第2讲 拟合与插值
- 格式:ppt
- 大小:1.83 MB
- 文档页数:85
插值与拟合算法分析在数学与计算机科学领域,插值与拟合算法是两种常用的数据处理技术。
插值算法通过已知数据点之间的内插来估算未知数据点的值,而拟合算法则通过求取最佳拟合曲线或函数来逼近已知数据点。
本文将对插值与拟合算法进行详细分析,并比较它们在不同应用中的优缺点。
一、插值算法插值算法主要用于通过已知数据点之间的内插来估算未知数据点的值。
常用的插值算法包括拉格朗日插值、牛顿插值、样条插值等。
这些算法根据插值函数的不同特点,适用于不同类型的数据处理。
1. 拉格朗日插值拉格朗日插值是一种基于代数多项式的插值方法。
它通过构造一个全局多项式函数来拟合已知数据点,并推导出未知数据点的估算值。
拉格朗日插值算法具有简单易懂、计算效率高等优点,但在处理大量数据点时可能会出现龙格现象,导致插值结果有一定误差。
2. 牛顿插值牛顿插值是一种基于差商的插值方法。
它通过计算差商的递推关系,构造一个分段多项式函数来拟合已知数据点。
相比于拉格朗日插值,牛顿插值算法具有更高的数值稳定性和精度,并且可以方便地进行动态插值。
3. 样条插值样条插值是一种基于分段函数的插值方法。
它将整个数据区间划分为若干小段,并使用不同的插值函数对每一段进行插值。
样条插值算法通过要求插值函数的高阶导数连续,能够更好地逼近原始数据的曲线特征,因此在光滑性较强的数据处理中常被使用。
二、拟合算法拟合算法主要用于通过最佳拟合曲线或函数来逼近已知数据点。
常用的拟合算法包括最小二乘拟合、多项式拟合、非线性拟合等。
这些算法可以使拟合曲线与已知数据点尽可能地接近,从而进行更精确的数据分析和预测。
1. 最小二乘拟合最小二乘拟合是一种通过最小化残差平方和来求取最佳拟合曲线的方法。
它利用数据点与拟合曲线的差异来评估拟合效果,并通过求取最小残差平方和的参数值来确定拟合曲线的形状。
最小二乘拟合算法广泛应用于线性回归和曲线拟合等领域。
2. 多项式拟合多项式拟合是一种通过多项式函数来逼近已知数据点的方法。
第九章 插值与拟合插值:求过已知有限个数据点的近似函数。
拟合:已知有限个数据点,求近似函数,不要求过已知数据点,只要求在某种意义下它在这些点上的总偏差最小。
插值和拟合都是要根据一组数据构造一个函数作为近似,由于近似的要求不同,二者的数学方法上是完全不同的。
而面对一个实际问题,究竟应该用插值还是拟合,有时容易确定,有时则并不明显。
§1 插值方法下面介绍几种基本的、常用的插值:拉格朗日多项式插值、牛顿插值、分段线性插值、Hermite 插值和三次样条插值。
1.1 拉格朗日多项式插值 1.1.1 插值多项式用多项式作为研究插值的工具,称为代数插值。
其基本问题是:已知函数)(x f 在区间],[b a 上1+n 个不同点n x x x ,,,10 处的函数值)(i i x f y =),,1,0(n i =,求一个至多n 次多项式n n n x a x a a x +++= 10)(ϕ (1)使其在给定点处与)(x f 同值,即满足插值条件),,1,0()()(n i y x f x ii i n ===ϕ (2))(x n ϕ称为插值多项式,),,1,0(n i x i =称为插值节点,简称节点,],[b a 称为插值区间。
从几何上看,n 次多项式插值就是过1+n 个点))(,(i i x f x ),,1,0(n i =,作一条多项式曲线)(x y n ϕ=近似曲线)(x f y =。
n 次多项式(1)有1+n 个待定系数,由插值条件(2)恰好给出1+n 个方程⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n n n n n n nn nn yx a x a x a a y x a x a x a a y x a x a x a a 22101121211*********(3)记此方程组的系数矩阵为A ,则是范德蒙特(Vandermonde)行列式。
当n x x x ,,,10 互不相同时,此行列式值不为零。
实验报告七拟合与插值一、曲线拟合1、多项式拟合【示例】以下步骤可对二维数据作多项式拟合。
已知:数据横坐标:a=[1 2 5 7 11 12];数据纵坐标:b=[ 32.78 32.65 27.25 25.55 19.24 14.65];【解】先将数据绘制成散点图:a=[1 2 5 7 11 12]; b=[ 32.78 32.65 27.25 25.55 19.24 14.65];plot(a,b, '-o') % 绘图,线型为实线,点型为空心圆点,颜色为默认的蓝色。
观察绘制出来的图形,大致在一条直线上,所以用一次多项式(直线)拟合:p= polyfit(a,b,1); y1=p (1)*a+p (2); % 线性拟合。
polyfit命令中的数字“1”表示用一次多项式。
% p是向量,各分量表示多项式从高到低的各个系数;y1是用这些系数构造的多项式的值。
hold on; plot(a,y1,'r') % 绘制图形,观察拟合效果。
颜色为红色。
也可以试着用三次多项式来拟合:q= polyfit(a,b,3); y2= q(1)*a.^3+q(2)*a.^2+q(3)*a+ q(4); % 3次多项式拟合hold on; plot(a,y2,'k') % 绘制曲线,观察拟合效果。
颜色为黑色。
【要求】执行以上命令,并仿照示例,对下列数据作多项式拟合,写出拟合多项式:数据横坐标:x=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20];数据纵坐标:y= [70.2 41.6 -9.1 -52 -100 -67.4 -112 -166 -104 -168 -103 -128 -90.5 -52.1 -10.4 60.6 85.9 153 199 301];024681012141618202、一般的最小二乘拟合【示例1】已知数据横、纵坐标分别为x =1:0.5:10; y=[0.84 2.24 3.64 3.74 1.2701 -4.29 -12.11 -19.79 -23.97 -21.34 -10.06 9.09 32.19 52.76 63.32 57.69 33.38 -6.78 -54.40];并已知该组数据满足 12sin()ay x a x =,其中12,a a 为待定系数。