分)某专卖店有A ,B 两种商品,已知在打折前,买60件A 商品和30件B 商品用了1080元,买50件A 商品和10件B 商品用了840元,A ,B 两种商品打相同折以后,某人买500件A 商品和450件B 商品一共比不打折少花1960元,计算打了多少折?21.(6分)已知关于x 的不等式2m−mx 2>12x ﹣1. (1)当m=1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.22.(7分)如图,地面上小山的两侧有A ,B 两地,为了测量A ,B 两地的距离,让一热气球从小山西侧A 地出发沿与AB 成30°角的方向,以每分钟40m 的速度直线飞行,10分钟后到达C 处,此时热气球上的人测得CB 与AB 成70°角,请你用测得的数据求A ,B 两地的距离AB 长.(结果用含非特殊角的三角函数和根式表示即可)23.(7分)已知反比例函数y=−k 2−1x(k 为常数). (1)若点P 1(1−√32,y 1)和点P 2(﹣12,y 2)是该反比例函数图象上的两点,试利用反比例函数的性质比较y 1和y 2的大小; (2)设点P (m ,n )(m >0)是其图象上的一点,过点P 作PM ⊥x 轴于点M .若tan ∠POM=2,PO=√5(O 为坐标原点),求k 的值,并直接写出不等式kx +k 2+1x>0的解集.24.(9分)如图,点A ,B ,C ,D 是直径为AB 的⊙O 上的四个点,C 是劣弧BD̂的中点,AC 与BD 交于点E .(1)求证:DC 2=CE•AC ;(2)若AE=2,EC=1,求证:△AOD 是正三角形;(3)在(2)的条件下,过点C 作⊙O 的切线,交AB 的延长线于点H ,求△ACH 的面积.25.(10分)在平面直角坐标系xOy 中,抛物线y=ax 2+bx +c 与y 轴交于点C ,其顶点记为M ,自变量x=﹣1和x=5对应的函数值相等.若点M 在直线l :y=﹣12x +16上,点(3,﹣4)在抛物线上.(1)求该抛物线的解析式;(2)设y=ax 2+bx +c 对称轴右侧x 轴上方的图象上任一点为P ,在x 轴上有一点A(﹣72,0),试比较锐角∠PCO 与∠ACO 的大小(不必证明),并写出相应的P 点横坐标x 的取值范围.(3)直线l 与抛物线另一交点记为B ,Q 为线段BM 上一动点(点Q 不与M 重合),设Q 点坐标为(t ,n ),过Q 作QH ⊥x 轴于点H ,将以点Q ,H ,O ,C 为顶点的四边形的面积S表示为t的函数,标出自变量t的取值范围,并求出S可能取得的最大值.2017年内蒙古呼和浩特市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•呼和浩特)我市冬季里某一天的最低气温是﹣10℃,最高气温是5℃,这一天的温差为()A.﹣5℃B.5℃C.10℃D.15℃【考点】1A:有理数的减法.【分析】用最高温度减去最低温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:5﹣(﹣10),=5+10,=15℃.故选D.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.2.(3分)(2017•呼和浩特)中国的陆地面积约为9600000km2,将这个数用科学记数法可表示为()A.0.96×107km2B.960×104km2C.9.6×106km2 D.9.6×105km2【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将用科学记数法表示为:9.6×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•呼和浩特)图中序号(1)(2)(3)(4)对应的四个三角形,都是△ABC这个图形进行了一次变换之后得到的,其中是通过轴对称得到的是()A.(1)B.(2)C.(3)D.(4)【考点】P3:轴对称图形.【专题】17 :推理填空题.【分析】轴对称是沿着某条直线翻转得到新图形,据此判断出通过轴对称得到的是哪个图形即可.【解答】解:∵轴对称是沿着某条直线翻转得到新图形,∴通过轴对称得到的是(1).故选:A.【点评】此题主要考查了轴对称图形的性质和应用,要熟练掌握,解答此题的关键是要明确:轴对称是沿着某条直线翻转得到新图形,观察时要紧扣图形变换特点,进行分析判断.4.(3分)(2017•呼和浩特)如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是()A.2010年至2014年间工业生产总值逐年增加B.2014年的工业生产总值比前一年增加了40亿元C.2012年与2013年每一年与前一年比,其增长额相同D.从2011年至2014年,每一年与前一年比,2014年的增长率最大【考点】VD:折线统计图.【分析】根据题意结合折线统计图确定正确的选项即可.【解答】解:A、2010年至2014年间工业生产总值逐年增加,正确,不符合题意;B、2014年的工业生产总值比前一年增加了40亿元,正确,不符合题意;C、2012年与2013年每一年与前一年比,其增长额相同,正确,不符合题意;D、从2011年至2014年,每一年与前一年比,2012年的增长率最大,故D符合题意;故选:D.【点评】本题考查了折线统计图,计算增长率是解题关键.5.(3分)(2017•呼和浩特)关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为()A.2 B.0 C.1 D.2或0【考点】AB:根与系数的关系.【专题】11 :计算题.【分析】设方程的两根为x1,x2,根据根与系数的关系得a2﹣2a=0,解得a=0或a=2,然后利用判别式的意义确定a的取值.【解答】解:设方程的两根为x1,x2,根据题意得x1+x2=0,所以a2﹣2a=0,解得a=0或a=2,当a=2时,方程化为x2+1=0,△=﹣4<0,故a=2舍去,所以a的值为0.故选B.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣ba,x1x2=ca.也考查了根的判别式.6.(3分)(2017•呼和浩特)一次函数y=kx +b 满足kb >0,且y 随x 的增大而减小,则此函数的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【考点】F7:一次函数图象与系数的关系.【分析】根据y 随x 的增大而减小得:k <0,又kb >0,则b <0.再根据k ,b 的符号判断直线所经过的象限.【解答】解:根据y 随x 的增大而减小得:k <0,又kb >0,则b <0, 故此函数的图象经过第二、三、四象限,即不经过第一象限.故选A .【点评】能够根据k ,b 的符号正确判断直线所经过的象限.7.(3分)(2017•呼和浩特)如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为M ,若AB=12,OM :MD=5:8,则⊙O 的周长为( )A .26πB .13πC .96π5D .39√10π5【考点】M2:垂径定理. 【分析】连接OA ,根据垂径定理得到AM=12AB=6,设OM=5x ,DM=8x ,得到OA=OD=13x ,根据勾股定理得到OA=12×13,于是得到结论. 【解答】解:连接OA ,∵CD 为⊙O 的直径,弦AB ⊥CD ,∴AM=12AB=6, ∵OM :MD=5:8,∴设OM=5x ,DM=8x ,∴OA=OD=13x ,∴AM=12x=6,∴x=12, ∴OA=12×13, ∴⊙O 的周长=2OA•π=13π,故选B .【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.8.(3分)(2017•呼和浩特)下列运算正确的是( )A .(a 2+2b 2)﹣2(﹣a 2+b 2)=3a 2+b 2B .a 2+1a−1﹣a ﹣1=2a a−1C .(﹣a )3m ÷a m =(﹣1)m a 2mD .6x 2﹣5x ﹣1=(2x ﹣1)(3x ﹣1) 【考点】6B :分式的加减法;4I :整式的混合运算;57:因式分解﹣十字相乘法等.【分析】直接利用分式的加减运算法则以及结合整式除法运算法则和因式分解法分别分析得出答案.【解答】解:A 、(a 2+2b 2)﹣2(﹣a 2+b 2)=3a 2,故此选项错误;B 、a 2+1a−1﹣a ﹣1=a 2+1−(a+1)(a−1)a−1=2a−1,故此选项错误; C 、(﹣a )3m ÷a m =(﹣1)m a 2m ,正确;D 、6x 2﹣5x ﹣1,无法在实数范围内分解因式,故此选项错误;故选:C .【点评】此题主要考查了分式的加减运算以及整式除法运算和因式分解等知识,正确掌握运算法则是解题关键.9.(3分)(2017•呼和浩特)如图,四边形ABCD 是边长为1的正方形,E ,F 为BD 所在直线上的两点,若AE=√5,∠EAF=135°,则下列结论正确的是( )A .DE=1B .tan ∠AFO=13C .AF=√102D .四边形AFCE 的面积为94【考点】LE :正方形的性质;T7:解直角三角形.【分析】根据正方形的性质求出AO 的长,用勾股定理求出EO 的长,然后由∠MAN=135°及∠BAD=90°可以得到相似三角形,根据相似三角形的性质求出BF 的长,再一一计算即可判断.【解答】解:∵四边形ABCD 是正方形,∴AB=CB=CD=AD=1,AC ⊥BD ,∠ADO=∠ABO=45°,∴OD=OB=OA=√22,∠ABF=∠ADE=135°, 在Rt △AEO 中,EO=√AE 2−OA 2=√5−12=32√2, ∴DE=√2,故A 错误.∵∠EAF=135°,∠BAD=90°,∴∠BAF +∠DAE=45°,∵∠ADO=∠DAE +∠AED=45°,∴∠BAF=∠AED ,∴△ABF ∽△EDA ,∴BF DA =AB DE , ∴BF 1=√2, ∴BF=√22, 在Rt △AOF 中,AF=√OA 2+OF 2=√(√22)+(√2)=√102,故C 正确,tan ∠AFO=OA OF =√22√2=12,故B 错误, ∴S 四边形AECF =12•AC•EF=12×√2×52√2=52,故D 错误, 故选C .【点评】本题考查的是相似三角形的判定与性质,根据正方形的性质,运用勾股定理求出相应线段的长,再根据∠EAF=135°和∠BAD=90°,得到相似三角形,用相似三角形的性质求出BF 的长,然后根据对称性求出四边形的面积.10.(3分)(2017•呼和浩特)函数y=x 2+1|x|的大致图象是( ) A . B . C .D .【考点】E6:函数的图象.【分析】本题可用排除法解答,根据y 始终大于0,可排除D ,再根据x ≠0可排除A ,根据函数y=x 2+1|x|和y=32x 有交点即可排除C ,即可解题. 【解答】解:①∵|x |为分母,∴|x |≠0,即|x |>0,∴A 错误;②∵x 2+1>0,|x |>0,∴y=x 2+1|x|>0,∴D 错误; ③∵当直线经过(0,0)和(1,32)时,直线解析式为y=32x , 当y=32x=x 2+1|x|时,x=√2, ∴y=32x 与y=x 2+1|x|有交点,∴C 错误; ④∵当直线经过(0,0)和(1,1)时,直线解析式为y=x ,当y=x=x 2+1|x|时,x 无解, ∴y=x 与y=x 2+1|x|没有有交点,∴B 正确; 故选B .【点评】此题主要考查了函数图象的性质,考查了平方根和绝对值大于等于0的性质,本题中求得直线与函数的交点是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)(2017•呼和浩特)若式子√1−2x 有意义,则x 的取值范围是 x <12 .【考点】72:二次根式有意义的条件;62:分式有意义的条件.【分析】根据二次根式有意义的条件:被开方数为非负数,再结合分式有意义的条件:分母≠0,可得不等式1﹣2x >0,再解不等式即可.【解答】解:由题意得:1﹣2x >0, 解得:x <12, 故答案为:x <12,【点评】此题主要考查了二次根式有意义的条件;用到的知识点为:二次根式有意义,被开方数为非负数.12.(3分)(2017•呼和浩特)如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=48°,则∠AED为114°.【考点】JA:平行线的性质;IJ:角平分线的定义.【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=48°,∴∠CAB=180°﹣48°=132°,∵AE平分∠CAB,∴∠EAB=66°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣66°=114°,故答案为:114.【点评】本题考查了角平分线定义和平行线性质的应用,解题时注意:两条平行线被第三条直线所截,同旁内角互补.13.(3分)(2017•呼和浩特)如图是某几何体的三视图,根据图中数据,求得该几何体的表面积为(225+25√2)π.【考点】U3:由三视图判断几何体.【分析】根据给出的几何体的三视图可知几何体是由圆柱体和圆锥体构成,从而根据三视图的特点得知高和底面直径,代入表面积公式计算即可.【解答】解:由三视图可知,几何体是由圆柱体和圆锥体构成,故该几何体的表面积为:20×10π+π×82+12×10π×√52+52=(225+25√2)π 故答案是:(225+25√2)π.【点评】本题考查了由三视图判断几何体,该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形.14.(3分)(2017•呼和浩特)下面三个命题:①若{x =a y =b 是方程组{|x|=22x −y =3的解,则a +b=1或a +b=0; ②函数y=﹣2x 2+4x +1通过配方可化为y=﹣2(x ﹣1)2+3;③最小角等于50°的三角形是锐角三角形,其中正确命题的序号为 ②③ .【考点】O1:命题与定理.【分析】①根据方程组的解的定义,把{x =a y =b 代入{|x|=22x −y =3,即可判断; ②利用配方法把函数y=﹣2x 2+4x +1化为顶点式,即可判断;③根据三角形内角和定理以及锐角三角形的定义即可判断.【解答】解:①把{x =a y =b 代入{|x|=22x −y =3,得{|a|=22a −b =3, 如果a=2,那么b=1,a +b=3;如果a=﹣2,那么b=﹣7,a +b=﹣9.故命题①是假命题;②y=﹣2x 2+4x +1=﹣2(x ﹣1)2+3,故命题②是真命题;③最小角等于50°的三角形,最大角不大于80°,一定是锐角三角形,故命题③是真命题.所以正确命题的序号为②③.故答案为②③.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义以及性质定理等知识.15.(3分)(2017•呼和浩特)如图,在▱ABCD 中,∠B=30°,AB=AC ,O 是两条对角线的交点,过点O 作AC 的垂线分别交边AD ,BC 于点E ,F ,点M 是边AB 的一个三等分点,则△AOE 与△BMF 的面积比为 3:4 .【考点】S9:相似三角形的判定与性质;L5:平行四边形的性质.【分析】作MH ⊥BC 于H ,设AB=AC=m ,则BM=13m ,MH=12BM=16m ,根据平行四边形的性质求得OA=OC=12AC=12m ,解直角三角形求得FC=√33m ,然后根据ASA 证得△AOE ≌△COF ,证得AE=FC=√33m ,进一步求得OE=12AE=√36m ,从而求得S △AOE =√324m 2,作AN ⊥BC 于N ,根据等腰三角形的性质以及解直角三角形求得BC=√3m ,进而求得BF=BC ﹣FC=√3m ﹣√33m=2√33m ,分别求得△AOE 与△BMF 的面积,即可求得结论.【解答】解:设AB=AC=m ,则BM=13m , ∵O 是两条对角线的交点,∴OA=OC=12AC=12m , ∵∠B=30°,AB=AC ,∴∠ACB=∠B=30°,∵EF ⊥AC ,∴cos ∠ACB=OC FC ,即cos30°=12m FC , ∴FC=√33m , ∵AE ∥FC ,∴∠EAC=∠FCA ,又∵∠AOE=∠COF ,AO=CO ,∴△AOE ≌△COF ,∴AE=FC=√33m , ∴OE=12AE=√36m , ∴S △AOE =12OA•OE=12×12m ×√36m=√324m 2, 作AN ⊥BC 于N ,∵AB=AC ,∴BN=CN=12BC , ∵BN=√32AB=√32m , ∴BC=√3m ,∴BF=BC ﹣FC=√3m ﹣√33m=2√33m , 作MH ⊥BC 于H ,∵∠B=30°, ∴MH=12BM=16m , ∴S △BMF =12BF•MH=12×2√33m ×16m=√318m 2, ∴S △AOE S △BMF =√324m 2√318m =34. 故答案为3:4.【点评】本题考查了平行四边形的性质、全等三角形的判定和性质以及解直角三角形等,熟练掌握性质定理是解题的关键.16.(3分)(2017•呼和浩特)我国魏晋时期数学家刘徽首创“割圆术”计算圆周率.随着时代发展,现在人们依据频率估计概率这一原理,常用随机模拟的方法对圆周率π进行估计,用计算机随机产生m 个有序数对(x ,y )(x ,y 是实数,且0≤x ≤1,0≤y ≤1),它们对应的点在平面直角坐标系中全部在某一个正方形的边界及其内部.如果统计出这些点中到原点的距离小于或等于1的点有n 个,则据此可估计π的值为 4n m .(用含m ,n 的式子表示)【考点】X8:利用频率估计概率;D2:规律型:点的坐标.【分析】根据落在扇形内的点的个数与正方形内点的个数之比等于两者的面积之比列出14⋅π1=n m,可得答案. 【解答】解:根据题意,点的分布如图所示:则有14⋅π1=n m, ∴π=4n m, 故答案为:4n m. 【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.三、解答题(本大题共9小题,共72分)17.(10分)(2017•呼和浩特)(1)计算:|2﹣√5|﹣√2(√18﹣√102)+32; (2)先化简,再求值:x−2x 2+2x ÷x 2−4x+4x 2−4+12x ,其中x=﹣65. 【考点】6D :分式的化简求值;2C :实数的运算. 【专题】11 :计算题;513:分式.【分析】(1)原式利用绝对值的代数意义化简,去括号合并即可得到结果;(2)原式第一项利用除法法则变形,约分后利用同分母分式的加法法则计算得到最简结果,把x 的值代入计算即可求出值.【解答】解:(1)原式=√5﹣2﹣12+√5+32=2√5﹣1; (2)原式=x−2x(x+2)•(x+2)(x−2)(x−2)2+12x =1x +12x =32x, 当x=﹣65时,原式=﹣54. 【点评】此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2017•呼和浩特)如图,等腰三角形ABC 中,BD ,CE 分别是两腰上的中线.(1)求证:BD=CE ;(2)设BD 与CE 相交于点O ,点M ,N 分别为线段BO 和CO 的中点,当△ABC 的重心到顶点A 的距离与底边长相等时,判断四边形DEMN 的形状,无需说明理由.【考点】KD :全等三角形的判定与性质;K5:三角形的重心;KH :等腰三角形的性质.【分析】(1)根据已知条件得到AD=AE ,根据全等三角形的性质即可得到结论;(2)根据三角形中位线的性质得到ED ∥BC ,ED=12BC ,MN ∥BC ,MN=12BC ,等量代换得到ED ∥MN ,ED=MN ,推出四边形EDNM 是平行四边形,由(1)知BD=CE ,求得DM=EN ,得到四边形EDNM 是矩形,根据全等三角形的性质得到OB=OC ,由三角形的重心的性质得到O 到BC 的距离=12BC ,根据直角三角形的判定得到BD ⊥CE ,于是得到结论.【解答】(1)解:由题意得,AB=AC ,∵BD ,CE 分别是两腰上的中线,∴AD=12AC ,AE=12AB , ∴AD=AE ,在△ABD 和△ACE 中{AB =AC ∠A =∠A AD =AE,∴△ABD ≌△ACE (ASA ).∴BD=CE ;(2)四边形DEMN 是正方形,证明:∵E 、D 分别是AB 、AC 的中点,∴AE=12AB ,AD=12AC ,ED 是△ABC 的中位线, ∴ED ∥BC ,ED=12BC , ∵点M 、N 分别为线段BO 和CO 中点,∴OM=BM ,ON=CN ,MN 是△OBC 的中位线,∴MN ∥BC ,MN=12BC , ∴ED ∥MN ,ED=MN ,∴四边形EDNM 是平行四边形,由(1)知BD=CE ,又∵OE=ON ,OD=OM ,OM=BM ,ON=CN ,∴DM=EN ,∴四边形EDNM 是矩形,在△BDC 与△CEB 中,{BE =CD CE =BD BC =CB,∴△BDC ≌△CEB ,∴∠BCE=∠CBD ,∴OB=OC ,∵△ABC 的重心到顶点A 的距离与底边长相等,∴O 到BC 的距离=12BC , ∴BD ⊥CE ,∴四边形DEMN是正方形.【点评】本题考查了等腰三角形的性质、三角形中位线定理、矩形的判定、平行四边形的判定与性质、全等三角形的判定与性质;熟练掌握等腰三角形的性质和三角形中位线定理,并能进行推理论证是解决问题的关键.19.(10分)(2017•呼和浩特)为了解某地某个季度的气温情况,用适当的抽样方法从该地这个季度中抽取30天,对每天的最高气温x(单位:℃)进行调查,并将所得的数据按照12≤x<16,16≤x<20,20≤x<24,24≤x<28,28≤x<32分成五组,得到如图频数分布直方图.(1)求这30天最高气温的平均数和中位数(各组的实际数据用该组的组中值代表);(2)每月按30天计算,各组的实际数据用该组的组中值代表,估计该地这个季度中最高气温超过(1)中平均数的天数;(3)如果从最高气温不低于24℃的两组内随机选取两天,请你直接写出这两天都在气温最高一组内的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;V8:频数(率)分布直方图;W2:加权平均数;W4:中位数.【分析】(1)根据30天的最高气温总和除以总天数,即可得到这30天最高气温的平均数,再根据第15和16个数据的位置,判断中位数;(2)根据30天中,最高气温超过(1)中平均数的天数,即可估计这个季度中最高气温超过(1)中平均数的天数;(3)从6天中任选2天,共有15种等可能的结果,其中两天都在气温最高一组内的情况有6种,据此可得这两天都在气温最高一组内的概率.【解答】解:(1)这30天最高气温的平均数为:14×8+18×6+22×10+26×2+30×430=20.4℃;∵中位数落在第三组内,∴中位数为22℃;(2)∵30天中,最高气温超过(1)中平均数的天数为16天,∴该地这个季度中最高气温超过(1)中平均数的天数为1630×90=48(天);(3)从6天中任选2天,共有15种等可能的结果,其中两天都在气温最高一组内的情况有6种,故这两天都在气温最高一组内的概率为615=25.【点评】本题主要考查了频数分布直方图,平均数以及中位数的计算,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.解题时注意:如果一组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.20.(7分)(2017•呼和浩特)某专卖店有A,B两种商品,已知在打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元,A,B两种商品打相同折以后,某人买500件A商品和450件B商品一共比不打折少花1960元,计算打了多少折?【考点】9A :二元一次方程组的应用.【分析】设打折前A 商品的单价为x 元/件、B 商品的单价为y 元/件,根据“买60件A 商品和30件B 商品用了1080元,买50件A 商品和10件B 商品用了840元”,即可得出关于x 、y 的二元一次方程组,解之即可得出x 、y 的值,再算出打折前购买500件A 商品和450件B 商品所需钱数,结合少花钱数即可求出折扣率.【解答】解:设打折前A 商品的单价为x 元/件、B 商品的单价为y 元/件,根据题意得:{60x +30y =108050x +10y =840, 解得:{x =16y =4,500×16+450×4=9800(元),9800−19609800=0.8. 答:打了八折.【点评】本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.21.(6分)(2017•呼和浩特)已知关于x 的不等式2m−mx 2>12x ﹣1. (1)当m=1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.【考点】C3:不等式的解集.【专题】11 :计算题;524:一元一次不等式(组)及应用.【分析】(1)把m=1代入不等式,求出解集即可;(2)不等式去分母,移项合并整理后,根据有解确定出m 的范围,进而求出解集即可.【解答】解:(1)当m=1时,不等式为2−x 2>x 2﹣1, 去分母得:2﹣x >x ﹣2,解得:x <2;(2)不等式去分母得:2m ﹣mx >x ﹣2,移项合并得:(m +1)x <2(m +1),当m ≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2;当x <﹣1时,不等式的解集为x >2.【点评】此题考查了不等式的解集,熟练掌握不等式的基本性质是解本题的关键.22.(7分)(2017•呼和浩特)如图,地面上小山的两侧有A ,B 两地,为了测量A ,B 两地的距离,让一热气球从小山西侧A 地出发沿与AB 成30°角的方向,以每分钟40m 的速度直线飞行,10分钟后到达C 处,此时热气球上的人测得CB 与AB 成70°角,请你用测得的数据求A ,B 两地的距离AB 长.(结果用含非特殊角的三角函数和根式表示即可)【考点】T8:解直角三角形的应用.【分析】过点C 作CM ⊥AB 交AB 延长线于点M ,通过解直角△ACM 得到AM 的长度,通过解直角△BCM 得到BM 的长度,则AB=AM ﹣BM .【解答】解:过点C 作CM ⊥AB 交AB 延长线于点M ,由题意得:AC=40×10=400(米).在直角△ACM 中,∵∠A=30°,∴CM=12AC=200米,AM=√32AC=200√3米. 在直角△BCM 中,∵tan20°=BM CM, ∴BM=200tan20°,∴AB=AM ﹣BM=200√3﹣200tan20°=200(√3﹣tan20°),因此A ,B 两地的距离AB 长为200(√3﹣tan20°)米.【点评】本题考查解直角三角形的应用、三角函数等知识,解题的关键是添加辅助线,构造直角三角形,记住三角函数的定义,以及特殊三角形的边角关系,属于中考常考题型.23.(7分)(2017•呼和浩特)已知反比例函数y=−k 2−1x(k 为常数). (1)若点P 1(1−√32,y 1)和点P 2(﹣12,y 2)是该反比例函数图象上的两点,试利用反比例函数的性质比较y 1和y 2的大小;(2)设点P (m ,n )(m >0)是其图象上的一点,过点P 作PM ⊥x 轴于点M .若tan ∠POM=2,PO=√5(O 为坐标原点),求k 的值,并直接写出不等式kx +k 2+1x>0的解集.【考点】G6:反比例函数图象上点的坐标特征;T7:解直角三角形.【分析】(1)先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再根据P 1、P 2两点的横坐标判断出两点所在的象限,故可得出结论.(2)根据题意求得﹣n=2m ,根据勾股定理求得m=1,n=﹣2,得到P (1,﹣2),即可得到﹣k 2﹣1=﹣2,即可求得k 的值,然后分两种情况借助反比例函数和正比例函数图象即可求得.【解答】解:(1)∵﹣k 2﹣1<0,∴反比例函数y=−k 2−1x在每一个象限內y 随x 的增大而增大, ∵﹣12<1−√32<0, ∴y 1>y 2;(2)点P (m ,n )在反比例函数y=−k 2−1x的图象上,m >0, ∴n <0,∴OM=m ,PM=﹣n ,∵tan∠POM=2,∴PMOM =−nm=2,∴﹣n=2m,∵PO=√5,∴m2+(﹣n)2=5,∴m=1,n=﹣2,∴P(1,﹣2),∴﹣k2﹣1=﹣2,解得k=±1,①当k=﹣1时,则不等式kx+k2+1x>0的解集为:x<﹣√2或0<x<√2;②当k=1时,则不等式kx+k2+1x>0的解集为:x>0.【点评】本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式;也考查了反比例函数和一次函数的交点.24.(9分)(2017•呼和浩特)如图,点A,B,C,D是直径为AB的⊙O上的四个点,C是劣弧BD̂的中点,AC与BD交于点E.(1)求证:DC2=CE•AC;(2)若AE=2,EC=1,求证:△AOD是正三角形;(3)在(2)的条件下,过点C作⊙O的切线,交AB的延长线于点H,求△ACH 的面积.【考点】MR:圆的综合题.【分析】(1)由圆周角定理得出∠DAC=∠CDB,证明△ACD∽△DCE,得出对应边成比例,即可得出结论;(2)求出DC=√3,连接OC、OD,如图所示:证出BC=DC=√3,由圆周角定理得。
2017年呼和浩特市中
考数学试卷及答案
-CAL-FENGHAI.-(YICAI)-Company One1
2017年呼和浩特市中考试卷
第Ⅰ卷(共30分)
一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,
只有一项是符合题目要求的.
1.我市冬季里某一天的最低气温是10C,最高气温是5C,这一天的温差为( )
A.5C B.5C C.10C D.15C
2.中国的陆地面积为29600000km,将这个数用科学记数法可表示为( )
A.720.9610km B.4296010km C.629.610km D.529.610km
3.如图中序号(1)(2)(3)(4)对应的四个三角形,都是ABC这个图形进行了一
次变换之后得到的,其中是通过轴对称得到的是( )
A.(1) B.(2) C.(3) D.(4)
4.如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图
获得以下信息,其中信息判断错误的是( )
A.2010年至2014年间工业生产总值逐年增加
B.2014年的工业生产总值比前一年增加了40亿元
C.2012年与2013年每一年与前一年比,其增长额相同
D.从2011年至2014年,每一年与前一年比,2014年的增长率最大
5.关于x的一元二次方程22(2)10xaaxa的两个实数根互为相反数,则a的值
为( )
A.2 B.0 C.1 D.2或0
6.一次函数ykxb满足0kb,且y随x的增大而减小,则此函数的图象不经过
( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7.如图,CD是O的直径,弦ABCD,垂足为M,若12AB,:5:8OMMD,
则O的周长为( )
A.26 B.13 C.965 D.39105
8.下列运算正确的是( )
A.222222(2)2()3ababab B.212111aaaaa
C.32()(1)mmmmaaa D.2651(21)(31)xxxx
9.如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点,若
5AE
,135EAF,则以下结论正确的是( )
4
A.1DE B.1tan3AFO C.102AF D.四边形
AFCE
的面积为94
10.函数21||xyx的大致图象是( )
第Ⅱ卷(共90分)
二、填空题(每题3分,满分18分,将答案填在答题纸上)
11.使式子
1
12x
有意义的x的取值范围为 .
12.如图,//ABCD,AE平分CAB交CD于点E,若48C,则
AED
为 .
13.如图是某几何体的三视图,根据图中数据,求得该几何体的表面积为 .
5
14.下面三个命题:
①若,xayb是方程组||2,23xxy的解,则1ab或0ab;
②函数
2241yxx通过配方可化为2
2(1)3yx
;
③最小角等于50的三角形是锐角三角形.
其中正确命题的序号为 .
15.如图,在ABCD中,30B,ABAC,O是两条对角线的交点,过点O作
AC的垂线分别交边AD,BC于点E,F,点M是边AB的一个三等分点,则AOE
与BMF的面积比为 .
16.我国魏晋时期数学家刘徽首创“割圆术”计算圆周率.随着时代发展,现在人们依据
频率估计概率这一原理,常用随机模拟的方法对圆周率进行估计.用计算机随机产
生m个有序对(,)xy(x,y是实数,且01x,01y),它们对应的点在平面直
角坐标系中全部在某一个正方形的边界及其内部,如果统计出这些点中到原点的距离
小于或等于1的点有n个,则据此可估计的值为 .(用含m,n的式子表
示)
三、解答题 (本大题共9小题,共72分.解答应写出文字说明、证明过程或演算步
骤.)
17.(1)计算:1103|25|2()822;
(2)先化简,再求值:2222441242xxxxxxx,其中
6
5
x
.
18.如图,等腰三角形ABC中,BD,CE分别是两腰上的中线.
(1)求证:BDCE;
(2)设BD与CE相交于点O,点M,N分别为线段BO和CO的中点.当ABC的重
心到顶点A的距离与底边长相等时,判断四边形DEMN的形状,无需说明理由.
19.为了解某个某个季度的气温情况,用适当的抽样方法从该地这个季度中抽取30
天,对每天的最高气温x(单位:C)进行调查,并将所得的数据按照1216x,
1620x,2024x,2428x,2832x
分成五组,得到如图频率分布直方
图.
(1)求这30天最高气温的平均数和中位数(各组的实际数据用该组的组中值代
表);
(2)每月按30天计算,各组的实际数据用该组的组中值代表,估计该地这个季度中
最高气温超过(1)中平均数的天数;
(3)如果从最高气温不低于24C的两组内随机选取两天,请你直接写出这两天都在
气温最高一组内的概率.
20.某专卖店有A,B两种商品.已知在打折前,买60件A商品和30件B商品用了
1080元,买50件A商品和10件B商品用了840元;A,B两种商品打相同折以后,
某人买500件A商品和450件B商品一共比不打折少花1960元,计算打了多少折?
21.已知关于x的不等式21122mmxx.
(1)当1m时,求该不等式的解集;
(2)m取何值时,该不等式有解,并求出解集.
22.如图,地面上小山的两侧有A,B两地,为了测量A,B两地的距离,让一热气球
从小山西侧A地出发沿与AB成30角的方向,以每分钟40m的速度直线飞行,10分钟
后到达C处,此时热气球上的人测得CB与AB成70角,请你用测得的数据求A,
B
两地的距离AB长.(结果用含非特殊角的三角函数和根式表示即可)
23.已知反比例函数21kyx(k为常数).
(1)若点1113(,)2Py和点
22
1
(,)2Py
是该反比例函数图象上的两点,试利用反比例
函数的性质比较
1y和2
y
的大小;
(2)设点(,)Pmn(0m)是其图象上的一点,过点P作PMx轴于点M,若
tan2POM,5PO(O为坐标原点),求k
的值,并直接写出不等式
2
10kkxx
的解集.
24.如图,点A,B,C,D是直径为AB的O上的四个点,C是劣弧BD的中点,
AC
与BD交于点E.
(1)求证:
2
DCCEAC
;
(2)若2AE,1EC,求证:AOD是正三角形;
(3)在(2)的条件下,过点C作O的切线,交AB的延长线于点H,求ACH的面
积.
25.在平面直角坐标系xOy中,抛物线2yaxbxc与y轴交于点C,其顶点记为
M,自变量1x和5x对应的函数值相等.若点M
在直线l:1216yx上,点
(3,4)
在抛物线上.
(1)求该抛物线的解析式;
(2)设
2
yaxbxc
对称轴右侧x轴上方的图象上任一点为P,在x轴上有一点
7
(,0)2A
,试比较锐角PCO与ACO的大小(不必证明),并写出相应的P点横坐
标x的取值范围;
(3)直线l与抛物线另一点记为B,Q为线段BM上一动点(点Q不与M重合).设
Q点坐标为(,)tn,过Q作QHx轴于点H,将以点Q
,H,O,C为顶点的四边形
的面积S表示为t的函数,标出自变量t的取值范围,并求出S可能取得的最大值.
10
11
12
13
14
15