太阳能光伏并网逆变器的原理_图文.ppt
- 格式:ppt
- 大小:5.00 MB
- 文档页数:79
光伏并网逆变器工作原理太阳能电池阵列通过正弦波脉宽调制逆变器向电网输送电能,逆变器馈送给电网的电能由太阳能电池阵列功率和当时当地的日照条件决定。
逆变器除了具有直流-交流转换功能外,还必须具有太阳能电池阵列的最大功率跟踪功能和各种保护功能。
目前,电压源型逆变器技术已日趋成熟,电压型逆变器主电路如图1所示。
光伏发电并网系统运行时的电路原理如图2所示,V p为逆变器输出电压,V u为电网电压,R为线路电阻,L为串联电抗器,I z则为回馈电网的电流。
为保证回馈功率因数为1,回馈电流的相位必须与电网电压的相位一致。
以电网电压V u为参考,则I z与V u同相位。
内阻R两端的电压V R与电网电压相位一致,而电抗器两端电压V L的相位则落后于电压V R90o,由此可以求得V P的相位和幅值:式中:ω为公用电网角频率。
在实际电路中,V u的相位、周期和幅值由电压传感器检测得到,由于在实际系统中R是很难得到的,因此回馈电流I z的相位必须采用电流负反馈来实现,回馈电流I z的相位角的参考相位即为公用电网相位。
用电流互感器随时检测I z,确保I z与电网电压相位一致,以实现功率因数为1的回馈发电。
实用的光伏发电并网系统运行专用逆变器主电路功率管采用IGBT,容量为50A、600V,型号为2MBI50N-060。
隔离驱动电路采用东芝公司生产的TLP250。
逆变器的控制部分由微处理器完成。
主控芯片采用INTEL公司最新推出的逆变或电机驱动专用16位微处理器87C196MC,该芯片除了具有16位运算指令外,还具有专用的脉宽调制(PWM)输出口,包括一个10位A/D转换器、一个事件处理阵列、两个16位定时器和一个三相波形发生器。
三相波形发生器的每相均能输出两路死区时间可以设定的PWM信号。
微处理器主要完成电压相位实时检测、电流相位反馈控制、太阳能电池阵列最大功率跟踪以及实时正弦波脉宽调制信号发生,其工作过程如下:公用电网的电压和相位经过霍尔电压传感器送给微处理器的A/D转换器,微处理器将回馈电流的相位与公用电网的电压相位作比较,其误差信号通过PID调节后送给PWM脉宽调制器,这就完成了功率因数为1的电能回馈过程。
并网太阳能逆变器工作原理并网太阳能逆变器是将太阳能电池板所产生的直流电转换为交流电,并将其与电网进行连接的装置。
它是太阳能发电系统中非常重要的一部分,其主要功能是控制和管理太阳能发电系统的运行,以及将所产生的电能送入电网供电。
1.直流输入:并网太阳能逆变器的第一步是接收太阳能电池板所产生的直流电(DC)输入。
这些直流电通常是通过多个太阳能电池板串联而成的,并通过连接线路传输到逆变器。
2.最大功率点跟踪(MPPT):逆变器中配备了最大功率点跟踪器,其作用是优化直流电的输出,以确保最大的发电效率。
MPPT会实时监测太阳能电池板的电压和电流,并根据太阳能电池板的工作状况调整负载电阻,最大程度地提高系统发电效率。
3.直流到交流转换:接下来,逆变器将经过MPPT处理后的直流电转换为交流电(AC)。
逆变器内部包含了一个转换器电路,可以改变直流电的频率、电压和形状,使其符合电网的标准要求。
4.滤波:为了保证逆变器输出的交流电纯净而稳定,逆变器内置了一系列滤波器和补偿电路,用于去除电流中的噪声和谐波,并保持电流的平滑性。
5.功率调整:由于太阳能电池板的发电量会随着太阳光照强度和角度的变化而变化,逆变器需要根据电网的负载情况实时调整发电功率。
当太阳能电池板发电过剩时,逆变器会自动降低功率输出;当负载需求增加时,逆变器会根据电网的要求增加功率输出。
6.电网连接:最后一步是将逆变器的交流电输出与电网进行连接。
逆变器通过电网连接点将其发电功率输入电网,并自动与电网进行同步,保证交流电的有序和稳定。
总之,并网太阳能逆变器通过一系列的电子器件和控制电路,将太阳能电池板所产生的直流电转换为交流电,并通过电网输出供电。
它的工作原理是在不断跟踪和调整太阳能电池板的发电状况的基础上,实现对系统发电效果的最大化,并满足电网的要求。
随着生态环境的日益恶化,人们逐渐认识到必须走可持续发展的道路,太阳能必须完成从补充能源向替代能源的过渡。
光伏并网是太阳能利用的发展趋势,光伏发电系统将主要用于调峰电站和屋顶光伏系统。
在光伏并网系统中,并网逆变器是核心部分。
目前并网型系统的研究主要集中于DC-DC 和DC-AC两级能量变换的结构。
DC-DC变换环节调整光伏阵列的工作点使其跟踪最大功率点;DC-AC逆变环节主要使输出电流与电网电压同相位,同时获得单位功率因数。
其中DC-AC 是系统的关键设计。
太阳能光伏并网系统结构图如图1所示。
本系统采用两级式设计,前级为升压斩波器,后级为全桥式逆变器。
前级用于最大功率追踪,后级实现对并网电流的控制。
控制都是由DSP芯片TMS320F2812协调完成。
图1 光伏并网系统结构图逆变器的设计太阳能并网逆变器是并网发电系统的核心部分,其主要功能是将太阳能电池板发出的直流电逆变成单相交流电,并送入电网。
同时实现对中间电压的稳定,便于前级升压斩波器对最大功率点的跟踪。
并且具有完善的并网保护功能,保证系统能够安全可靠地运行。
图2是并网逆变器的原理图。
图2 逆变器原理框图控制系统以TI公司的TMS320F2812为核心,可以实现反馈信号的处理和A/D转换、DC/DC变换器和PWM逆变器控制脉冲的产生、系统运行状态的监视和控制、故障保护和存储、485通讯等功能。
实际电路中的中间电压VDC、网压、并网电流和太阳能电池的电压电流信号采样后送至F2812控制板。
控制板主要包括:CPU及其外围电路,信号检测及调理电路,驱动电路及保护电路。
其中信号检测及调理单元主要完成强弱电隔离、电平转换和信号放大及滤波等功能,以满足DSP控制系统对各路信号电平范围和信号质量的要求。
驱动电路起到提高脉冲的驱动能力和隔离的作用。
保护逻辑电路则保证发生故障时,系统能从硬件上直接封锁输出脉冲信号。
在实现同频的条件下可用矢量进行计算,从图3可以看出逆变器输出端存在如图3a所示的矢量关系,对于光伏并网逆变器的输入端有下列基本矢量关系式:Vac=Vs+jωL·IN+RS·IN (1)式中Vac—电网基波电压幅值,Vs—逆变器输出端基波幅值。
并网逆变器工作原理
并网逆变器是一种用于太阳能发电系统中的装置,其主要功能是将太阳能电池板发出的直流电转换为交流电,并将其连接到电网中。
它的工作原理如下:
1. 输入:太阳能电池板将太阳光转换为直流电,然后将其输入到并网逆变器中。
2. MPPT调节:并网逆变器使用最大功率点追踪(MPPT)技术,根据当前的光照条件,调整太阳能电池板的工作点,以确保从太阳能电池板中提取到最大的功率。
3. 直流-直流转换:并网逆变器将太阳能电池板输出的直流电转换为适合于逆变器工作的直流电,并为之后的逆变器阶段提供稳定的直流电。
4. 逆变器阶段:通过使用高频开关电路,逆变器将直流电转换为交流电。
逆变器通常使用拓扑结构(如全桥拓扑)和控制算法来实现高效的功率转换和输出。
5. Synchronization:并网逆变器通过与电网同步交流电的频率和相位,确保其输出电能与电网的标准相匹配。
6. 逆变器控制:并网逆变器通过控制其输出功率,以确保将其与电网的电压和频率保持一致。
此外,逆变器还会监测电网的状况,当检测到电网故障或异常时,会立即切断并停止向电网输送电能,以保护逆变器和电网的安全。
7. 输出:并网逆变器将转换后的交流电输出到电网中,为家庭或工业用电提供电能。
通过以上的工作原理,使得太阳能电池板发出的直流电能够转换为适用于电网的交流电,并将其无缝地并入现有的电力系统中,实现了太阳能发电系统的并网供电功能。