对等比数列的认识:
an1 q n N*
an
(1)an 0 即等比数列的每一项都不为0; (2)q 0 即等比数列的公比不为0; (3)q 1 为非零常值数列;
练一练
指出下列数列是不是等比数列,若是,说 明公比;若不是,说出理由.
(1) 1,2, 4, 16, 64, … (2) 16, 8, 1, 2, 0,… (3) 2, -2, 2, -2, 2 (4) b, b, b, b, b, b, b, …
10,10×0.85,10×0.852 ,10×0.853,…
上面数列有什么共同特点 ? 从第二项起,每一项与前一项的比都等于同一个常数。
等比数列的定义
一般的,如果一个数列从第2项起,每一项 与它前一项的比等于同一个常数,这个数列就 叫做等比数列。这个常数叫做等比数列的公比, 公比通常用字母q表示。(q≠0)
拉面时前9次拉伸成的面条根数构成一个数列:
1, 2, 4, 8, 16, 32, 64, 128, 256
“一尺之棰,日取其半,万世不竭。”
11,,1,1,1, . . . . 1 . ,. ., . .
2 4 81 6
2n1
某种汽车购买时的价格是10万元,每年的折旧率是15%,这 辆车各年开始时的价值(单位:万元)分别是:
G b ,即G2 ab aG
KEY:等比数列的许多概念都可以在等差数列 的众多概念中找到相似的对应!到现在你已经 发现了多少?
题型一、运用等比数列定义
KEY:如果递推关系是连续三项时,也可以用等比中
a = a a 项式证明等比数列:
2 n+1
n n+2
题型二、通项公式的运用
小结(一)
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢