雷达发射机基础知识
- 格式:docx
- 大小:1.15 MB
- 文档页数:5
雷达发射机是雷达系统的一个重要组成部分,它产生满足要求的大功率射频发射信号,经馈线系统再由天线辐射出去,从而照射远处目标。
典型脉冲雷达框图如下,其中发射机(Transmitter)主要由三部分组成:高压电源,脉冲调制器和射频放大器。
发射机性能的好坏直接影响雷达整机的性能和质量,首先发射的电磁波信号必须具备一定的发射功率,对于不同体制和不同任务的雷达,发射机功率量级差别很大,例如,脉冲雷达的峰值功率可达到兆瓦级,而连续波雷达功率几十瓦就已经很高了。
雷达发射机输出功率的大小将直接影响雷达的探测威力,通常可分为峰值功率和平均功率。
通常规定发射机送至天线输入端的功率为发射机的输出功率,峰值功率指脉冲期间射频振荡的平均功率,用Pt 表示;而平均功率则是脉冲重复周期(PRI)输出功率的平均值,常用Pav 表示。
对于简单的矩形脉冲列来说,峰值功率和平均功率有如下关系:av t t P P P PRF Tττ=⋅=⋅⋅其中T 表示脉冲重复周期,τ表示脉冲宽度。
由于平均功率是决定雷达潜在探测距离的一个关键因素,雷达发射总能量等于平均功率乘以时间。
之前有人问:对于相参雷达,在不改变雷达设备硬件的基础下,怎么提高探测距离?这里从雷达发射机的角度给出几个方法:不改变雷达设备,说明峰值功率功率也已调制最高了,那么可以做的一种方法是:提高雷达的占空比D ,也就是要么增大脉冲宽度,要么增大PRF ;另外,多个脉冲积累会有效提高信噪比,从而改善雷达对目标的发现能力,也就是提高积累时间来获得更多的发射能量。
对于这个问题还需要结合具体的雷达和修正后的雷达方程来分析哪些参数是不能变的,哪些参数是方便改变的。
修正的雷达方程相关知识可见:对于发射电磁波信号的另一个特点是载波受到了调制,简单的如矩形脉冲,线性调频矩形脉冲,复杂的如相位编码信号,复杂的脉内和脉间调制信号等。
雷达的许多性能是与信号形式相关的。
例如早期的雷达发射的是载频固定的矩形调制脉冲,信号的时宽和带宽的乘积等于1,这就使增加时宽或带宽来获得速度或距离分辨率成为了一对相互制约的矛盾,而采用大时宽带宽积的复杂发射信号的脉冲压缩技术则解决了这对矛盾。
雷达知识点总结一、雷达的基本原理雷达是利用无线电波进行探测的设备,其工作原理基于无线电波的发射和接收。
雷达基本原理包括以下几个关键环节:1. 无线电波的发射雷达发射机产生高频的无线电波,并将这些无线电波转化为一束射向待测目标的电磁波。
雷达发射机工作时,关键是通过天线把电能转换成电磁波,并辐射出去。
2. 无线电波的传播和反射发射出的无线电波在空间中传播,当遇到目标时部分被目标表面反射回来,这些反射回来的波被雷达的接收天线接收到。
3. 无线电波的接收和处理接收天线捕捉到反射回来的波,雷达接收机将这些波进行放大、滤波、解调处理,提取出有用的信息。
4. 目标信息的测量和分析通过分析接收到的信号的时间延迟、频率变化等信息,雷达系统可以确定目标的距离、速度、方位角等参数。
5. 显示和报警最后,雷达系统将分析得到的目标信息显示在操作员的监视屏幕上,同时进行报警和跟踪。
以上就是雷达基本的工作原理,根据这些原理,雷达系统可以实现对目标的探测和识别。
二、雷达的工作方式雷达可以根据工作方式的不同分为主动雷达和被动雷达两种类型。
1. 主动雷达主动雷达是指雷达发射机和接收机分开的雷达系统,发射机发射的信号由发送天线发射出去,接收机则由接收天线接收目标反射回来的信号,该方式下,雷达系统不需要等待传感器的使用权就能发射信号和接收目标信息。
2. 被动雷达被动雷达是指发射机和接收机是同一部分,这种雷达系统利用目标本身辐射的电磁波进行探测,通常是利用目标自身的雷达反射特性进行探测。
雷达的工作方式直接影响着其使用场景、性能和应用对象。
三、雷达系统的组成雷达系统是由多个部分组成的,主要包括以下几个组成部分:1. 发射和接收天线:发射和接收天线是雷达系统的核心部件,用于发射和接收电磁波。
2. 雷达发射机:雷达发射机负责产生和放大载频的高频信号,并将其送到发射天线。
3. 雷达接收机:雷达接收机负责接收目标反射回来的信号,并进行放大、解调、滤波等处理。
雷达原理知识点汇总第一章绪论1、雷达概念(Radar):radar的音译,“Radio Detection and Ranging ”的缩写。
原意是“无线电探测和测距”,即用无线电方法发现目标并测定它们在空间的位置。
2、雷达工作原理:发射机在定时器控制下,产生高频大功率的脉冲串,通过收发开关到达定向天线,以电磁波形式向外辐射。
在天线控制设备的控制下,天线波束按照指定方向在空间扫描,当电磁波照射到目标上,二次散射电磁波的一部分到达雷达天线,经收发开关至接收机,进行放大、混频和检波处理后,送到雷达终端设备,能判断目标的存在、方位、距离、速度等。
3、雷达的任务:利用目标对电磁波的反射来发现目标并对目标进行定位。
随着雷达技术的发展,雷达的任务不仅仅是测量目标的距离、方位和仰角,而且还包括测量目标的速度,以及从目标回波中获取更多有关目标的信息。
4、从雷达回波中可以提取目标的哪些有用信息,通过什么方式获取这些信息?斜距R : 雷达到目标的直线距离OP。
方位角α: 目标斜距R在水平面上的投影OB与某一起始方向(正北、正南或其它参考方向)在水平面上的夹角。
俯仰角β:斜距R与它在水平面上的投影OB在铅垂面上的夹角,有时也称为倾角或高低角。
5、雷达工作方式连续波和脉冲波6、雷达测距原理R=(C∆t)/2式中,R为目标到雷达的单程距离,∆t为电磁波往返于目标与雷达之间的时间间隔,C为电磁波的传播速率(3×108米/秒)7、影响雷达性能指标脉冲宽度(窄),天线尺寸(大),波束(窄),方向性。
8、距离测量分辨力两个目标在距离方向上的最小可区分距离:Δr c=c/2(τ+d/υn)∆rc=c/2(τ+d/υn)或者Δr c=c/2∙1/B∆rc=c/2∙1/B其中,d为光点直径,υnυn为光点扫面速度;B为有效相关带宽。
9、雷达由哪几个主要部分,各部分的功能是什么?同步设备:雷达整机工作的频率和时间标准。
发射机:产生大功率射频脉冲。
雷达原理第2章雷达发射机要点雷达发射机是雷达系统中至关重要的部分,它负责产生并发射出的脉冲信号。
以下是雷达发射机的一些关键要点:1.脉冲功率:雷达发射机必须能够提供足够的脉冲功率,以便信号在传播途中具有足够的能量来与目标发生相互作用。
脉冲功率往往决定了雷达的探测距离和分辨率。
2.脉冲宽度:脉冲宽度是雷达发射的信号持续时间。
宽脉冲可以提供更强的信号能量,从而增加了信号的传播距离,但牺牲了分辨能力。
窄脉冲可以提供更好的距离分辨率,但脉冲功率较低。
选择合适的脉冲宽度是一种平衡探测距离和分辨率的关键。
3.脉冲重复频率:雷达发射机必须能够以足够高的频率产生连续的脉冲信号。
脉冲重复频率决定了雷达的最大测距能力。
较高的脉冲重复频率可以提供更快的数据更新速度,但可能会增加雷达系统的复杂性和功耗。
4.调制方式:雷达发射机可以采用不同的调制方式来改变脉冲信号的特性。
其中常见的调制方式包括连续波、脉冲调制和相位调制。
不同的调制方式可以适应不同的应用需求和环境条件。
5.频率选择:雷达发射机需要选择适当的发射频率。
选择合适的频率可以提高雷达的分辨率和穿透能力。
不同的频率带有不同的反射和传播特性,因此需要在设计中考虑到实际应用需求和环境条件。
6.稳定性和可靠性:雷达发射机必须能够保持稳定的功率输出和频率特性,以确保雷达系统的性能和精度。
为了实现稳定性和可靠性,通常会采用一些稳定的时钟源和调节电路来对发射信号进行控制和校正。
7.功耗和体积:雷达发射机通常需要在较小的尺寸和功耗限制下工作。
因此,设计时需要考虑到功率放大器和其他电路的效率,以及尽可能减小电路的体积和重量。
总结起来,雷达发射机在雷达系统中起着至关重要的作用,它决定了雷达的探测距离、分辨能力和性能稳定性。
在设计中需要平衡脉冲功率、宽度和重复频率,选择合适的调制方式和频率,并考虑到稳定性、可靠性、功耗和体积等因素。
只有综合考虑这些要点,才能设计出性能优越的雷达发射机。
雷达发射机是雷达系统的一个重要组成部分,它产生满足要求的大功率射频发射信号,经馈线系统再由天线辐射出去,从而照射远处目标。
典型脉冲雷达框图如下,其中发射机(Transmitter)主要由三部分组成:高压电源,脉冲调制器和射频放大器。
发射机性能的好坏直接影响雷达整机的性能和质量,首先发射的电磁波信号必须具备一定的发射功率,对于不同体制和不同任务的雷达,发射机功率量级差别很大,例如,脉冲雷达的峰值功率可达到兆瓦级,而连续波雷达功率几十瓦就已经很高了。
雷达发射机输出功率的大小将直接影响雷达的探测威力,通常可分为峰值功率和平均功率。
通常规定发射机送至天线输入端的功率为发射机的输出功率,峰值功率指脉冲期间射频振荡的平均功率,用Pt 表示;而平均功率则是脉冲重复周期(PRI)输出功率的平均值,常用Pav 表示。
对于简单的矩形脉冲列来说,峰值功率和平均功率有如下关系:
av t t P P P PRF T
ττ=⋅=⋅⋅
其中T 表示脉冲重复周期,τ表示脉冲宽度。
由于平均功率是决定雷达潜在探测距离的一个关键因素,雷达发射总能量等于平均功率乘以时间。
之前有人问:对于相参雷达,在不改变雷达设备硬件的基础下,怎么提高探测距离?
这里从雷达发射机的角度给出几个方法:不改变雷达设备,说明峰值功率功率也已调制最高了,那么可以做的一种方法是:提高雷达的占空比D ,也就是要么增大脉冲宽度,要么增大PRF ;另外,多个脉冲积累会有效提高信噪比,从而改善雷达对目标的发现能力,也就是提高积累时间来获得更多的发射能量。
对于这个问题还需要结合具体的雷达和修正后的雷达方程来分析哪些参数是不能变的,哪些参数是方便改变的。
修正的雷达方程相关知识可见:
对于发射电磁波信号的另一个特点是载波受到了调制,简单的如矩形脉冲,线性调频矩形脉冲,复杂的如相位编码信号,复杂的脉内和脉间调制信号等。
雷达的许多性能是与信号形式相关的。
例如早期的雷达发射的是载频固定的矩形调制脉冲,信号的时宽和带宽的乘积等于1,这就使增加时宽或带宽来获得速度或距离分辨率成为了一对相互制约的矛盾,而采用大时宽带宽积的复杂发射信号的脉冲压缩技术则解决了这对矛盾。
另外,复杂的发射信号虽然提高了雷达的复杂度和成本,也在对抗杂波和干扰的能力方面却提高了很多。
雷达发射机可分为单级振荡式发射机和主振放大式发射机。
单级振荡式发射机由一级大功率射频振荡器和脉冲调制器组成。
振荡器直接产生大功率射频振荡,调制器通过一定振幅、宽度、频率和功率的脉冲来控制振荡器的输出。
单级振荡式发射机结构简单,成本低,频率稳定度低,不具有相位相参特性。
主振放大式发射机由固体微波源、脉冲调制器和射频放大链组成。
固体微波源产生低功率但频率稳定的射频振荡,经过多级脉冲调制器和功率放大器,输出大功率射频脉冲。
主振放大式发射机能够提供全相参、频率高度稳定、波形非常复杂的信号输出,并且可实现宽频带、快速变频等要求。
相参性
雷达信号中,相参性也叫相干性,是现代雷达的一个重要概念。
信号相参是指发射信号与雷达主振频率源信号存在固定的相位关系。
对于单级振荡式发射机和主振放大式发射机,只有后者可以发射相位相参信号,这是因为主控振荡器提供具有高稳定度连续波信号,射频脉冲通过脉冲调制器控制射频功率放大器形成,相继脉冲之间具有固定的相位关系。
相参有多种类型,普遍采用的是让每个脉冲的第一个波前与前一个脉冲相同相位的最后一个波前的间隔严格恰好是波长的整数倍,这些脉冲是相参的。
第一个脉冲初始相位的随机性并不影响相参性,但若像单级振荡式那样每个射频脉冲的初始相位都由振荡器噪声决定从而是随机的,那便是非相参发射机了。
全相参
如果雷达系统中,发射信号、本振电压、相参振荡电压和定时器的触发脉冲均由同一个基准频率源提供,所有这些信号之间均保持了确定的相位关系,这种雷达系统则被称为全相参雷达。
全相参是实现脉冲多普勒处理、脉冲压缩技术、频率捷变抗干扰等技术的基础,并且能产生复杂信号波形。
固态
雷达发射机根据采用的器件主要有:电真空器件和半导体器件。
“固态”就是相对于电真空器件(电子管)来说的,指的是半导体材料(晶体管),诸如“硅”、砷化镓场效应管等。
多个微波功率器件和微波单片集成电路集成后构成一个基本的“固态发射模
块”,再由几十个或几千个固态发射模块构成“固态雷达发射机”。
固态发射机具有体积小、重量轻、工作频带宽、效率高、寿命长、高可靠性和低成本等优势。
随着微波半导体大功率器件的飞速发展,应用先进的微波单片集成和优化设计的微波网络技术,已将多个微波功率器件、低噪声接收器件等组成固态收发模块。
这样的固态收发组件具有很高的可靠性和灵活性,做成标准件后可以根据任务要求灵活组合应用,并且出现损坏后可随时替换,维护方便。