太阳能光伏并网逆变器的设计原理框图概要
- 格式:doc
- 大小:139.50 KB
- 文档页数:8
© 2012 Microchip Technology Inc.DS01444A_CN 第 1页AN1444作者:Alex Dumais 和Sabarish Kalyanaraman Microchip Technology Inc.简介风力发电系统和光伏(PV )发电系统等可再生资源使用方便且前景广阔,在过去几年获得了大量关注。
太阳能系统具有很多优势,例如:•清洁的可再生能源,可替代煤、石油和核能产生的能量•可降低/消除用电费用•用于制造PV 电池板的硅是地球上含量第二多的元素•能够为边远地点提供电能随着晶体电池板制造能力的增强,总体制造成本随之降低,PV 电池板的效率也得以提高,因此近来对太阳能系统的需求不断增长。
使太阳能需求增长的其他原 因包括:PV 技术经过验证且可靠,PV 模块具有30年以上的保修期,以及政府的鼓励措施。
太阳能逆变器系统有两个主要要求:从PV 电池板收集可用能量,以及将与电网电压同相的正弦电流注入电网。
为了从PV 电池板收集能量,需要使用最大功率点追踪(Maximum Power Point Tracking ,MPPT )算法。
该算法决定了在任何给定时间可从PV 模块获取的最大功率。
与电网接口要求太阳能逆变器系统符合公共事业公司指定的特定标准。
这些标准(如EN61000-3-2、IEEE1547和美国国家电气规范(NEC )690)涉及电源质量、安全、接地和孤岛情况检测。
太阳能电池的特性要开始开发太阳能微型逆变器系统,了解太阳能电池的不同特性非常重要。
PV 电池是半导体器件,其电气特性与二极管相似。
但是,PV 电池是电力来源,当其受到光(如太阳光)照射时会成为电流源。
目前最常见的技术是单晶硅模块和多晶硅模块。
PV 电池的模型如图1所示。
Rp 和Rs 为寄生电阻,在理想情况下分别为无穷大和零。
图1:PV 电池的简化模型RpRsVoIoPV 电池的表现会因其尺寸或与其连接的负载的类型,以及太阳光的强度(照度)而有所不同。
东南大学硕士学位论文光伏并网逆变器建模和仿真研究姓名:唐金成申请学位级别:硕士专业:电机与电器指导教师:林明耀20080512摘要摘要随着I:业技术的迅猛发展,能源问题越米越受到人们的重视。
如何开发利用可再生资源以解决当前的能源危机成为一个热I’J话题。
人们普遍认为在目前可知的、并且已经得到比较广泛利用的可再生能源中,技术含量最高、最有发展前途的是太刖能。
太刖能利用的主流方向是光伏并网发电。
在光伏并网发电系统中,并网逆变器为核心。
因此,本文主要研究适用于光伏并网发电系统的逆变器。
论文首先描述了光伏电池的工作特性,研究了常见光伏阵列模型。
在此基础上,在MATLAB仿真环境F,开发了光伏阵列通片j仿真模型,分析了光伏阵列最人功率点的跟踪控制方法,最终采用干扰观测法实现了光伏阵列的最大功率点跟踪。
论文详细分析了Dc/Dc变换电路、DC/AC逆变电路的工作原理和r作特性。
光伏并网发电系统中主电路参数的选择对于系统能否正常工作、系统输出电流波形质量的好坏有着重要的作用。
使_}}j舭TLAB中的POWERSYSTEMBLOCKSETS工具软件建立了DC/DC变换电路、DC/AC逆变电路的动态模型.并进行了在开环和闭环谢种情况卜的仿真。
由DC/Dc变换电路、DC/AC逆变电路两个部分通过DCIink连接组成光伏并网逆变器。
通过对DC/DC变换电路的占空比调制实现了光伏阵列输出电压的控制,使光伏阵列运行在最大功率点。
通过对DC/AC逆变电路的舣环控制,以取得与电网电压同步的正弦电流输出和直流母线侧电压的稳定,其中电流内环采用滞环电流跟踪控制,电压外环采用PI控制。
最后,实验说明了仿真结果的止确性。
论文在给出孤岛效应危害的基础上,分析了目前常用的被动式、主动式孤岛检测方法,并采用并网电流幅值扰动法实现反孤岛效应。
【关键词】:建模,仿真,光伏并网,是大功率点跟踪,电流滞环控制,反孤岛效应AbstractAbstractWiththerapiddevelopmentoftechnology,peoplepaymoreandmoreattentiontotheproblemofenergy.Itbecomesahottopicthathowtoexploitanduserenewableresourcetoresolveenergycrisisrecently.Ongeneralview,amongtherenewableenergywhichpeoplehaveknownandusedextensively,solarenergyhasthemostteehnicalcontentandwoulddevelopbestinfuture.Themainphaseofutilizationofsolarenergyisphotovoltaic(PV)grid—connectedsystem,Thegrid-connectedinverteristhekeyforthePVsystem.TheefficientinverterforthePVsystemispresentedinthethesis.Firstly,theoperationpropertiesofPVcellareintroducedandthePVarraymodelisstudiedinthisthesis.Onthebasisofthestudy,aversatilesimulationmodeIforPVartayisdevelopedunderMATLABenvironment.Themaximumpowerpointtracing(MPPT)controlmethodofPVarrayisgiven,andtheperturbationandobservation(P&o)areadoptedtoachieveMPPTofPVarrayfinally.Secondly,theprinciplesandcharacteristicsofDC/DCconverter,DC/ACinverterareanalyzedindetailsinthisthesis.TheparameterselectionofmaincircuitinthePVgrid.connectedsystemwillconcemdirectlywhetherthesystemcanoperateproperly,andwillinfluencesthequailtyofoutputcurrent.TwodynamicmodelsofDC/DCconverter,DC/ACinverteraredevelopedusingPOWERSYSTEMBLOCKSETStooloftheMATLAB.Somesimulationresultsforopenloopandcloseloopconditionsaregiveninthisdissertation.Thirdly,thePVgdd.connectedjnverterconsistsofaDC/DCconverterandaDC/ACinverterandthetwopartsarecombinedbyaDClink.BymodulatingthedutycycleofDC/DCconverter,thePVarrayoutputvoltageiscontrolled,soPVarraycalf]operateonmaximumpowerpoint.DC/ACconverteradoptsdoubleloopcontrol,asaresult,thesinusoidalwaveoutputcurrentissynchronizedwithgridvoltageandDCbusvoltagecanleveloff.Currentandvoltageloopadoptshysteresis—bandcurrenttrackingcontrolandPIcon订olrespectively.Atlast,theexperimentresultsverifythesimulationanalysis.TheislandingeffectshouldbepreventedinPVgrid-connectedsystem.Theactiveandpassivedetectingmethodsareinves._tigatedinthisthesisKeyword:ModulingtSimulation,PVgad-connected,Maximumpowerpointtrackingcurrenthysteresiscontrol,Anti-islandingeffectlI东南大学学位论文独创性声明本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。
500W太阳能光伏并网逆变器电路设计图500W太阳能光伏并网逆变器电路设计图光伏并网发电系统是光伏系统发展的趋势。
根据光伏并网发电系统的特点,设计了一套额定功率为500W的光伏并网逆变器,该并网逆变器能实现最大功率跟踪和反孤岛效应控制功能,控制部分采用基于TMS320F240型DSP的电流跟踪控制策略,实现了与网压同步的正弦电流输出。
关键词:太阳能;光伏系统;最大功率点跟踪;孤岛效应;并网逆变器1 引言太阳能的大规模应用将是21世纪人类社会进步的重要标志,而光伏并网发电系统是光伏系统的发展趋势。
光伏并网发电系统的最大优点是不用蓄电池储能,因而节省了投资,系统简化且易于维护。
这类光伏并网发电系统主要用于调峰光伏电站和屋顶光伏系统。
目前,美、日、欧盟等发达国家都推出了相应的屋顶光伏计划,日本提出到2010年要累计安装总容量达50 000MW的家用光伏发电站。
作为屋顶光伏系统的核心,并网逆变器的开发越来越受到产业界的关注[1]。
2 光伏并网系统设计2.1 系统结构光伏并网逆变器的结构如图1所示。
光伏并网逆变器主要由二部分组成:前级DC-DC变换器和后级DC-AC逆变器。
这2部分通过DClink相连接,DClink的电压为400V。
在本系统中,太阳能电池板输出的额定直流电压为100V~170V。
DC—DC变换器采用boost结构,DC—AC部分采用全桥逆变器,控制电路的核心是TMS320F240型DSP。
其中DC-DC变换器完成最大功率跟踪控制(MPPT)功能,DC-AC 逆变器维持DClink中间电压稳定并将电能转换成220V/50Hz的正弦交流电。
系统保证并网逆变器输出的正弦电流与电网的相电压同频和同相。
2.2 控制电路设计2.2.1 TMS320F240控制板TMS320F240控制板如图2所示,以TI公司的TMS320F240型DSP为核心,外围辅以模拟信号调理电路、CPLD、数码管及DA显示、通信及串行E2PROM,完成电压和电流信号的采样、PWM脉冲的产生、与上位机的通信和故障保护等功能。
100kW光伏并网逆变器设计方案目录1. 百千瓦级光伏并网特点 (2)2 光伏并网逆变器原理 (3)3 光伏并网逆变器硬件设计 (3)3.1主电路 (6)3.2 主电路参数 (7)3.2.1 变压器设计............................................................................. 错误!未定义书签。
3.2.3 电抗器设计 (7)3.3 硬件框图 (10)3.3.1 DSP控制单元 (11)3.3.2 光纤驱动单元 (11)3.3.2键盘及液晶显示单元 (13)3 光伏并网逆变器软件 (13)1. 百千瓦级光伏并网特点2010年全球太阳能光伏发电系统装机容量将达到10000MWp(我国将达到400MWp),2010年以后还将呈进一步加速发展趋势。
百千瓦级大型光伏发电并网用逆变控制功率调节设备,成本低,效率高,容量大,被国内外光伏界公认为是适合大功率光伏发电并网用的最具技术含量、最有发展前景的新一代主流产品,直接影响到未来光伏发电的走向。
百千瓦级大功率光伏并网逆变电源其应用对象主要为大型光伏并网电站,从原理上讲,其并网控制技术与中小功率光伏并网系统的控制技术基本相同,但由于装置容量较大,在技术指标的实现达标和功能设计方面却有较大区别。
在技术指标上,主要会影响:1.并网电流畸变率在系统的额定容量达到一定数量级时,一些存在的技术问题将会逐步暴露并影响到系统的性能指标,其最重要的一点就是并网电流波形畸变率的控制和电流滤波方式。
该系统中的主变压器一般选择为三相Δ/Y型式,且容量较大,此时变压器的非线性和励磁电流对并网电流波形的影响不容忽视,否则会引起并网电流波形的明显畸变和三相电流不平衡。
2.电磁噪声由于是三相桥式逆变结构,受IGBT功率模块的开关频率限制及考虑系统的效率指标,系统的电流脉动要远高于中小功率系统,对电流的滤波和噪声控制需要特别注意,此时对系统的滤波电路设计和并网电流PWM控制方式的研究至关重要。
光伏并网逆变器控制的设计
1 引言
21世纪,人类将面临着实现经济和社会可持续发展的重大挑战。
在有限资源和保护环境的双重制约下能源问题将更加突出,这主要体现在:①能源短缺;②环境污染;③温室效应。
因此,人类在解决能源问题,实现可持续发展时,只能依靠科技进步,大规模地开发利用可再生洁净能源。
太阳能具有储量大、普遍存在、利用经济、清洁环保等优点,因此太阳能的利用越来越受到人们的广泛重视,成为理想的替代能源。
文中阐述的功率为200W太阳能光伏并网逆变器,将太阳能电池板产生的直流电直接转换为220V/50Hz的工频正弦交流电输出至电网。
2 系统工作原理及其控制方案
2.1 光伏并网逆变器电路原理
太阳能光伏并网逆变器的主电路原理图如图1所示。
在本系统中,太阳能电池板输出的额定电压为62V的直流电,通过DC/DC变换器被转换为400V直流电,接着经过DC/AC逆变后就得到220V/50Hz的交流电。
系统保证并网逆变器输出的220V/50Hz正弦电流与电网的相电压同步。
图1 电路原理框图
2.2 系统控制方案
图2为光伏并网逆变器的主电路拓扑图,此系统由前级的DC/DC变换器和后级的DC/AC 逆变器组成。
DC/DC变换器的逆变电路可选择的型式有半桥式、全桥式、推挽式。
考虑到输入电压较低,如采用半桥式则开关管电流变大,而采用全桥式则控制复杂、开关管功耗增大,因此这里采用推挽式电路。
DC/DC变换器由推挽逆变电路、高频变压器、整流电路和滤波电感构成,它将太阳能电池板输出的62V的直流电压转换成400V的直流电压。
图2 主电路拓扑图。
直流负载
T
Controller
A9B
Inverter
*阳电池方n
Solar module array
EE
■
««
«
DC Load
B
aafte DC
Load
7
交Afttt
AC Load
光伏粗件井网逆变器
1. 太阳能电池板发出的电是直流电,不能直接供交流负荷(灯具,家用电器等)使用,所以需要转换成交流电才能供交流负荷使用。
其中逆变器的作用就是将直流电转换成交流电的装置。
见图一、图二
2. 转换以后的交流电不仅可以供用电负荷使用,并且可以并入国家电网,也就是卖掉多余的电能。
见图三、图四。
3. 我所做的工作一个是给太阳能组件(厂家提供,包括电池板
和逆变器的成套设备,需要很小的电,大概1KW)供电,另一个就是设计末端配电箱给负载供电。
半导体器件应用网/news/201535.html 光伏并网逆变器的设计【大比特导读】基于光伏并网逆变器的基本原理和控制策略,设计了并网型逆变器的结构,其采用了内置高频变压器的前后两级结构,即前级DC/DC高频升压,后级DC/AC工频逆变。
该设计模式具有电路简单、性能稳定、转换效率高等优点。
基于光伏并网逆变器的基本原理和控制策略,设计了并网型逆变器的结构,其采用了内置高频变压器的前后两级结构,即前级DC/DC高频升压,后级DC/AC工频逆变。
该设计模式具有电路简单、性能稳定、转换效率高等优点。
在能源日益紧张的今天,光伏发电技术越来越受到重视。
太阳能电池和风力发电机产生的直流电需要经过逆变器逆变并达到规定要求才能并网,因此逆变器的设计关乎到光伏系统是否合理、高效、经济的运行。
1光伏逆变器的原理结构光伏并网逆变器的结构如图1所示,主要由前级DC/DC变换器和后级DC/AC逆变器构成。
其基本原理是通过高频变换技术将低压直流电变成高压直流电,然后通过工频逆变电路得到220V交流电。
这种结构具有电路简单、逆变电源空载损耗很小、输出功率大、逆变效率高、稳定性好、失真度小等优点。
图1光伏逆变器结构图逆变器主电路如图2所示。
DC/DC模块的控制使用SG3525芯片。
SG3525是双端输出式SPWM脉宽调制芯片,产生占空比可变的PWM波形用于驱动晶闸管的门极来控制晶闸管通断,从而达到控制输出波形的目的。
作为并网逆变器的关键模块,DC/AC模块具有更高的控制要求,本设计采用TI公司的TMS320F240作为主控芯片,用于采集电网同步信号、交流输入电压信号、调节IGBT门极驱动电路脉冲频率,通过基于DSP芯片的软件锁相环控制技术,完成对并网电流的频率、相位控制,使输出电压满足与电网电压的同频、同相关系。
滤波采用二阶带通滤波器,是有源滤波器的一种,用于传输有用频段的信号,抑制或衰减无用频段的信号。
其可以有效地滤除逆变后产生的高频干扰波形,使逆变后的电压波形达到并网的要求。
太阳能光伏并网逆变器的设计原理框图
随着生态环境的日益恶化,人们逐渐认识到必须走可持续发展的道路,太阳能必须完成从补充能源向替代能源的过渡。
光伏并网是太阳能利用的发展趋势,光伏发电系统将主要用于调峰电站和屋顶光伏系统。
在光伏并网系统中,并网逆变器是核心部分。
目前并网型系统的研究主要集中于DC-DC和DC-AC两级能量变换的结构。
DC-DC变换环节调整光伏阵列的工作点使其跟踪最大功率点;DC-AC逆变环节主要使输出电流与电网电压同相位,同时获得单位功率因数。
其中DC-AC是系统的关键设计。
太阳能光伏并网系统结构图如图1所示。
本系统采用两级式设计,前级为升压斩波器,后级为全桥式逆变器。
前级用于最大功率追踪,后级实现对并网电流的控制。
控制都是由DSP芯片TMS320F2812协调完成。
图1 光伏并网系统结构图
逆变器的设计
太阳能并网逆变器是并网发电系统的核心部分,其主要功能是将太阳能电池板发出的直流电逆变成单相交流电,并送入电网。
同时实现对中间电压的稳定,便于前级升压斩波器对最大功率点的跟踪。
并且具有完善的并网保护功能,保证系统能够安全可靠地运行。
图2是并网逆变器的原理图。
图2 逆变器原理框图
控制系统以TI公司的TMS320F2812为核心,可以实现反馈信号的处理和A/D转换、DC/DC变换器和PWM逆变器控制脉冲的产生、系统运行状态的监视和控制、故障保护和存储、485通讯等功能。
实际电路中的中间电压VDC、网压、并网电流和太阳能电池的电压电流信号采样后送至F2812控制板。
控制板主要包括:CPU及其外围电路,信号检测及调理电路,驱动电路及保护电路。
其中信号检测及调理单元主要完成强弱电隔离、电平转换和信号放大及滤波等功能,以满足DSP控制系统对各路信号电平范围和信号质量的要求。
驱动电路起到提高脉冲的驱动能力和隔离的作用。
保护逻辑电路则保证发生故障时,系统能从硬件上直接封锁输出脉冲信号。
在实现同频的条件下可用矢量进行计算,从图3可以看出逆变器输出端存在如图3a所示的矢量关系,对于光伏并网逆变器的输入端有下列基本矢量关系式:
Vac=Vs+jωL·IN+RS·IN (1)
式中Vac—电网基波电压幅值,Vs—逆变器输出端基波幅值。
图3 控制矢量图
在网压Vac(t)为一定的情况下,IN(t)幅值和相位仅由光伏并网逆变器输出端的脉冲电压中的基波分量Vs(t)的幅值,及其与网压Vac(t)的相位差来决定。
改变Vs(t)的幅值和相位就可以控制输入电流IN(t)和Vac(t)同相位。
PWM整流器输入侧存在一个矢量三角形关系,在实际系统中RS 值的影响一般比较小,通常可以忽略不计得到如图3b所示的简化矢量三角形关系,即下式:
(2)
在一个开关周期内对上式进行周期平均并假设输入电流能在一个开关周期内跟踪电流指令即可推导出下式:
(3)式中K= L/TC,TC为载波周期。
从该模型即可以得到本系统所采用的图4所示的控制框图。
此方法称为基于改进周期平均模型的固定频率电流追踪法。
图4 逆变器控制框图
逆变器的控制框图中参考电压Vref与光伏电池实际输出电压VDC相比较后,误差经PI调节得到电流指令I*,再与正弦波形相乘得到正弦指令Iref,Iref与实际输出的电流相比较后,误差经P调节后得到的值(物理意义上就相当于逆变器输出侧电感上产生的电压)与网压Vac(t)相加得到的波形与三角波比较,便产生了4路PWM波控制逆变器开关管的通断,这样就实现了光伏电池输出电压基本工作在Vref附近,系统输出正弦电流波形幅值为I*。
方案中对并网电流的采用了固定开关频率的控制方法。
固定开关频率控制是将电流误差P调节后作为调制波与三角载波比较产生PWM波。
其缺点是必须与实际电流存在偏差才能产生PWM波。
因此在固定开关频率控制的基础上有所改进,加人了交流侧网压Vac 的计算,即电流误差信号Iref经过PI调节后与Vac相加,得到的值再与三角载波进行比较。
Δi在物理意义上就相当于逆变器输出侧电感上产生的电压。
Δi×P与Vac之和,就相当于逆变器输出脉冲电压,这样构成的矢量图与逆变器输出向量图一致。
改进的固定开关频率的控制策略在保持原有优点的同时,电流跟踪误差显著减小,改善了
PWM整流器的电流跟踪性能。
最大功率跟踪和反孤岛效应的检测
MPPT控制的最总目的在于动态的追寻太阳能电池板的最大功率点。
常用的方法有固定电压跟踪法、扰动观测法、导纳微增法和间歇扫描跟踪法。
本文采用的是最后一种方法。
这种方法的原理是定时扫描太阳能电池板阵列的输出功率,然后逐次比较,直到追踪到最大功率点。
由于电池板最大功率点受光照的影响变化不是很剧烈,所以笔者对这种方法进行了改进,只需要在最大功率点附近搜索扫描即可找到最大功率点。
改进后的间歇扫描法控制既保持了跟踪的控制精度又提高了系统运行的稳定性。
所谓孤岛效应就是当电力公司的供电系统,因故障事故或停电维修等原因而停止工作时,安装在各个用户端的光伏并网发电系统未能即时检测出停电状态而迅速将自身切离市电网络,因而形成了一个由光伏并网发电系统向周围负载供电的一个电力公司无法掌握的自给供电孤岛现象。
其具体实现思想就是:系统通过软硬件电路周期性地检测出相邻两次电网电压过零点的时刻,计算出电网电压的频率f,然后在此频率f的基础上引入偏移量△f,最后将频率(f士△f)作为输出并网电流的
给定频率,并且在电网电压每次过零时使输出并网电流复位。
那么,当电网无故障时,负载上的电压频率即为电网电压频率,因此DSP 每次检测到的电网电压频率基本不变;而当市电脱网时,光伏阵列的输出并网电流单独作用于负载上,由于输出并网电流频率的逐周期偏移,所以,DSP每次检测到的负载电压频率就会相应地改变,这样,就形成了给定输出并网电流频率的正反馈,使得负载电压的频率很快就会超过频率保护的上、下限值,从而使系统有效检测出市电脱网,因此,主动频率偏移法使系统具有了良好的反孤岛效应功能。
实验结果
根据以上设计方案,已在搭建完成额定功率1.5kw的光伏并网实验样机。
输入为100-300V,输出并网电流为 4.5A。
输出功率约为1kw,频率为50Hz。
并网电流与电网电压同相同频,功率因数接近为1。
实验波形如图5所示。
图5 1500W实验时输出电流电压波形
结语
目前已经制作出2KW的实验样机,并已完成1500W的并网实验。
本文介绍的小功率光伏并网逆变器采用改进的固定开关频率的电流控制并网方案,使输出功率因数接近为1。
采用TMS320F2812作为控制芯片,使系统具有很好的动态相应,保护完善,提高了并网效率。
运用了具有最大功率跟踪和反孤岛效应的软件设计,通过实验证明该系统工作稳定可靠,性能良好。