当前位置:文档之家› 单片机实验——利用DAC0832完成波形发生器

单片机实验——利用DAC0832完成波形发生器

单片机实验——利用DAC0832完成波形发生器
单片机实验——利用DAC0832完成波形发生器

单片机实验——利用DAC0832完成波形发生器

1.实验目的

(1)掌握D/A转换器的基本原理和使用方法。

2.预习要点

(1)D/A转换器的基本原理和使用方法。

3.实验设备

计算机、单片机实验箱,示波器。

4.实验内容

基本要求:

利用实验板上的0832D/A芯片,将示波器连接到滤波电路后,通过程序产生周期为20ms的三角波。

扩展要求:

利用实验板上的0832D/A芯片和电位器,将示波器连接到滤波电路后,通过程序产生周期或幅度可调的锯齿波。

实验7

ORG 0000H

AJMP MAIN

;***********************************

;主程序

ORG 0030H

MAIN:MOV DPTR,#4000H ;为DA分配地址,应接CS3

CLR A

UP:MOVX @DPTR,A ;上坡,A从0加到100,上坡时间为100*100us=10ms LCALL DELAY

INC A

CJNE A,#100,UP

SJMP DOWN

DOWN:MOVX @DPTR,A ;下坡,A从100减到0,下坡时间为100*100us=10ms LCALL DELAY

DEC A

CJNE A,#0,DOWN

SJMP UP

;************************************

;延时100us (这个相信大家可以自己算了吧)

DELAY:

MOV R7,#02H ;这其实不是100ms,我用示波器调的时候发DEL1:MOV R6,#22 ;现当R6为22的时候周期比较接近20ms,所以DEL2:DJNZ R6,DEL2 ;就用了22,因为上面有些指令知行还需要时间DJNZ R7,DEL1

RET

;**************************************

;其实如果用定时器的话我相信会更精确一些

;尤其是方式2

波形发生器实验

本科生实验报告 课程名称:模拟电子技术实验A 实验名称:波形发生器实验 学院: 专业班级: 学生姓名: 学号: 实验时间: 实验地点: 指导教师:

实验原理: 1. RC桥式正弦波振荡器(文氏电桥振荡器) 图5-12-1所示为RC桥式正弦波振荡器。其中,RC串、并联电路构成正反馈支路,同时兼作选频网络,R1、R2、Rp、二极管等元件构成负反馈和稳幅环节。调节电位器Rp,可以改变负反馈深度,以满足振荡的振幅条件和改善波形。利用两个反向并联二极管VD1、VD2正向电阻的非线性特性来实现稳幅。VD1、VD2 采用硅管(温度稳定性好),且要求特性匹配,才能保证输出波形正、负半周对称。Rs的接人是为了削弱二极管非线性的影响,以改善波形失真。 电路的振荡频率 起振的幅值条件 其中,,ra为二极管正向导通电阻。 调整反馈电阻Rf(调Rp),使电路起振,且波形失真最小。如果不能起振,则说明负反馈太强,应适当加大Rf。如果波形失真严重,则应适当减小Rf。改变选频网络的参数C或R,即可调节振荡频率。

一般采用改变电容C作频率量程切换,而调节R作量程内的频率细调。 2.方波发生器 方波发生器是一种能够直接产生方波或矩形波的非正弦信号发生器。实验原理如图5-12-2所示。它是在滞回比较器的基础上,增加了一个RF、CF组成积分电路,把输出电压经RF。CF反馈到集成运放的反相输人端,运放的输出端引入限流电阻Rs和两个背靠背的稳压管用于双向限幅。 电路振荡频率为 其中 方波的输出幅值 3.三角波和方波发生器 如图5-12-3所示,电路由同相滞回比较器A1和反相积分器A2构成。比较器A1输出的方波经积分器A2积分可得到三角波Uo, Uo 经电阻R为比较器A1提供输入信号,形成正反馈,即构成三角波、方波发生器。图5-12-4所示为方波、三角波发生器输出波形图。由于采用运放组成的积分电路,因此可实现恒流充电,使三角波 线性大大改善。滞回比较器的國值电压,电路震荡频率 ,方波幅值,三角波幅值 调节Rp可以改变振荡频率,改变比值会可调节三角波的幅值。

方波_三角波发生电路实验报告

河西学院物理与机电工程 学院 综合设计实验 方波-三角波产生电路 实验报告 学院:物理与机电工程学院 专业:电子信息科学与技术

:侯涛 日期:2016年4月26日 方波-三角波发生电路 要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波的波形发生器。 指标:输出频率分别为:102HZ、103HZ和104Hz;方波的输出电压峰峰值VPP≥20V 一、方案的提出 方案一: 1、由文氏桥振荡产生一个正弦波信号。 2、把文氏桥产生的正弦波通过一个过零比较器从而把正弦波转换成方波。 3、把方波信号通过一个积分器。转换成三角波。 方案二: 1、由滞回比较器和积分器构成方波三角波产生电路。 2、然后通过低通滤波把三角波转换成正弦波信号。 方案三: 1、由比较器和积分器构成方波三角波产生电路。

2、用折线法把三角波转换成正弦波。 二、方案的比较与确定 方案一: 文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。当R1=R2、C1=C2。即f=f0时,F=1/3、Au=3。然而,起振条件为Au略大于3。实际操作时,如果要满足振荡条件R4/R3=2时,起振很慢。如果R4/R3大于2时,正弦波信号顶部失真。调试困难。RC串、并联选频电路的幅频特性不对称,且选择性较差。因此放弃方案一。 方案二: 把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。比较器输出的方波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化围很小的情况下使用。然而,指标要求输出频率分别为102HZ、103HZ和104Hz 。因此不满足使用低通滤波的条件。放弃方案二。 方案三: 方波、三角波发生器原理如同方案二。比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大即零附近的差别最小,峰值附近差别最大。因此,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比例衰减,就可以得到近似与正弦波的折线化波形。而且折线法不受频率围的限制。 综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计。 三、工作原理: 1、方波、三角波发生电路原理

DAC0832的波形发生器(汇编)

ORG 0000H KB:MOV P1,#0FFH;置P0口为输入方式MOV A,P1;读键值 CPL A ANL A,#1FH;屏蔽高三位 JZ KB;无键闭合继续检测 ACALL DL Y_10MS;延时10ms,去抖动MOV A,P1;再次检测有无键闭合 CPL A ANL A,#1FH JZ KB CJNE A,#01H,KB01 LCALL FANGBO;调用方波子程序SJMP KB KB01:CJNE A,#02H,KB02 LCALL JVCHI;调用锯齿波子程序SJMP KB KB02:CJNE A,#04H,KB03 LCALL TIXING;调用梯形波子程序SJMP KB KB03:CJNE A,#08H,KB04 LCALL SANJIAO;调用三角波子程序SJMP KB KB04:CJNE A,#10H,KB LCALL ZHENGXIAN;调用正弦波子程序SJMP KB ;方波子程序////////////// FANGBO: MOV DPTR,#0FFFEH LP1: MOV A,0 MOVX @DPTR,A LCALL DELAY1 MOV A,#0FFH MOVX @DPTR,A LCALL DELAY1 AJMP LP1 ;锯齿波子程序///////////// JVCHI: MOV DPTR,#0FFFEH MOV A,#0FFH WW:MOVX @DPTR,A DEC A NOP

NOP NOP AJMP WW ;梯形波子程序 TIXING: MOV DPTR,#0FFFEH MOV R2,#07DH MOV R4,#0AFH MOV A,#00H D1:MOVX @DPTR,A LCALL DELAY2 ADD A,R2 DJNZ R4,D1 AJMP D1 ;三角波子程序/////////////// SANJIAO: MOV DPTR,#0FFFEH MOV R6,#10H MOV A,#00H LOOP1: MOVX @DPTR,A ADD A,R6 CJNE A,#0FFH,LOOP1 LOOP2: MOVX @DPTR,A SUBB A,R6 CJNE A,#07H,LOOP2 AJMP LOOP1 ;正弦波子程序///////////////// ZHENGXIAN: MOV R1,#00H QZ:MOV A,R1 MOV DPTR,#SETTAB MOVC A,@A+DPTR MOV DPTR,#0FFFEH MOVX @DPTR,A INC R1 AJMP QZ ;延时程序2 DELAY2:MOV 31H,#02H PW:DJNZ 31H,PW RET ;延时子程序1 DELAY1: MOV 30H,#0FFH

单片机试题8(带答案)

单片机试题8(带答案)

试题8 一、填空题(35分,每空1分) 1、单片机也可称为微控制器或嵌入式控制器。 2、串行口方式2接收到的第9位数据送SCON 寄存器的RB8 位中保存。 3.串行口方式3发送的第9位数据要事先写入(SCON )寄存器的(TB8)位。 4、内部RAM中,位地址为50H的位,该位所在字节的字节地址为2AH 。 5、如果(A)=65H,(50H)= 50H,(R1)= 50H,执行指令XCHD A, @R1;结果 为: (A) = 50 H ,(50H) = 65 H。 6、当AT89S51执行MOVC A,@A+PC指令时,伴随着PSEN控制信号有效。 7、AT89S51访问片外存储器时,利用LEA 信号锁存来自P0口发出的低8 位地址信号。 8、定时器/计数器T0作为计数器使用时,其计数频率不能超过晶振频率fosc的1/24 。 9、AT89S51单片机为8 位单片机。 8.利用81C55可以扩展(3)个并行口,(256)个RAM单元。 9.当单片机复位时PSW=(00 )H,SP=(07H),P0~P3口均为(高)电平。 10、AT89S51单片机有 2 级优先级中断。 11、MCS-51系列单片机的典型芯片分别为8031 、8051 、8751 。 12、当单片机复位时PSW=00 H,这时当前的工作寄存器区是0 区,R6所对应的存储单元地址为06 H。 13、AT89S51单片机指令系统的寻址方式有寄存器寻址、立即寻址、 寄存器间接寻址、直接寻找、位寻址、基址寄存器加变址寄存器寻址。 14、74LS138是具有3个输入的译码器芯片,其输出作为片选信号时,最多可以

FPGA波形发生器实验报告

实验报告册 课程名称:Verilog HDL数字系统设计 实验项目名称:频率可变的任意波形发生器学院:电子科学与技术 专业:微电子 班级:二班 报告人:黄日才 学号:2008160120 指导教师:刘春平老师 实验时间:2010.12.06 —2011.01.06 提交时间:2011.01.06

一、实验目的 利用DE2实验板和DVCC试验箱的DA转换器设计出可出任意波形且频率可调的信号发生器,也就是基于FPGA的用Verilog描述的直接数字频率合成器(DDS)。 二、设计方案及其原理说明: DDS是一种把数字信号通过数/模转换器转换成模拟信号的合成技术。它由相位累加器、相幅转换函数表、D/A转换器以及内部时序控制产生器等电路组成。 参考频率f_clk为整个合成器的工作频率,输入的频率字保存在频率寄存器中,经N位相位累加器,累加一次,相位步进增加,经过内部ROM波形表得到相应的幅度值,经过D/A转换和低通滤波器得到合成的波形。△P为频率字,即相位增量;参考频率为f_clk;相位累加器的长度为N位,输出频率f_out为: F_out——输出信号的频率;N————相位累加器的位数; △P———频率控制字(步长);F_clk——基准时钟频率。 1、系统总体设计方案框架图: 图1-1 系统总体设计方案

2、四种波形单周期的取样示意图: 3、本实验采用每个周期取样16次,以便产生的波形更加的平滑。函数查找表的设计:(十进制)

4、程序思路 1)分频器控制读取rom的步长,通过输入变量改变分频器计数器的计数总量,控制分频实验频率可调。 2)制作rom,通过一个函数实现,给函数输入一个地址,通过case语句输出一个值。 3)波形选择,同个if语句选择地址计数器输出的值,从而输出四种不同的波形 4)锁相环(附加),调用FPGA芯片集成的锁相环模块,让输出的相位更加的稳定。 5)调幅(附加),通过在rom的值除以不同的值来控制改变输出信号的幅度。 三、程序及具体方法注释 module dds_ver( clk_50MHz,fout,change,freq,key0 ); input clk_50MHz; //输入50MHz的全局时钟 input[1:0] change; //定义输入变量,用来切换输出波形,一共4个档位 input [2:0] freq; //定义输入变量,用来改变输出信号的频率,一共8个档位 output [7:0] fout; //输出8为rom的值,用来驱动DA转化芯片,输出波形 input key0; //定义输入变量,用来改变幅值计数器的值,从而改变幅值

信号发生器设计---实验报告

信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U =6V,正弦波U p-p>1V。 p-p 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时)用仪器测量上升时间,三角波r△<2%,正弦波r <5%。(计算参数) ~ 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。(差模传输特性)其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注 应接近晶体意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V m 管的截止电压值。 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2调整电路的对称性,并联电阻R E2用来减小差分放大器的线性区。C 1、C 2、C 3为隔直电容,C 4为滤波电容,以滤除谐波分量,改善输出波形。取Ic2上面的电流(看输出) 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n 个波段范围。(n>3) ③输出电压:一般指输出波形的峰-峰值U p-p 。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r ~和r △;表征方波特性的参数是上升时间t r 。 四、电路仿真与分析 实验仿真电路图如图

基于DAC0832芯片的简单信号发生器设计

东北石油大学课程设计 2012年3月 9 日

东北石油大学课程设计任务书 课程单片机原理及应用课程设计 题目基于DAC0832芯片的简单信号发生器设计 专业班级姓名学号 一、设计目的:训练学生综合运用己学课程的基本知识,独立进行单片机应用技术开发工作,掌握单片机程序设计、调试,应用电路设计、分析及调试检测。 二、设计要求: 1. 应用MCS-51单片机设计基于DAC0832芯片的简单信号发生器; 2. 频率范围:0-1KHZ,输出电压:方波Up-p>3V,正弦波Up-p> 1V,波形特性:方波tr<100us,正弦波非线性失真系数r<5%; 3. 硬件设计根据设计的任务选定合适的单片机,根据控制对象设计接口电路。设计的单元电路必须有工作原理,器件的作用,分析和计算过程; 4. 软件设计根据电路工作过程,画出软件流程图,根据流程图编写相应的程序,进行调试并打印程序清单; 5. 原理图设计根据所确定的设计电路,利用Protel等有关工具软件绘制电路原理图、PCB板图、提供元器件清单。 三、参考资料: [1] 单片微型计算机与接口技术,李群芳、黄建编著,电子工业出版社; [2] 单片机原理及应用,张毅刚编著,高等教育出版社; [3] 51系列单片机及C51程序设计,王建校,杨建国等编著,科学出版社; [4] 单片机原理及接口技术,李朝青编著,北京航空航天大学出版社; 完成期限2012.3.5—2012.3.9 指导教师 专业负责人 2012年 3 月2 日

目录 目录.......................................................................................................................... I 第1章概述.. (1) 第2章信号发生器的原理 (2) 2.1 AT89C51芯片的简单介绍 (2) 2.2 数模转换器DAC0832的简单介绍 (4) 2.3共阳数码管和运算放大器LM358 (6) 第3章硬件电路设计 (7) 3.1 单片机最小系统 (7) 3.2 电源电路的设计 (8) 3.3 D/A转换接口电路的设计 (8) 第4章程序设计 (9) 4.1 主程序设计 (9) 4.2 信号发生器源程序 (10) 第5章总结 (14) 参考文献 (15)

《单片机原理及应用》试卷及答案6

《单片机原理及应用》试卷6及参考答案 (本试题分笔试题和操作题两部分。共100分,考试时间120分钟。) 第一部分笔试题 (本部分共有4大题,总分60分,考试时间60分钟,闭卷) 一、填空题(每空1分,共20分) 1、8031单片机一般使用的时钟晶振频是()、()。 2、假定(SP)=40H,(39H)=30H,(40H)=60H。执行下列指令: POP DPH ,POP DPL后,DPTR的内容为(),SP的内容是()。 3、单片机的堆栈栈顶由()来指示,复位时起位置在()单元。 4、当P1口做输入口输入数据时,必须先向该端口的锁存器写入(),否则输入数据可能出错。 5、单片机内部数据传送指令()用于单片机内部RAM单元及寄存器之间,单片机与外部数据传送指令()用于单片机内部与外部RAM或I/O接口之间, ()指令用于单片机内部与外部ROM之间的查表 6、单片机内外中断源按优先级别分为高级中断和低级中断,级别的高低是由()寄存器的置位状态决定的。同一级别中断源的优先顺序是由()决定的。 7、LED数码显示按显示过程分为()显示和()显示2种。前者,对每位显示来说是连续显示的,可通过单片机串行口实现;当多位显示时需较多外部驱动芯片,功耗较大。后者,对每位显示来说是断续显示需占用单片机的()接口资源。 8、在调用子程序时,为保证程序调用和返回不致混乱,常采用保护现场的措施。通常在进入子程序后要用()指令保护现场DPH、DPL、ACC等。在退出子程序之前要用POP指令依次恢复现场,用()指令返回。 9、用仿真开发系统调试程序时,汇编成功只说明源程序的()没有问题,而程序()还要靠运行调试纠错才能成功。

波形发生器课程设计

1.设计题目:波形发生电路 2.设计任务和要求: 要求:设计并用分立元件和集成运算放大器制作能产生方波和三角波波形的波形发生器。 基本指标:输出频率分别为:102H Z 、103H Z ;输出电压峰峰值V PP ≥20V 3.整体电路设计 1)信号发生器: 信号发生器又称信号源或振荡器。按信号波形可分为正弦信号、函数(波形)信号、脉冲信号和随机信号发生器等四大类。各种波形曲线均可以用三角函数方程式来表示,如三角波、锯齿波、矩形波(含方波)、正弦波。通过模拟电子技术设计的波形发生器是一个不需要外加输入信号,靠自身振荡产生信号的电路。2)电路设计: 整体电路由RC振荡电路,反相输入的滞回比较器和积分电路组成。 理由:a)矩形波电压只有两种状态,不是高电平,就是低电平,所以电压比较器是它的重要组成部分; b)产生振荡,就是要求输出的两种状态自动地相互转换,所以电路中必须引入反馈; c)输出状态应按一定的时间间隔交替变化,即产生周期性变化,所以电路中要有延迟环节来确定每种状态维持的时间。 RC振荡电路:即作为延迟环节,又作为反馈电路,通过RC充放电实现输出状态的自动转换。 反相输入的滞回比较器:矩形波产生的重要组成部分。 积分电路:将方波变为三角波。 3)整体电路框图: 为实现方波,三角波的输出,先通过 RC振荡电路,反相输入的滞回比较器得到方波,方波的输出,是三角波的输入信号。三角波进入积分电路,得出的波形为所求的三角波。其电路的整体电路框图如图1所示:

图1 4)单元电路设计及元器件选择 a ) 方波产生电路 根据本实验的设计电路产生振荡,通过RC 电路和滞回比较器时将产生幅值约为12V 的方波,因为稳压管选择1N4742A (约12V )。电压比较电路用于比较模拟输入电压与设定参考电压的大小关系,比较的结果决定输出是高电平还是低电平。滞回比较器主要用来将信号与零电位进行比较,以决定输出电压。图3为一种滞回电压比较器电路,双稳压管用于输出电压限幅,R 3起限流作用,R 2和R 1构成正反馈,运算放大器当u p >u n 时工作在正饱和区,而当u n >u p 时工作在负饱和区。从电路结构可知,当输入电压u in 小于某一负值电压时,输出电压u o = -U Z ;当输入电压u in 大于某一电压时,u o = +U Z 。运算放大器在两个饱和区翻转时u p =u n =0,由此可确定出翻转时的输入电压。u p 用u in 和u o 表示,有 2 1o 1in 22 1o 2 in 1p 111 1R R u R u R R R u R u R u ++= ++= 根据翻转条件,令上式右方为零,得此时的输入电压 th Z 2 1 o 21in U U R R u R R u ==-= U th 称为阈值电压。滞回电压比较器的直流传递特性如图4所示。设输入电压初始值小于-U th ,此时u o = -U Z ;增大u in ,当u in =U th 时,运放输出状态翻转,进入正饱和区。如果初始时刻运放工作在正饱和区,减小u in ,当u in = -U th 时,运放则开始进入负饱和区。 RC 振荡电路 积分电路 方波 三角波 反相输入的滞回比较 生成 生成 输入 积分电路 输入

信号发生器实验报告(波形发生器实验报告)

信号发生器 一、实验目的 1、掌握集成运算放大器的使用方法,加深对集成运算放大器工作原理的理解。 2、掌握用运算放大器构成波形发生器的设计方法。 3、掌握波形发生器电路调试和制作方法 。 二、设计任务 设计并制作一个波形发生电路,可以同时输出正弦、方波、三角波三路波形信号。 三、具体要求 (1)可以同时输出正弦、方波、三角波三路波形信号,波形人眼观察无失真。 (2)利用一个按钮,可以切换输出波形信号。。 (3)频率为1-2KHz 连续可调,波形幅度不作要求。 (4)可以自行设计并采用除集成运放外的其他设计方案 (5)正弦波发生器要求频率连续可调,方波输出要有限幅环节,积分电路要保证电路不出现积分饱和失真。 四、设计思路 基本功能:首先采用RC 桥式正弦波振荡器产生正弦波,然后通过整形电路(比较器)将正弦波变换成方波,通过幅值控制和功率放大电路后由积分电路将方波变成三角波,最后通过切换开关可以同时输出三种信号。 五、具体电路设计方案 Ⅰ、RC 桥式正弦波振荡器 图1 图2 电路的振荡频率为:RC f π21 0= 将电阻12k ,62k 及电容100n ,22n ,4.4n 分别代入得频率调节范围为:24.7Hz~127.6Hz ,116.7Hz~603.2Hz ,583.7Hz~3015Hz 。因为低档的最高频率高于高档的最低频率,所以符合实验中频率连续可调的要求。 如左图1所示,正弦波振荡器采用RC 桥式振荡器产生频率可调的正弦信号。J 1a 、J 1b 、J 2a 、J 2b 为频率粗调,通过J 1 J 2 切换三组电容,改变频率倍率。R P1采用双联线性电位器50k ,便于频率细调,可获得所需要的输出频率。R P2 采用200k 的电位器,调整R P2可改变电路A f 大小,使得电路满足自激振荡条件,另外也可改变正弦波失真度,同时使正弦波趋于稳定。下图2为起振波形。

课程设计-基于DAC0832的波形发生器设计讲解

波形发生器设计 目录 摘要 (1) 第一章绪论 (2) 第二章DAC0832及其特性 (3) 2.1 D/A转换器与单片机接口探究 (3) 2.1.1 数据线连接 (3) 2.1.2 地址线连接 (3) 2.1.3 控制线连接 (3) 2.2 DAC0832的认识 (4) 2.2.1 DAC0832的结构 (4) 2.2.2 DAC0832的引脚 (4) 2.2.3 DAC0832的启动控制方式 (5) 第三章硬件设计 (7) 3.1 启动方式选择 (7) 3.2 框图设计 (7) 3.3 电路图设计 (7) 第四章程序设计 (9) 4.1 程序流程图 (9) 4.1.1 程序设计思路 (9) 4.1.2流程图 (9) 4.2 用C语言实现 (11) 4.3 用汇编语言实现 (14) 第五章Proteus仿真及结果 (17) 5.1方波: (17) 5.2正弦波: (17) 5.3三角波: (18) 5.4梯形波: (18) 5.5锯齿波: (19) 设计心得: (20) 参考文献: (21)

摘要 本设计使用AT89C51单片机做控制,选择8位D/A转换器DAC0832作D/A 转换。 硬件方面,首先51熟悉单片机的结构和工作原理,连接单片机的最小系统。之后熟悉D/A转换器工作方式,经过分析后选择DAC0832的单缓冲启动控制方式,完成电路框图。进一步根据设计要求完成通过独立按键控制D/A输出,作出电路框图和电路原理图。 软件方面:设计思路主要体现在两点上。一是控制,通过程序控制DAC转换与输出,按键消抖,选择相应的即将输出的波形。二是产生波形,根据波形的特点编写程序以产生相应波形的数字信号。 分别通过C语言和汇编语言实现简易的波形发生器,输出方波、正弦波、三角波、梯形波和锯齿波,通过独立按键控制分别输出不同的波形。以KILL 与Proteus为设计平台,仿真测试设计结果的正确性。 关键字: 51单片机,DAC0832,单缓冲启动控制方式,波形发生器,C语言设计,汇编语言设计

单片机期末考试试题6(带答案)

试题6 一、选择题(每题1分,共10分) 1、所谓CPU是指( A ) A、运算器和控制器 B、运算器和存储器 C、输入输出设备 D、控制器和存储器 2、访问片外数据存储器的寻址方式是(C) A、立即寻址 B、寄存器寻址 C、寄存器间接寻址 D、直接寻址 3、堆栈数据的进出原则是(A) A、先进先出 B、先进后出 C、后进后出 D、进入不出 4、开机复位后,CPU使用的是寄存器第一组,地址范围是( D ) A、00H-10H B、00H-07H C、10H-1FH D、08H-0FH 5、定时器/计数器工作于方式1时,其计数器为几位?(B) A、8位 B、16位 C、14位 D、13位 6、若某存储器芯片地址线为12根,那么它的存储容量为(C) A、1KB B、2KB C、4KB D、8KB 7、控制串行口工作方式的寄存器是( C ) A、TCON B、PCON C、SCON D、TMOD 8、当AT89S51外扩程序存储器32KB时,需使用EPROM2764( C ) A、2片 B、3片 C、4片 D、5片 9、已知:R0=28H (28H)=46H MOV A,#32H MOV A,45H MOV A,@R0 执行结果A的内容为(A) A、46H B、28H C、45H D、32H 10、下面程序运行后结果为(B ) MOV 2FH,#30H MOV 30H,#40H MOV R0,#30H MOV A,#20H

SETB C ADDC A,@R0 DEC R0 MOV @R0,A A、(2FH)=30H (30H)=40H B、(2FH)=61H (30H)=40H C、(2FH)=60H (30H)=60H D、(2FH)=30H (30H)=60H 二、填空题(每空1分,共20分) 1、AT89S51有(111 )条指令。 2、晶振的频率为6MHz时,一个机器周期为( 2 )μS。 3、51单片机是把中央处理器,(存储器)、(并行I/O口)、(串行I/O口)、(定 时器、计数器)(中断系统)以及I/O接口电路等主要计算机部件集成在一块集成电路芯片上的微型计算机。 4、单片机复位时P0的值为( FFH )。 5、当PSW.4=0,PSW.3=1时,当前工作寄存器Rn,工作在第( 1 )区。 6、在R7初值为00H的情况下,DJNZ R7,rel指令将循环执行( 256 )次。 7、欲使P1口的低4位输出0,高4位不变,应执行一条(ANL P1,#0F0H)指令。 8、AT89S51系列单片机有(5)个中断源,可分为( 2 )个优先级。上电复 位时(外部中断0 )中断源的优先级别最高。 9、计算机三大总线分别为(地址总线)、(数据总线)和控制总线。 10、74LS138是具有3个输入的译码器芯片,用其输出作片选信号,最多可在( 8 )块 芯片中选中其中任一块。 11、MCS-51指令系统中,ADD与ADDC指令的区别是(ADDC是带进位C的加法)。 12、AT89S51单片机有( 2 )个16位定时/计数器。 13、特殊功能寄存器中,单元地址(以0和8结尾)的特殊功能寄存器,可以位寻址。 三、判断题(每题1分,共15分) 1、AT89S51单片机必须使用内部ROM。(╳) 2、当EA脚接高电平时,对ROM的读操作只访问片外程序存储器。(╳) 3、AT89S51单片机的串行通信方式为半双工方式。(╳) 4、AT89S51的中断系统最短响应时间为4个机器周期。(╳) 5、E2PROM不需紫外线能擦除,如2816在写入时就能自动完成擦除。(﹀) 6、8155是一种8位单片机。(﹀)

波形产生电路实验报告

波形产生电路实验报告 一、实验目得 1。通过实验掌握由集成运放构成得正弦波振荡电路得原理与设计方法; 2、通过实验掌握由集成运放构成得方波(矩形波)与三角波(锯齿波)振荡电路得原理与设计方法。 二、实验内容 1. 正弦振荡电路 ?实验电路图如下图所示,电源电压为±12V。 (1)缓慢调节电位器R W,观察电路输出波形得变化,解释所观察到得现象、 (2)仔细调节电位器R W,使电路输出较好得正弦波形,测出振荡频率与幅度以及相对应得R W之值,分析电路得振荡条件。 (3)将两个二极管断开,观察输出波形有什么变化。 2、多谐振荡电路 (1)按图2 安装实验电路(电源电压为±12V)。观测V O1、V O2波形得幅度、周期(频率)以及V O1得上升时间与下降时间等参数。 (2)对电路略加修改,使之变成矩形波与锯齿波振荡电路,即V O1为矩形波,V O2为锯齿波、要求锯齿波得逆程(电压下降段)时间大约就是正程(电压上升段)时间得20% 左右、观测V O1、V O2得波形,记录它们得幅度、周期(频率)等参数、 3.设计电路测量滞回比较器得电压传输特性。 三、预习计算与仿真 1、预习计算 (1)正弦振荡电路

由正反馈得反馈系数为: 由此可得RC 串并联选频网络得幅频特性与相频特性分别为 易知当时,与同相,满足自激振荡得相位条件。 若此时,则可以满足,电 路起振,振荡频率为 000 111 994.7Hz 1.005ms 2216k 10nF f T RC f ππ= ====?Ω?,、 若要满足自激振荡,需要满足在起振前略大于1,而,令,即满足条件得R w应略大于10k Ω、 (2)多谐振荡电路 ?对电路得滞回部分,输出电压U O =±U Z =±6V ,U P =U O ×R 2R 2+R 1 +U O2× R 1R 2+R 1 ,当U P = U N =0V 时,可以得到U O2=±R 2R 1 ×U O =±3V 、 由U T = 1R 3C ×0.5T ×U O ?U T ,所以得到:T =4R 2R 4C R 1?=400us 、 2。 仿真分析 (1)正弦振荡电路 仿真电路图: 仿真得到得测量数据总结如下(具体见仿真报告): (1)R W 为0时,无波形产生 (2)调节R W 恰好起振时 (3)调节R W 使输出电压幅值最大

51单片机与0832波形发生器锯齿波、三角波、正弦波

// 锯齿波 #include #include // 绝对地址访问头文件 #define DAC0832 XBYTE[0x7fff] //DAC0832的地址为0x7fff void delay() // 定时器定时1ms { TH1=0xfc; TL1=0x18; //定时器初值设定 TR1=1; //启动定时器 while(!TF1); //查询是否溢出 TF1=0; //将溢出标志位清零 } void main() {unsigned char i; TMOD=0x10; // 设置定时器工作方式 while(1) {for(i=0;i<=255;i++) //形成锯齿波,最大值为255 { DAC0832=i; // D/A转换输出 delay(); // 延时 } } } //三角波 #include #include // 绝对地址访问头文件 #define DAC0832 XBYTE[0x7fff] //DAC0832的地址为0x7fff void delay() // 定时器定时1ms { TH1=0xfc; TL1=0x18; //定时器初值设定 TR1=1; //启动定时器 while(!TF1); //查询是否溢出 TF1=0; //将溢出标志位清零 } void main() {unsigned char i; TMOD=0x10; // 设置定时器工作方式 while(1) {for(i=0;i<255;i++) //形成三角波,i增加到最大值为255 {

单片机试卷6-7-8答案

试题8 一、填空题(35分,每空1分) 1、单片机也可称为微控制器或嵌入式控制器。 2、串行口方式2接收到的第9位数据送SCON 寄存器的RB8 位中保存。3.串行口方式3发送的第9位数据要事先写入(SCON )寄存器的(TB8)位。 4、内部RAM中,位地址为50H的位,该位所在字节的字节地址为2AH 。 5、如果(A)=65H,(50H)= 50H,(R1)= 50H,执行指令XCHD A, @R1;结果为: (A) = 50 H ,(50H) = 65 H。 6、当AT89S51执行MOVC A,@A+PC指令时,伴随着PSEN控制信号有效。 7、AT89S51访问片外存储器时,利用LEA 信号锁存来自P0口发出的低8位地址信号。 8、定时器/计数器T0作为计数器使用时,其计数频率不能超过晶振频率fosc的1/24 。 9、AT89S51单片机为8 位单片机。 8.利用81C55可以扩展(3)个并行口,(256)个RAM单元。 9.当单片机复位时PSW=(00 )H,SP=(07H),P0~P3口均为(高)电平。 10、AT89S51单片机有 2 级优先级中断。 11、MCS-51系列单片机的典型芯片分别为8031 、8051 、8751 。 12、当单片机复位时PSW=00 H,这时当前的工作寄存器区是0 区,R6所对应的存储单元地址为06 H。 13、AT89S51单片机指令系统的寻址方式有寄存器寻址、立即寻址、 寄存器间接寻址、直接寻找、位寻址、基址寄存器加变址寄存器寻址。14、74LS138是具有3个输入的译码器芯片,其输出作为片选信号时,最多可以选中 8 片芯片。32=25 1000/0000/0000/0000 15、利用82C55可以扩展 3 个并行口,其中8 条口线具有位操作功能。 16、若AT89S51外扩32KB 数据存储器的首地址为0000H,则末地址为7FFF H。 17、由8031组成的单片机系统在工作时,EA引脚应该接0 。 18、AT89S51唯一的一条16位数据传送指令为MOV DPTR data16 。 二、判断对错,如对则在()中写“√”,如错则在()中写“×”。(10分) 1、AT89S51单片机可执行指令:MOV 28H,@R2。( ×) 2、判断指令的正误:MOV T0,#3CF0H;(×)

波形发生电路实验报告

波形发生电路实验报告 班级 姓名 学号

一、实验目的 1. 掌握由集成运放构成的正弦波振荡电路的原理与设计方法。 2. 学习电压比较器的组成及电压传输特性的测试方法。 3. 掌握由集成运放构成的矩形波和三角波振荡电路的原理与设计方法。 二、实验内容 1. 正弦波发生电路 (1)实验参考电路见图1。 (2)缓慢调节电位器R W,观察电路输出波形的变化,完成以下测试: ①R W为0Ω 时的u O的波形; ②调整R W使电路刚好起振,记录u O的幅值、频率及R W的阻值; ③调整R W使输出为不失真的正弦波且幅值最大,记录u O幅值、频率及R W的阻值; ④将两个二极管断开,观察R W从小到大变化时输出波形的变化情况。 2. 方波- 三角波发生电路 (1)实验参考电路见图2。 (2)测试滞回比较电路的电压传输特性 将图2 电路的第一级改造为滞回比较电路,在输入端输入合适的测试信号,用示波器X-Y模式观测电压传输特性曲线并记录阈值电压和u O1的幅值。

(3)测量图2电路u O1、u O2波形的幅值、周期及u O1波形的上升和下降时间。 3.矩形波- 锯齿波发生电路 修改电路图2,使之成为矩形波- 锯齿波发生电路。要求锯齿波的逆程(电压下降)时间大约是正程时间的20%,记录u O1、u O2的幅值、周期。 三、实验要求 1. 实验课上搭建硬件电路,记录各项测试数据。 2. 完成正弦波电路的实验后在面包板上保留其电路,并使其输出电压U o在1-3V范围内连续可调。 四、预习计算 1.正弦波振荡电路 起振条件为|A|略大于3,刚起振时幅值较小,认为二极管还未导通,即R4+R W R2 +1略大于3,即R W略大于10kΩ时刚好起振,随着R W的增大,振幅会增大,当R W过大时波形会出现失真。 振荡频率由RC串并联选频网络决定,f0=1 2πR1C1 ≈106.1Hz 2.方波- 三角波发生电路 滞回比较器的阈值电压±U T=±R2 R1 U Z=±2.9V,测试滞回比较电路时将R2与运放A2的输出端断开,改接输入信号(三角波为宜)。 方波(u O1)的幅值为U Z=5.8V,三角波(u O2)的幅值为U T=2.9V。 U T=?1 4 (?U Z) T ?U T U T=R2 1 U Z 解得:T=4R2R4C R1 =0.4ms,即u O1和u O2的周期为0.4ms。 3.矩形波- 锯齿波发生电路 只需让电容充放电回路的时间常数不一样即可。电路原理图如下:

dac0832函数信号发生器.

智能仪器课程设计 设计题目:函数信号发生器设计 学生姓名:赵鑫、罗承波、江再农 学院名称:机械工程学院 班级:测控技术与仪器062班 学号:200646000227、20064600222、20064600215 指导教师:袁锋伟、王玉林、蒋彦 2009年6月

设计任务: 设计一个函数信号发生器,具体指标如下: 1采用AT89S51及DAC0832设计函数信号发生器; 2输出函数信号为正弦波或三角波或阶梯波; 3输出信号频率为100Hz,幅度0-10V可调; 4必须具有信号输出及外接电源、公共地线接口

低频函数信号发生器的设计 摘要:信号发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。目前使用的信号发生器大部分是利用分立元件组成的体积大,可靠性差,准确度低。课程设计需要各个波形的基本输出,这些波形的实现的具体步骤:正弦波的实现是非常麻烦的。它的实现过程是通过定义一些数据,然后执行时直接输出定义的数据就可以了。而三角波,则每次累加1,当达到初值时,每次累减1,算出延时时间,也就达到要求了,阶梯波和三角波类似!该设计使用的是AT89S51单片机构成的发生器,可产生三角波、方波、正弦波等多种波形,波形的频率可用程序控制改变。在单片机上加外围器件独立式开关,通过开关控制波形的选择。在单片机的输出端口接DAC0832进行DA转换,再通过运放进行波形调整,最后输出波形接在示波器上显示。 关键词:信号发生器;单片机;波形调整

The design of low-frequency function signal-generator Abstract:Signal generator is a common signal source, widely used in electronic circuits, automatic control systems and experiments in areas such as teaching. Currently used by most of the signal generator is composed of discrete components use bulky, poor reliability, low accuracy. Curriculum design of the basic needs of all the output waveform, the waveform of the specific steps to achieve: the realization of sine wave is very troublesome. It is through the implementation of the definition of some data, and then direct the output when the definition of the implementation of the data on it. The triangle wave, then add 1 each time, when the initial value to reach every tired by 1, calculate the delay time, they meet the requirement, the ladder-wave and triangular wave similar! The design is composed of single-chip AT89S51 generator can produce the triangular wave, square wave, sine wave, etc.,

单片机练习试题答案解析

单片机练习题答案 、填空题 1、若单片机振荡脉冲频率为6MHz 时,一个机器周期为_ 2μs _______ 。 2、AT89C51 单片机的XTAL1 和XTAL2 引脚是___外接晶振或时钟__引脚。 3、定时器/计数器的工作方式3是指的将定时器/计数器T0 拆成两个独立的8 位计数器。 4、若由程序设定RS1、RS0 =01 ,则工作寄存器R0~R7 的直接地址为__08~0FH ___________________________________________________________________________ 。 5、写出完成相应功能的汇编指令:将立即数____________ 11H 送到R2 MOV R2,#11H _ ___、 使ACC.2 置位__ SETB ACC.2 __ 、使累加器的最低 2 位清零___ ANL A,#0FCH ___ 。 6、A/D 转换的作用是将__模拟量转为数字量。ADC0809 是__8___位的A/D 转换芯片。 7、8051 的堆栈区一般开辟在用户RAM 区的地址为30H ~7FH。 8 、所谓寻址,其实质就是__如何确定操作数的单元地址问题_。 9、若单片机振荡脉冲频率为12MHz 时,一个机器周期为1μs ___ 。 10、定时器中断请求发生在__计数溢出的时候。 11、中断响应时间是指__从中断请求发生直到被响应去执行中断服务程序所需的时间 12、通过CPU 对I/O 状态的测试,只有I/O 已准备好时才能进行I/O 传送,这 种传送方式称为程序查询方式___。 13、在中断服务程序中现场保护和现场恢复期间,中断系统应处在__关中断__状态。 14、8051 单片机的部硬件结构包括了:中央处理器(CPU) 、数据存储器(RAM) 、 程序存储器、和 2 个16 位定时/ 计数器以及并行I/O 口、串行口、中断控制 系统、时钟电路、位处理器等部件,这些部件通过部总线相连接。 15、MCS-51 的堆栈只可设置在RAM 的地址为30H ~7FH,堆栈寄存器sp 是8 位 寄存器。 16、MCS-51 单片机的P0~P4 口均是并行I/O 口,其中的P0 口和P2口除了可以进行数据的输入、输出外,通常还用来构建系统的数据总线和地址总线,在 P0~P4 口中,P0 为真正的双相口,P1—P3 为准双向口;P3 口具有第二引脚功能。

相关主题
文本预览
相关文档 最新文档