2016年秋季学期新人教A版高中必修五2.3 等差数列的前n项和(一)
- 格式:docx
- 大小:206.54 KB
- 文档页数:4
人教版数学必修五第二章数列重难点解析第二章课文目录2. 1数列的概念与简单表示法2. 2等差数列2. 3等差数列的前n 项和2. 4等比数列2. 5等比数列前n 项和【重点】1、数列及其有关概念,通项公式及其应用。
2、根据数列的递推公式写出数列的前几项。
3、等差数列的概念,等差数列的通项公式;等差数列的定义、通项公式、性质的理解与应用。
4、等差数列 n 项和公式的理解、推导及应用,熟练掌握等差数列的求和公式。
5、等比数列的定义及通项公式,等比中项的理解与应用。
6、等比数列的前n 项和公式推导,进一步熟练掌握等比数列的通项公式和前n 项和公式【难点】1、根据数列的前n 项观察、归纳数列的一个通项公式。
2、理解递推公式与通项公式的关系。
3、等差数列的性质,灵活应用等差数列的定义及性质解决一些相关问题。
4、灵活应用等差数列前n 项公式解决一些简单的有关问题。
5、灵活应用求和公式解决问题,灵活应用定义式及通项公式解决相关问题。
6、灵活应用等比数列定义、通项公式、性质解决一些相关问题。
一、数列的概念与简单表示法⒈ 数列的定义:按一定次序排列的一列数叫做数列 .注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.⒉ 数列的项:数列中的每一个数都叫做这个数列的项 . 各项依次叫做这个数列的第 1 项(或首项),第2 项,,第 n 项, .⒊数列的一般形式:a1 , a2 , a3 , , a n , ,或简记为a n,其中 a n是数列的第n项⒋数列的通项公式:如果数列 a n 的第 n 项a n与 n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式 .注意:⑴并不是所有数列都能写出其通项公式,如上述数列④;⑵一个数列的通项公式有时是不唯一的,如数列:1, 0, 1, 0, 1 , 0 ,它的通项公式可以是1 ( 1) n 1|.a n ,也可以是 a n | cos n 12 2⑶数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.数列的通项公式具有双重身份,它表示了数列的第项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.5.数列与函数的关系:*数列可以看成以正整数集N(或它的有限子集{1 , 2, 3,, n} )为定义域的函数a n f (n) ,当自变量从小到大依次取值时对应的一列函数值。
《2.2.3等差数列的前n项和(1)》说课稿江苏省清浦中学时坤明【教材分析】数列在高中数学中占据非常重要的位置,主要以等差数列与等比数列为核心内容展开。
本节课是在学习了等差数列通项公式及简单性质的基础上进行了进一步研究,该内容也为日后学习各种数列的求和作出了引领与铺垫。
等差数列的前n项和公式是数列求和的最基本公式。
不论是公式的获取过程,还是公式推导及方法的发现过程,都是数学家们发现数学结论和数学方法的重要过程。
苏教版必修五旧教材中本课内容是以计算一堆钢管总数为例,从身边的生活实际出发,运用从特殊到一般的方法,进一步发现等差数列的前n项和公式的推导方法。
此法虽然比较实用,导向性比较明确,但个人认为其方式给予学生的思考空间比较狭隘、思维路径比较简短、思维方式过于单一。
参考2019年新出版的人教版高中数学必修五新教材中本课内容开头直接给出问题“?+++ ”,对学生的思维方法没有++4100321=作出任何限定,给了学生广阔的想象空间。
教师可以根据学情因地制宜的安排导入新课的方式,便于让学生更好的掌握本课内容。
除此而外,在例题及习题的编排上,新教材比旧教材更加注重了实用,题目也变得更加灵活,这也是新课程理念和思想在课标教材中的又一体现。
【学情分析】本课之前,学生已经学习了等差数列的通项公式及基本性质。
大部分学生对高斯算法有一定的认识,甚至有些同学对此算法原理比较熟练,然而熟练的只是高斯算法中的“?++++ ”这样一种特殊数列的求和,对于一般等差数列的求和方法+1001=423和公式,学生却没有详细了解。
江苏省常州高级中学是江苏省一所名校,学生的知识面、动脑能力、动手能力等各方面综合素质较高。
针对这一情况,教师所设置教学内容应具有一定的梯度性、关联性、灵活性及发散性。
教师应给予学生足够的展示平台和发挥空间,要处理好预设与生成的关系。
把握本质、紧扣主题,在达成目标的情况下适度外延,丰富知识内涵,体现数学的科学价值、人文价值及审美价值。
§2.3 等差数列的前n 项和(一)课时目标1.掌握等差数列前n 项和公式及其性质.2.掌握等差数列的五个量a 1,d ,n ,a n ,S n 之间的关系.1.把a 1+a 2+…+a n 叫数列{a n }的前n 项和,记做S n .例如a 1+a 2+…+a 16可以记作S 16;a 1+a 2+a 3+…+a n -1=S n -1 (n ≥2).2.若{a n }是等差数列,则S n 可以用首项a 1和末项a n 表示为S n =n (a 1+a n )2;若首项为a 1,公差为d ,则S n 可以表示为S n =na 1+12n (n -1)d .3.等差数列前n 项和的性质(1)若数列{a n }是公差为d 的等差数列,则数列⎩⎨⎧⎭⎬⎫S n n 也是等差数列,且公差为d2.(2)S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m-S 2m 也成等差数列.(3)设两个等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,则a n b n =S 2n -1T 2n -1.一、选择题1.设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7等于( ) A .13 B .35 C .49 D .63 答案 C解析 S 7=7(a 1+a 7)2=7(a 2+a 6)2=49.2.等差数列{a n }中,S 10=4S 5,则a 1d等于( )A.12 B .2 C.14D .4 答案 A解析 由题意得:10a 1+12×10×9d =4(5a 1+12×5×4d ),∴10a 1+45d =20a 1+40d ,∴10a 1=5d ,∴a 1d =12.3.已知等差数列{a n }中,a 23+a 28+2a 3a 8=9,且a n <0,则S 10为( ) A .-9 B .-11 C .-13 D .-15 答案 D解析 由a 23+a 28+2a 3a 8=9得 (a 3+a 8)2=9,∵a n <0, ∴a 3+a 8=-3,∴S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×(-3)2=-15.4.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36.则a 7+a 8+a 9等于( ) A .63 B .45 C .36 D .27 答案 B解析 数列{a n }为等差数列,则S 3,S 6-S 3,S 9-S 6为等差数列,即2(S 6-S 3)=S 3+(S 9-S 6),∵S 3=9,S 6-S 3=27,则S 9-S 6=45. ∴a 7+a 8+a 9=S 9-S 6=45.5.在小于100的自然数中,所有被7除余2的数之和为( ) A .765 B .665 C .763 D .663 答案 B解析 ∵a 1=2,d =7,2+(n -1)×7<100,∴n <15,∴n =14,S 14=14×2+12×14×13×7=665.6.一个等差数列的项数为2n ,若a 1+a 3+…+a 2n -1=90,a 2+a 4+…+a 2n =72,且a 1-a 2n =33,则该数列的公差是( )A .3B .-3C .-2D .-1 答案 B解析 由⎩⎨⎧a 1+a 3+…+a2n -1=na 1+n (n -1)2×(2d )=90,a 2+a 4+…+a2n =na 2+n (n -1)2×(2d )=72,得nd =-18.又a 1-a 2n =-(2n -1)d =33,所以d =-3. 二、填空题7.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,则a 9=________. 答案 15解析 设等差数列的公差为d ,则S 3=3a 1+3×22d =3a 1+3d =3,即a 1+d =1,S 6=6a 1+6×52d =6a 1+15d =24,即2a 1+5d =8. 由⎩⎪⎨⎪⎧ a 1+d =1,2a 1+5d =8,解得⎩⎪⎨⎪⎧a 1=-1,d =2. 故a 9=a 1+8d =-1+8×2=15.8.两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n +2n +3,则a 5b 5的值是________.答案 6512解析 a 5b 5=9(a 1+a 9)9(b 1+b 9)=S 9T 9=6512.9.在项数为2n +1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n 的值为________.答案 10解析 S 奇=(n +1)(a 1+a 2n +1)2=165,S 偶=n (a 2+a 2n )2=150.∵a 1+a 2n +1=a 2+a 2n ,∴n +1n =165150=1110,∴n =10.10.等差数列{a n }的前m 项和为30,前2m 项和为100,则数列{a n }的前3m 项的和S 3m的值是________.答案 210解析 方法一 在等差数列中,S m ,S 2m -S m ,S 3m -S 2m 成等差数列. ∴30,70,S 3m -100成等差数列.∴2×70=30+(S 3m -100),∴S 3m =210.方法二 在等差数列中,S m m ,S 2m 2m ,S 3m3m成等差数列,∴2S 2m 2m =S m m +S 3m 3m. 即S 3m =3(S 2m -S m )=3×(100-30)=210. 三、解答题11.在等差数列{a n }中,已知d =2,a n =11,S n =35,求a 1和n .解 由⎩⎪⎨⎪⎧a n =a 1+(n -1)d ,S n =na 1+n (n -1)2d , 得⎩⎪⎨⎪⎧a 1+2(n -1)=11,na 1+n (n -1)2×2=35, 解方程组得⎩⎪⎨⎪⎧ n =5a 1=3或⎩⎪⎨⎪⎧n =7,a 1=-1.12.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n .解 设等差数列{a n }的公差为d ,则S n =na 1+12n (n -1)d ,∵S 7=7,S 15=75,∴⎩⎪⎨⎪⎧7a 1+21d =715a 1+105d =75,即⎩⎪⎨⎪⎧ a 1+3d =1a 1+7d =5,解得⎩⎪⎨⎪⎧a 1=-2d =1, ∴S n n =a 1+12(n -1)d =-2+12(n -1), ∵S n +1n +1-S n n =12, ∴数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,其首项为-2,公差为12,∴T n =n ×(-2)+n (n -1)2×12=14n 2-94n .能力提升13.现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( )A .9B .10C .19D .29 答案 B解析 钢管排列方式是从上到下各层钢管数组成了一个等差数列,最上面一层钢管数为1,逐层增加1个.∴钢管总数为:1+2+3+…+n =n (n +1)2.当n =19时,S 19=190.当n =20时,S 20=210>200.∴n =19时,剩余钢管根数最少,为10根.14.已知两个等差数列{a n }与{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数n 的个数是( )A .2B .3C .4D .5 答案 D解析 a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1=7(n +1)+12n +1=7+12n +1,∴n =1,2,3,5,11.。
《创新设计》图书
§2.3 等差数列的前n项和(一)
课时目标
1.掌握等差数列前n项和公式及其性质.
2.掌握等差数列的五个量a1,d,n,an,Sn之间的关系.
1.把a1+a2+…+an叫数列{an}的前n项和,记做Sn.例如a1+a2+…+a16可以记作S16;
a1+a2+a3+…+an-1=Sn-1 (n≥2).
2.若{an}是等差数列,则Sn可以用首项a1和末项an表示为Sn=na1+an2;若首项为
a1,公差为d,则Sn可以表示为Sn=na1+12n(n-1)d.
3.等差数列前n项和的性质
(1)若数列{an}是公差为d的等差数列,则数列Snn也是等差数列,且公差为d2.
(2)Sm,S2m,S3m分别为{an}的前m项,前2m项,前3m项的和,则Sm,S2m-Sm,S
3m
-S2m也成等差数列.
(3)设两个等差数列{an}、{bn}的前n项和分别为Sn、Tn,则anbn=S2n-1T2n-1.
一、选择题
1.设Sn是等差数列{an}的前n项和,已知a2=3,a6=11,则S7等于( )
A.13 B.35
C.49 D.63
答案 C
解析 S7=7a1+a72=7a2+a62=49.
2.等差数列{an}中,S10=4S5,则a1d等于( )
A.12B.2
C.14D.4
答案 A
解析 由题意得:
10a1+12×10×9d=4(5a1+12×5×4d),
∴10a1+45d=20a1+40d,
∴10a1=5d,∴a1d=12.
3.已知等差数列{an}中,a23+a28+2a3a8=9,且an<0,则S10为( )
A.-9 B.-11 C.-13 D.-15
答案 D
解析 由a23+a28+2a3a8=9得
(a3+a8)2=9,∵an<0,
∴a3+a8=-3,
《创新设计》图书
∴S10=10a1+a102
=10a3+a82=10×-32=-15.
4.设等差数列{an}的前n项和为Sn,若S3=9,S6=36.则a7+a8+a9等于( )
A.63 B.45 C.36 D.27
答案 B
解析 数列{an}为等差数列,则S3,S6-S3,S9-S6为等差数列,即2(S6-S3)=S3+(S
9
-S6),
∵S3=9,S6-S3=27,则S9-S6=45.
∴a7+a8+a9=S9-S6=45.
5.在小于100的自然数中,所有被7除余2的数之和为( )
A.765 B.665 C.763 D.663
答案 B
解析 ∵a1=2,d=7,2+(n-1)×7<100,∴n<15,
∴n=14,S14=14×2+12×14×13×7=665.
6.一个等差数列的项数为2n,若a1+a3+…+a2n-1=90,a2+a4+…+a2n=72,且a
1
-a2n=33,则该数列的公差是( )
A.3 B.-3 C.-2 D.-1
答案 B
解析 由 a1+a3+…+a2n-1=na1+nn-12×2d=90,a2+a4+…+a2n=na2+nn-12×2d=72,
得nd=-18.
又a1-a2n=-(2n-1)d=33,所以d=-3.
二、填空题
7.设Sn为等差数列{an}的前n项和,若S3=3,S6=24,则a9=________.
答案 15
解析 设等差数列的公差为d,则
S3=3a1+3×22d=3a1+3d=3,
即a1+d=1,
S6=6a1+6×52d=6a1+15d=24,
即2a1+5d=8.
由 a1+d=1,2a1+5d=8,解得 a1=-1,d=2.
故a9=a1+8d=-1+8×2=15.
8.两个等差数列{an},{bn}的前n项和分别为Sn和Tn,已知SnTn=7n+2n+3,则a5b5的值是
________.
答案 6512
解析 a5b5=9a1+a99b1+b9=S9T9=6512.
9.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则
n的值为________.
答案 10
《创新设计》图书
解析 S奇=n+1a1+a2n+12=165,
S偶=na2+a2n2=150.
∵a1+a2n+1=a2+a2n,∴n+1n=165150=1110,
∴n=10.
10.等差数列{an}的前m项和为30,前2m项和为100,则数列{an}的前3m项的和S
3m
的值是________.
答案 210
解析 方法一 在等差数列中,Sm,S2m-Sm,S3m-S2m成等差数列.
∴30,70,S3m-100成等差数列.
∴2×70=30+(S3m-100),∴S3m=210.
方法二 在等差数列中,Smm,S2m2m,S3m3m成等差数列,
∴2S2m2m=Smm+S3m3m.
即S3m=3(S2m-Sm)=3×(100-30)=210.
三、解答题
11.在等差数列{an}中,已知d=2,an=11,Sn=35,求a1和n.
解 由 an=a1+n-1d,Sn=na1+nn-12d,
得 a1+2n-1=11,na1+nn-12×2=35,
解方程组得 n=5a1=3或 n=7,a1=-1.
12.设{an}为等差数列,Sn为数列{an}的前n项和,已知S7=7,S15=75,Tn为数列
S
n
n
的前n项和,求Tn.
解 设等差数列{an}的公差为d,
则Sn=na1+12n(n-1)d,
∵S7=7,S15=75,∴ 7a1+21d=715a1+105d=75,
即 a1+3d=1a1+7d=5,解得 a1=-2d=1,
∴Snn=a1+12(n-1)d=-2+12(n-1),
∵Sn+1n+1-Snn=12,
∴数列Snn是等差数列,其首项为-2,公差为12,
∴Tn=n×(-2)+nn-12×12=14n2-94n.
能力提升
13.现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么
剩余钢管的根数为( )
《创新设计》图书
A.9 B.10 C.19 D.29
答案 B
解析 钢管排列方式是从上到下各层钢管数组成了一个等差数列,最上面一层钢管数为
1,逐层增加1个.
∴钢管总数为:1+2+3+…+n=nn+12.
当n=19时,S19=190.
当n=20时,S20=210>200.
∴n=19时,剩余钢管根数最少,为10根.
14.已知两个等差数列{an}与{bn}的前n项和分别为An和Bn,且AnBn=7n+45n+3,则使得
a
n
b
n
为整数的正整数n的个数是( )
A.2 B.3 C.4 D.5
答案 D
解析 anbn=A2n-1B2n-1=14n+382n+2=7n+19n+1
=7n+1+12n+1=7+12n+1,
∴n=1,2,3,5,11.
1.等差数列的两个求和公式中,一共涉及a1,an,Sn,n,d五个量,通常已知其中三
个量,可求另外两个量.
在求等差数列的和时,一般地,若已知首项a1及末项an,用公式Sn=na1+an2较好,
若已知首项a1及公差d,用公式Sn=na1+nn-12d较好.
2.等差数列的性质比较多,学习时,不必死记硬背,可以在结合推导过程中加强记忆,
并在解题中熟练灵活地应用.