雷达原理第2章雷达发射机
- 格式:docx
- 大小:36.97 KB
- 文档页数:2
雷达的组成及其原理课程名称:现代阵列并行信号处理技术姓名:杜凯洋教师:王文钦教授一.简介雷达(Radar,即radio detecting and ranging),意为无线电搜索和测距。
它是运用各种无线电定位方法,探测、识别各种目标,测定目标坐标和其它情报的装置。
在现代军事和生产中,雷达的作用越来越显示其重要性,特别是第二次世界大战,英国空军和纳粹德国空军的“不列颠”空战,使雷达的重要性显露的非常清楚。
雷达由天线系统、发射装置、接收装置、防干扰设备、显示器、信号处理器、电源等组成。
其中,天线是雷达实现大空域、多功能、多目标的技术关键之一;信号处理器是雷达具有多功能能力的核心组件之雷达种类很多,可按多种方法分类:(1)按定位方法可分为:有源雷达、半有源雷达和无源雷达。
(2)按装设地点可分为;地面雷达、舰载雷达、航空雷达、卫星雷达等。
(3)按辐射种类可分为:脉冲雷达和连续波雷达。
(4)按工作被长波段可分:米波雷达、分米波雷达、厘米波雷达和其它波段雷达。
(5)按用途可分为:目标探测雷达、侦察雷达、武器控制雷达、飞行保障雷达、气象雷达、导航雷达等。
二. 雷达的组成(一)概述1、天线:辐射能量和接收回波(单基地脉冲雷达),(天线形状,波束形状,扫描方式)。
2、收发开关:收发隔离。
3、发射机:直接振荡式(如磁控管振荡器),功率放大式(如主振放大式),(稳定,产生复杂波形,可相参处理)。
4、接收机:超外差,高频放大,混频,中频放大,检波,视频放大等。
(接收机部分也进行一些信号处理,如匹配滤波等),接收机中的检波器通常是包络检波,对于多普勒处理则采用相位检波器。
5、信号处理:消除不需要的信号及干扰而通过或加强由目标产生的回波信号,通常在检测判决之前完成(MTI ,多普勒滤波器组,脉冲压缩),许多现代雷达也在检测判决之后完成。
6、显示器(终端):原始视频,或经过处理的信息。
7、同步设备(视频综合器):是雷达机的频率和时间标准(只有功率放大式(主振放大式)才有)。
雷达系统工作原理详解雷达是一种广泛应用于军事、航空、气象等领域的设备,其工作原理基于电磁波的传播和反射。
本文将详细解释雷达系统的工作原理,并探讨其在不同领域的应用。
一、基本原理雷达系统通过向目标发射脉冲电磁波,并接收目标反射回来的回波来确定目标的位置、距离、速度等信息。
雷达系统由发射机、接收机、天线和信号处理器组成。
1. 发射机发射机产生一系列高频脉冲信号,并通过天线发射出去。
这些脉冲信号的频率通常在微波到毫米波段,具有较高的能量和较短的脉冲宽度。
2. 接收机接收机接收目标反射回来的回波信号,并将其放大和处理,以提取有效的信息。
接收机必须能够有效地区分回波信号和背景噪声,并能够处理不同强度和频率的信号。
3. 天线天线是雷达系统的重要组成部分,它负责发射和接收电磁波。
天线的设计要满足较高的增益和较窄的波束宽度,以便提高目标检测的准确性和精度。
4. 信号处理器信号处理器对接收到的回波信号进行分析和处理,以提取目标的相关信息。
信号处理器可以采用数字信号处理技术,对信号进行滤波、幅度测量、频率分析等操作。
二、工作流程雷达系统的工作流程可分为发射和接收两个主要阶段。
1. 发射阶段在发射阶段,雷达系统通过发射机发射一系列脉冲信号。
这些脉冲信号经过天线发射出去,并传播到目标物体上。
2. 接收阶段目标物体会将部分电磁波回射回雷达系统。
接收机接收到这些回波信号后,通过天线传输到信号处理器。
信号处理器分析回波信号,并提取目标的相关信息。
三、应用领域雷达系统在军事、航空、气象等领域有着广泛的应用。
1. 军事应用军事雷达系统可用于侦察、追踪和指挥控制等。
雷达系统可以用于监测敌方舰艇、飞机和导弹等目标,提供战场情报和目标定位信息。
2. 航空应用航空雷达系统常用于飞行器的导航和避障。
它可以帮助飞行器在恶劣天气条件下准确控制航向,并检测和避免与其他飞行器或地形障碍物的碰撞。
3. 气象应用气象雷达系统可以用于监测天气现象,如降雨、雷暴等。
雷达的组成及其原理课程名称:现代阵列并行信号处理技术姓名:杜凯洋教师:王文钦教授示器、(1(2(3(4(5雷达等。
(一)概述1、天线:辐射能量和接收回波(单基地脉冲雷达),(天线形状,波束形状,扫描方式)。
2、收发开关:收发隔离。
3、发射机:直接振荡式(如磁控管振荡器),功率放大式(如主振放大式),(稳定,产生复杂波形,可相参处理)。
4、接收机:超外差,高频放大,混频,中频放大,检波,视频放大等。
(接收机部分也进行一些信号处理,如匹配滤波等),接收机中的检波器通常是包络检波,对于多普勒处理则采用相位检波器。
5、信号处理:消除不需要的信号及干扰而通过或加强由目标产生的回波信号,通常在检测判决之前完成(MTI,多普勒滤波器组,脉冲压缩),许多现代雷达也在检测判决之后完成。
6、显示器(终端):原始视频,或经过处理的信息。
7、同步设备(视频综合器):是雷达机的频率和时间标准(只有功率放大式(主振放大式)才有)。
(二)雷达发射机1、单级振荡式:大功率电磁振荡产生与调制同时完成(一个器件)(1(2)(32(1(2(3(4(三)雷达接收机一、超外差雷达接收机的组成优点:灵敏度高、增益高、选择性好、适应性广。
图3-1 超外差式雷达接收机简化框图1、高频部分:(1)T/R 及保护器:发射机工作时,使接收机输入端短路,并对大信号限幅保护。
(2)低噪声高放:提高灵敏度,降低接收机噪声系数,热噪声增益。
(3)Mixer ,LD ,AFC :保证本振频率与发射频率差频为中频,实现变频。
2、中频部分及 AGC :(1)匹配滤波:max (/)o S N(2)AGC :auto gain control.3(1(21、灵敏度d P 时的输完成。
23。
4、中频的选择与滤波特性:02R f f ≥∆ ,中频选择通常选择 30M ~500M ,抑制镜频.实际与发射波形特性,接收机工作带宽有关。
5、工作稳定性和频率稳定度:指当环境变化时,接收机性能参数受到影响的程度,频率稳定度,信号处理,采取频率稳定度、相位稳定度提高的本振,“稳定本振” 。
雷达知识点总结1.雷达的工作原理1 雷达测距原理超高频无线电波在空间传播具有等速、直线传播的特性,并且遇到物标有良好的反射现象。
用发射机产生高频无线电脉冲波,用天线向外发射和接收无线电脉冲波,用显示器进行计时、计算、显示物标的距离,并用触发电路产生的触发脉冲使它们同步工作。
2 雷达测方位原理(1)利用超高频无线电波的空间直线传播;(2)雷达天线是一种定向型天线;(3)用方位扫描系统把天线的瞬时位置随时准确地送到显示器,使荧光屏上的扫描线和天线同步旋转,于是物标回波也就按它的实际方位显示在荧光屏上。
雷达基本组成(1)触发电路(Trigger Circuit)(2)作用:每隔一定的时间产生一个作用时间很短的尖脉冲(触发脉冲),分别送到发射机、接收机和显示器,使它们同步工作。
(3)(4)发射机(Transmitter)(5)作用:在触发脉冲的控制下产生一个具有一定宽度的大功率高频的脉冲信号(射频脉冲),经波导馈线送入天线向外发射。
参数:X波段:9300MHz—9500MHz (波长3cm)S波段:2900MHz—3100MHz (波长10cm)(6)天线(Scanner; Antenna)(7)作用:把发射机经波导馈线送来的射频脉冲的能量聚成细束朝一个方向发射出去,同时只接收从该方向的物标反射的回波,并再经波导馈线送入接收机。
参数:顺时针匀速旋转,转速:15—30r/min(8)(9)接收机(Receiver)作用:将天线接收到的超高频回波信号放大,变频(变成中频)后,再放大、检波,变成显示器可以显示的视频回波信号。
(5)收发开关(T-R Switch)作用:在发射时自动关闭接收机入口,让大功率射频脉冲只送到天线向外辐射而不进入接收机;在发射结束后,能自动接通接收机通路让微弱的回波信号顺利进入接收机,同时关闭发射机通路。
(6)显示器(Display)作用:传统的PPI显示器在触发脉冲的控制下产生一条径向的距离扫描线,用来计时、计算物标回波的距离,同时这条扫描线由方位扫描系统带动天线同步旋转。
自激振荡式雷达发射机原理全文共四篇示例,供读者参考第一篇示例:自激振荡式雷达发射机原理雷达技术是一种利用电磁波进行探测和定位的技术,在军事、民用领域都有着广泛的应用。
雷达的核心部件之一就是发射机,它负责产生并发射出一定频率和功率的电磁波信号。
自激振荡式雷达发射机是一种常见的雷达发射机类型,其原理复杂但却十分重要。
自激振荡式雷达发射机通过激励一个被放大器所放大的信号来产生自激振荡。
自激振荡是指在无外部激励的情况下,电路器件自身就能产生并保持振荡的一种现象。
在雷达发射机中,自激振荡是指由被放大器的反馈带来的振荡。
下面将详细介绍自激振荡式雷达发射机的工作原理。
需要了解被放大器的作用。
被放大器是一个放大电磁波信号的器件,比如微波管、晶体管等。
在雷达发射机中,被放大器通常与反馈回路连接在一起,以实现自激振荡。
当输入信号进入到被放大器时,被放大器会增大这个信号,并将其输出。
输出信号中的一部分会经过反馈回路返回到被放大器的输入端,这就形成了一个反馈回路。
在自激振荡式雷达发射机中,反馈回路的设计十分重要。
合适的反馈回路可以实现稳定的振荡,确保发射信号频率和功率的稳定性。
一般来说,反馈回路设计的关键在于选择合适的元件以及调整它们的参数,比如电容和电阻的数值。
通过不断的实验和调试,可以找到最佳的反馈回路设计。
需要考虑信号的输出。
当自激振荡发生时,被放大器会不断地放大信号并输出。
输出信号会被送到天线中,最终转换成电磁波信号发送出去。
这些电磁波信号会沿着一定的路径传播,并被接收接收天线接收。
通过对接收到的信号进行处理和分析,就可以获取目标物体的信息,比如距离、速度等。
自激振荡式雷达发射机是一种重要的雷达发射机类型,通过反馈回路实现自激振荡,产生并发射出电磁波信号。
其工作原理复杂但十分精密,需要合理设计和调试反馈回路,确保稳定的振荡和输出信号。
通过不断的研究和实践,自激振荡式雷达发射机已经被广泛应用于雷达系统中,为军事、民用领域提供了重要的技术支持。
雷达组成和工作原理雷达是一种利用电磁波进行探测和测距的设备,广泛应用于军事、民用、气象等领域。
雷达的组成和工作原理是雷达技术的基础,下面将详细介绍。
一、雷达的组成雷达主要由以下几部分组成:1.发射机:发射机是雷达的核心部件,它产生高频电磁波并将其送入天线。
2.天线:天线是雷达的接收和发射装置,它将发射机产生的电磁波转换成空间电磁波,并将接收到的回波转换成电信号送入接收机。
3.接收机:接收机是雷达的信号处理部件,它将接收到的电信号进行放大、滤波、解调等处理,得到目标的距离、速度、方位等信息。
4.显示器:显示器是雷达的输出部件,它将接收机处理后的信息以图像或数字的形式显示出来,供操作员进行判断和决策。
二、雷达的工作原理雷达的工作原理是利用电磁波的特性进行探测和测距。
雷达发射机产生高频电磁波,经过天线转换成空间电磁波,向周围环境发射。
当电磁波遇到目标时,一部分电磁波被目标反射回来,经过天线转换成电信号送入接收机。
接收机对接收到的信号进行放大、滤波、解调等处理,得到目标的距离、速度、方位等信息。
最后,将处理后的信息以图像或数字的形式显示出来,供操作员进行判断和决策。
雷达的探测距离和精度与电磁波的频率、功率、天线的大小和形状、目标的反射特性等因素有关。
一般来说,雷达的探测距离越远,精度越高,需要的电磁波功率越大,天线越大,目标反射特性越好。
三、雷达的应用雷达广泛应用于军事、民用、气象等领域。
在军事领域,雷达可以用于侦察、监视、导航、武器控制等方面。
在民用领域,雷达可以用于航空、航海、交通、地质勘探、环境监测等方面。
在气象领域,雷达可以用于探测降水、测量风速、预测天气等方面。
雷达是一种非常重要的探测和测距设备,它的组成和工作原理是雷达技术的基础。
随着科技的不断发展,雷达技术也在不断创新和进步,为人类的生产和生活带来了更多的便利和安全。
雷达系统原理详解雷达是一种利用电磁波进行目标探测和测量的技术,具有广泛的应用领域,如军事、航空、气象等。
本文将详细介绍雷达系统的原理。
一、概述雷达系统由发射系统、接收系统和信号处理系统组成。
发射系统负责产生电磁波并将其发射到空间中,接收系统接收回波信号,信号处理系统对接收到的信号进行解析和分析。
二、发射系统发射系统通常由雷达发射机、天线和其他辅助设备组成。
雷达发射机是一个关键组件,它负责产生高频电磁波,并将其传递给天线进行辐射。
天线的作用是将发射的电磁波转换为空间中的电磁波辐射,形成探测区域。
三、接收系统接收系统主要由天线、接收机和信号处理设备组成。
天线的作用不仅仅是发射,还能接收回波信号。
接收机负责接收和放大接收到的回波信号,并将其传递给信号处理设备。
接收到的回波信号中包含了目标物体的信息。
四、信号处理系统信号处理系统对接收到的信号进行解析和分析,提取目标物体的信息。
它包括目标检测、距离测量、速度测量等功能。
在目标检测中,信号处理系统通过判断回波信号的强度和特征来确定目标的存在与否。
距离测量通过计算回波信号的时间差来确定目标与雷达的距离。
速度测量则通过分析回波信号的频率变化来确定目标的速度。
五、雷达系统原理雷达系统的原理基于电磁波的特性。
当雷达发射电磁波时,它会在空间中传播并被物体反射回来。
这些反射回来的电磁波就是回波信号。
根据回波信号的特性,雷达系统可以测量目标物体的位置、距离、方向和速度等信息。
雷达系统的工作原理可以简述为以下几个步骤:1. 发射:雷达发射系统产生高频电磁波并将其辐射到空间中。
2. 反射:电磁波遇到目标物体时,一部分被吸收、散射或穿透,另一部分被物体反射回来,形成回波信号。
3. 接收:雷达接收系统接收回波信号并将其传输到信号处理系统。
4. 处理:信号处理系统对接收到的信号进行解析和分析,提取目标物体的信息。
5. 显示:处理后的目标信息通过显示设备展示给操作员或其他系统。
六、雷达系统的应用雷达系统广泛应用于军事和民用领域。
雷达原理知识点汇总第一章绪论1、雷达概念(Radar):radar的音译,“Radio Detection and Ranging ”的缩写。
原意是“无线电探测和测距”,即用无线电方法发现目标并测定它们在空间的位置。
2、雷达工作原理:发射机在定时器控制下,产生高频大功率的脉冲串,通过收发开关到达定向天线,以电磁波形式向外辐射。
在天线控制设备的控制下,天线波束按照指定方向在空间扫描,当电磁波照射到目标上,二次散射电磁波的一部分到达雷达天线,经收发开关至接收机,进行放大、混频和检波处理后,送到雷达终端设备,能判断目标的存在、方位、距离、速度等。
3、雷达的任务:利用目标对电磁波的反射来发现目标并对目标进行定位。
随着雷达技术的发展,雷达的任务不仅仅是测量目标的距离、方位和仰角,而且还包括测量目标的速度,以及从目标回波中获取更多有关目标的信息。
4、从雷达回波中可以提取目标的哪些有用信息,通过什么方式获取这些信息?斜距R : 雷达到目标的直线距离OP。
方位角α: 目标斜距R在水平面上的投影OB与某一起始方向(正北、正南或其它参考方向)在水平面上的夹角。
俯仰角β:斜距R与它在水平面上的投影OB在铅垂面上的夹角,有时也称为倾角或高低角。
5、雷达工作方式连续波和脉冲波6、雷达测距原理R=(C∆t)/2式中,R为目标到雷达的单程距离,∆t为电磁波往返于目标与雷达之间的时间间隔,C为电磁波的传播速率(3×108米/秒)7、影响雷达性能指标脉冲宽度(窄),天线尺寸(大),波束(窄),方向性。
8、距离测量分辨力两个目标在距离方向上的最小可区分距离:Δr c=c/2(τ+d/υn)∆rc=c/2(τ+d/υn)或者Δr c=c/2∙1/B∆rc=c/2∙1/B其中,d为光点直径,υnυn为光点扫面速度;B为有效相关带宽。
9、雷达由哪几个主要部分,各部分的功能是什么?同步设备:雷达整机工作的频率和时间标准。
发射机:产生大功率射频脉冲。
雷达原理 PDF雷达是一种利用无线电波进行目标探测和测距的电子设备。
其基本原理是,通过发射电磁波对目标进行照射,然后分析反射回来的电磁波以获得目标的信息。
下面将详细介绍雷达的工作原理和技术特点。
一、雷达的基本组成雷达主要由发射机、接收机、信号处理机和显示控制单元等组成。
发射机负责产生高频电磁波,然后通过天线将其发送到空间中。
当电磁波遇到目标时,会反射回来并被接收机接收。
接收机接收到反射回来的电磁波后,将其转换为低频信号并送入信号处理机进行处理。
信号处理机对接收到的信号进行分析和处理,提取出目标的位置、速度等信息,并将其送入显示控制单元进行显示和控制。
二、雷达的种类雷达按照不同的分类方式可以分为不同的类型。
例如,按照工作频段可以分为米波雷达、分米波雷达、厘米波雷达和毫米波雷达等;按照用途可以分为军用雷达、民用雷达和通用雷达等;按照工作方式可以分为脉冲雷达和连续波雷达等。
三、雷达的工作原理雷达的工作原理是利用电磁波的反射和传播特性。
雷达发射的电磁波遇到目标后,会反射回来并被接收机接收。
通过测量反射回来的电磁波的相位、频率和幅度等参数,可以确定目标的位置和速度等信息。
例如,通过测量反射回来的电磁波的相位差,可以确定目标距离雷达的距离;通过测量反射回来的电磁波的频率变化,可以确定目标的径向速度;通过测量反射回来的电磁波的幅度,可以确定目标的大小和形状等信息。
四、雷达的技术特点雷达的技术特点包括探测能力、测速精度、测距精度和分辨率等。
其中,探测能力是雷达最重要的特点之一,它决定了雷达能够发现和跟踪的目标数量和质量;测速精度和测距精度是雷达测量目标位置和速度的准确性;分辨率是雷达区分相邻目标的能力。
五、雷达的应用雷达被广泛应用于军事、民用和科研等领域。
在军事方面,雷达被用于引导导弹、飞机和舰船等武器进行攻击和防御;在民用方面,雷达被用于交通管制、气象观测和资源探测等领域;在科研方面,雷达被用于物理实验、地球观测和天体研究等领域。
第一章 绪论(重点)1、雷达的基本概念雷达概念(Radar),雷达的任务是什么,从雷达回波中可以提取目标的哪些有用信息,通过什么方式获取这些信息雷达概念:Radio Detection and Ranging 的缩写。
无线电探测和测距,无线电定位。
雷达的任务:雷达检测,目标定位,目标跟踪,目标成像,目标识别。
从雷达回波中可以提取目标的有用信息,获取方式: 目标信息 雷达提取 空间位置 距离 R=Ct/2 回波延时 方位 天线扫描 仰角速度 多普勒频移尺寸和形状 回波延时、多普勒频移2、目标距离的测量测量原理、距离测量分辨率、最大不模糊距离测量原理:通过接收信号的时间延迟进行测距 R=Ct/2 (t:滞后时间) 距离测量分辨率最大不模糊距离3、目标角度的测量角度分辨率角度分辨率:位于同一距离上的两个目标在方位角平面或仰角平面上可被区分的最小角度4、雷达的基本组成哪几个主要部分,各部分的功能是什么同步设备(Synchronizer):雷达整机工作的频率和时间标准。
发射机(Transmitter):产生大功率射频脉冲。
收发转换开关(Duplexer): 收发共用一副天线必需,完成天线与发射机和接收机连通之间的切换。
天线(Antenna):将发射信号向空间定向辐射,并接收目标回波。
接收机(Receiver):把回波信号放大,检波后用于目标检测、显示或其它雷达信号处理。
显示器(Scope):显示目标回波,指示目标位置。
天线控制(伺服)装置:控制天线波束在空间扫描。
电源第二章 雷达发射机1、雷达发射机的任务雷达发射机的任务:为雷达提供一个载波受到调制的大功率射频信号,经馈线和收发开关由天线辐射出去。
2、雷达发射机的主要质量指标雷达发射机的主要质量指标:工作频率或波段,输出功率,总效率,信号形式,信号稳定度3、雷达发射机的分类雷达发射机的分类:1、按调制方式: ①连续波发射机 ②脉冲发射机2、按工作波段:①短波②米波③分米波④厘米波⑤毫米波3、按产生信号方式 :①单级振荡式 ②主振放大式4、按功率放大使用器件: ①真空管发射机 ②固态发射机4、单级振荡式和主振放大式发射机组成, 以及各自的优缺点。
雷达原理第2章雷达发射机
雷达发射机是雷达系统的核心组成部分,主要负责产生雷达信号并将其发射出去。
本章将介绍雷达发射机的工作原理及其主要组成部分。
雷达发射机的主要任务是通过发射出的脉冲信号来检测目标并获取目标信息。
脉冲信号的发射过程一般分为两个阶段:调制和功放。
调制是指将雷达信号与相关的调制信号相乘,从而得到具有特定特征的脉冲信号。
调制信号一般是一个周期性时间信号,根据需要可以选择不同的调制方式,常见的有连续波调制、脉冲调制和相位调制等。
调制过程实际上就是对高频载波信号进行幅度、频率或相位的调制,目的是为了提高信号的传输效率和抗干扰能力。
调制完成后,接下来需要将调制后的信号进行功率放大,以便能够将信号发送到目标并接收到目标返回的回波信号。
功放是将调制信号的功率增大的过程。
为了达到足够大的功率,一般会采用射频功率管或半导体功放器来提供足够的增益。
功放器的选择需要根据雷达系统的功率要求和频率范围来确定。
除了调制和功放,雷达发射机还需要考虑其他因素,如发射机的频率稳定性、调制信号的带宽、功放器的线性度等。
频率稳定性是指雷达信号的频率变化幅度,对于雷达系统的测量精度和距离分辨率都有着重要的影响。
调制信号的带宽决定了雷达发射信号的分辨率和抗干扰能力。
功放器的线性度决定了输出信号的失真程度,对于雷达系统的距离测量和目标识别都有着重要的影响。
综上所述,雷达发射机是雷达系统中非常重要的一个组成部分,它负责产生和放大雷达信号,并将信号发送到目标上,以便对目标进行探测和
测量。
在设计雷达系统时,需要根据具体的应用需求选择适当的调制方式、功放器和其他相关参数,以保证雷达系统在不同环境下能够正常工作。